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Introduction

Ram B. Jain

The Medications Development Division (MDD) of the National Institute on
Drug Abuse (NIDA) came into existence in August 1990. Its mandate from
the U.S. Congress is to develop medications for the treatment of drug
dependence, primarily heroin and cocaine dependence. The organizational
structure of MDD allows for five branches, one of which is the Biometrics
Branch. | happened to be the first one to join the Biometrics Branch, and

it was and still is a great learning opportunity for me. | found: Drug
dependence is not a disease in the traditional sense that cancer or heart
disease is; its treatment is not a treatment in the traditional sense-drug
dependence is not treated the way a cancer or an infection is treated; and

the characteristics of the data generated by clinical studies in drug abuse
area are unique, not seen in other branches of medicine-a more than 50-
percent dropout rate! The data generated by these studies are the product
of a continuous dynamic interaction between the pharmacological effect of the
therapeutic agent, the effect of nonpharmacological services provided as part
of the total treatment, and most importantly, the drug-seeking behavior of the
addict, which is shaped and influenced by the environmental stimuli around
him or her. How does one statistically adjust for this multidimensional “noise”?
What is being treated here is not quite obvious-Is it a medical condition, a
mental disorder, a behavioral abnormality, or all of them at the same time?

Between September 1988 and May 1990, Drs. Rolley E. Johnson and Paul J.
Fudala conducted a randomized double blind, “double dummy” clinical trial
(ARC 090) to evaluate the efficacy of 8 mg sublingual doses of buprenorphine
compared with 20 mg and 60 mg oral doses of methadone in 162 patients.
This study was conducted at NIDA’s Addiction Research Center (ARC).
These data were provided to me for analysis. The primary data consisted

of binary (positive vs. negative) data points obtained by assaying the urine
samples for the presence of opiates. Since the urine samples were obtained
three times a week from each patient in this 25-week study, each patient could
provide up to 75 data points. Many endpoints could be defined and clinically
defended using these data (e.g., percent-positive samples; a drug-free period
of, say, 28 days or more), and several different statistical methods could be
used to analyze them. After spending several months with these data, finding



myself more informed every day than the day before, | determined that more
could be learned—I could use expert opinion from outside.

During the summer of 1991, | began planning for a workshop (a NIDA
technical review) in design and analysis of clinical trials in the treatment of
opiate dependence. Many well-known statisticians, including those who had
many years of experience in managing and analyzing clinical trials, were
contacted and asked if they would like to write and present research papers on
the design and analysis of clinical trials in the treatment of opiate dependence
and/or participate in this workshop. Commitments were obtained for five
research papers. Each paper was to present the results of analyzing a part
of the ARC 090 data. | also decided to present two papers-one on design,
one on analysis. The statisticians who agreed to write research papers and/or
participate (and finally came to the workshop) included Drs. Joseph Collins
(Veterans’ Administration Medical Center), Lloyd D. Fisher (University of
Washington), Dean Follmann (National Heart, Lung, and Blood Institute
[NHLBI]), Nancy L. Geller (NHLBI), Albert J. Getson (Merck Sharp & Dohme),
Joel B. Greenhouse (Carnegie-Mellon University), Alan J. Gross (Medical
University of South Carolina), Sudhir C. Gupta (Northern lllinois University),
A.S. Hedayat (University of lllinois), Nicholas P. Jewell (University of California
at Berkeley), Peter A. Lachenbruch (University of California, Los Angeles),
Jack C. Lee (National Institute of Child Health and Human Development
[NICHD]), Mei-Ling Ting Lee (Boston University), Shou-Hua Li (National
Institute of Dental Research), Taesung Park (NICHD), Carol K. Redmond
(University of Pittsburgh), Saul Rosenberg (NIDA), Vincent Shu (Abbott
Laboratories), Richard Stein (Food and Drug Administration [FDA]),

Ram C. Tiwari (University of North Carolina), L.J. Wei (Harvard School

of Public Health), T.S. Weng (FDA), and Margaret Wu (NHLBI).

