Skip Navigation

Link to  the National Institutes of Health NIDA NEWS NIDA News RSS Feed
The Science of Drug Abuse and Addiction from the National Institute on Drug Abuse Keep Your Body Healthy
Go to the Home pageGo to the About Nida pageGo to the News pageGo to the Meetings & Events pageGo to the Funding pageGo to the Publications page
PhysiciansResearchersParents/TeachersStudents/Young AdultsEn Español Drugs of Abuse & Related Topics

NIDA Home > Publications > Teaching Packets    

The Brain & the Actions of Cocaine, Opiates, and Marijuana



Contents:


Section I: Introduction to the Brain

Click on the images to see a larger version [file sizes range from 62K to 190K], once you have viewed the image, use the "Back" button on your browser to return to this page

Introduction - picture of brain

1: Introduction
Introduce the topic of your talk. Indicate that you will explain how the brain basically works and how drugs such as cocaine, opiates and marijuana interact with the brain's normal activities. Tell students that you will introduce the concept of "reward" which is the property that is characteristic of many addictive drugs. Describe the brain as a functional unit; it is made up of billions of nerve cells (neurons) that communicate with each other using electrical and chemical signals.

Brain regions and neuronal pathways

2: Brain regions and neuronal pathways
Certain parts of the brain govern specific functions. Point to sensory, motor, association and visual cortex to highlight specific functions. Point to the hippocampus to highlight the region that is critical for memory, for example. Indicate that nerve cells or neurons travel from one area to another via pathways to send and integrate information. Show, for example, the reward pathway. Start at the ventral tegmental area (VTA) (in blue), follow the neuronal path to the nucleus accumbens (purple), and then on to the frontal cortex. Explain that this pathway gets activated when a person receives positive reinforcement for certain behaviors ("reward"). Indicate that you will explain how this happens when a person takes an addictive drug.

Neuronal Structure

3: Neuronal structure
Remind the student that pathways are made up of neurons. Describe the anatomy of a neuron (soma, dendrites, and axon are marked with text). State that this neuron is real - as viewed through a microscope. Explain the normal direction of impulse flow. Dendrites and soma receive chemical information from neighboring neuronal axons. The chemical information is converted to electrical currents which travel toward and converge on the soma. A major impulse is produced (the action potential) and travels down the axon toward the terminal. Point to the terminal.

The synapse and synaptic neurotransmission

4: The synapse and synaptic neurotransmission
Describe the synapse and the process of chemical neurotransmission. Indicate how vesicles containing a neurotransmitter, such as dopamine (the stars), move toward the presynaptic membrane as an electrical impulse arrives at the terminal. Describe the process of dopamine release (show how the vesicles fuse with the presynaptic membrane). Once inside the synaptic cleft, the dopamine can bind to specific proteins called dopamine receptors (in blue) on the membrane of a neighboring neuron. Introduce the idea that occupation of receptors by neurotransmitters causes various actions in the cell; activation or inhibition of enzymes, entry or exit of certain ions. State that you will describe how this happens in a few moments.

Dopamine neurotransmission

5: Dopamine neurotransmission
Using the close-up of a synapse, continue using dopamine for your example of synaptic function. Explain that it is synthesized in the nerve terminal and packaged in vesicles. Reiterate the steps in neurotransmission. Show how the vesicle fuses with the membrane and releases dopamine. The dopamine molecules can then bind to a dopamine receptor (in blue). After the dopamine binds, it comes off the receptor and is removed from the synaptic cleft by uptake pumps (also proteins) (in red) that reside on the terminal. This process is important so that not too much dopamine is left in the synaptic cleft at any one time. Also point out that there is a neighboring neuron, which releases another compound called a neuromodulator. In this case it is an "endorphin" (blue flying saucers). Endorphins bind to opiate receptors (in green) which reside on the post-synaptic cell or in some cases on the terminals of other neurons (this is not shown so it must be pointed out). The endorphins are destroyed by enzymes rather than removed by uptake pumps.

Dopamine and the production of cyclic AMP

6: Dopamine and the production of cyclic AMP
Using the close-up view, explain what happens when dopamine binds to its receptor. When dopamine binds to its receptor, another protein called a G-protein (in pink) moves up close to the dopamine receptor. The G-protein signals an enzyme to produce cyclic adenosine monophosphate (cAMP) molecules (in green) inside the cell. [Sometimes the signal can decrease production of cAMP, depending on the kind of dopamine receptor and G-protein present.] Point to the dopamine receptor-G-protein/adenylate cyclase complex, and show how cAMP is generated when dopamine binds to its receptor. Indicate that cAMP (point to the cyclic-looking structures) controls many important functions in the cell including the ability of the cell to generate electrical impulses.

Summary of neuronal transmission

7: Summary of neuronal transmission
Use the example of two neurons making contact to summarize neuronal transmission. Point to the cell on the top and indicate that electrical impulses flow in the direction toward the terminal. Remind the students what happens when impulses reach the terminal; neurotransmitters are released, they bind to their receptors, and new impulses are generated in the cell on the bottom. Explain that this is how information travels from neuron to neuron.

[Previous Section] [Next Section]


Teacher Information

Here are some other NIDA-related sites which may be of interest. Click on any of the links below to view those sites.




NIDA Home | Site Map | Search | FAQs | Accessibility | Privacy | FOIA (NIH) | Employment | Print Version


National Institutes of Health logo_Department of Health and Human Services Logo The National Institute on Drug Abuse (NIDA) is part of the National Institutes of Health (NIH) , a component of the U.S. Department of Health and Human Services. Questions? See our Contact Information. Last updated on Monday, October 29, 2007. The U.S. government's official web portal