Without the presence, interaction, guidance, and advice of clinicians working
in the drug abuse area, talking about designing and analyzing clinical trials
for treatment of drug dependence would have been an exercise in futility,
and therefore we requested participation from well-known clinicians in
government, industry, and academia. Those who agreed to participate (and
came to the workshop) included Jack D. Blaine (NIDA), Robert J. Chiarello
(NIDA), Edward J. Cone (ARC), Paul J. Fudala (University of Pennsylvania),
Harold Gordon (NIDA), David A. Gorelick (ARC), Charles W. Gorodetzky
(CIBA-Geigy Corporation), Charles V. Grudzinskas (NIDA), John Hyde (FDA),
Donald R. Jasinski (Johns Hopkins University), Rolley E. Johnson (Johns
Hopkins University), Michael Murphy (Hoechst Roussel Pharmaceutical,
Inc.), Frank J. Vocci (NIDA), and Curtis Wright (FDA).



The NIDA technical review on “Statistical Issues in Clinical Trials for Treatment
of Opiate Dependence” took place on December 2-3, 1991, at the Bethesda
Marriott, Bethesda, MD. It consisted of four sessions: a Clinical Session, a
Design Session chaired by Dr. Gross, a two-part Analysis Session chaired

by Drs. Wei and Fisher, respectively, and a General Issues Session cochaired
by Drs. Lachenbruch and Jack C. Lee. Drs. Vocci and Johnson presented
papers during the Clinical Session; Dr. Cone (with Sandra L. Dickerson) and

| presented papers during the Design Session; and Drs. Follmann (with Drs.
Geller and Wu), Gross, Gupta, Mei-Ling Ting Lee, Weng, and | presented
papers during the Analysis Session. All papers presented during the Design
and Analysis Sessions were available for precirculation and were peer reviewed
prior to the meeting. Authors were also invited to write rejoinders to referees’
comments. Drs. Geller, Greenhouse, Gross, Gupta, Jewell, Jack C. Lee,
Redmond, and Tiwari were the reviewers. After the authors had presented
their papers, reviewers also presented their comments at the workshop.
Following the reviewers’ comments and rejoinders, if any, there

was an open brief discussion of each paper that was presented.

Individual papers during the Clinical Session were followed by a Discussion
Session. The aim of this discussion session was to have the opinion of FDA
about what kind of endpoints would be adequate and/or appropriate in clinical
trials for treatment of drug dependence, what statistical methods should be
used to analyze the data generated from these trials, and in general, what
should be the strategy used to design these trials? The discussants for this
session were Drs. Hyde, Gorodetzky, Stein, and Wright.

All three Statistical Sessions concluded with a combined open/panel discussion.
At each of these discussion sessions, a series of questions were presented

(by NIDA) to the panels for discussion. Additional questions as appropriate
were allowed to be presented by any of the participants at the workshop. The
members of the Design Panel were Drs. Hedayat (chair), Getson, Gross, Gupta,
Jasinski, Mei-Ling Ting Lee, Redmond, and Wu. The members of the Analysis
Panel were Drs. Redmond (chair), Fisher, Follmann, Greenhouse, Gross, and
Hedayat. The members of the General Issues Panel were Drs. Lachenbruch
(cochair), Jack C. Lee (cochair), Collins, Fisher, Gupta, Jewell, Murphy, Shu,
and Tiwari.

| was honored to organize and be a participant in this NIDA technical review.
The workshop was a tremendous success. There was a free exchange of
opinion and information between the statisticians and clinicians. There were
more agreements than disagreements. There was a unanimous agreement:
These trials need a lot more work in both the design and analysis areas.
However, in the unbiased opinion of a very prominent statistician, not



connected with NIDA in any way to the best of my knowledge, one of the
papers presented at this workshop was what might be called a breakthrough.

This monograph presents the revised manuscripts as provided by the authors.
Some of the revisions in these manuscripts may be a direct result of referees’
comments and authors’ rejoinders. Consequently, except for two papers,
referees’ comments and/or authors’ rejoinders are not being reproduced, but
all the referees have been given credit for their comments. Dr. Tiwari, who
reviewed Dr. Gupta’s paper, showed interest (after the workshop) in writing

a paper. His paper is also included in this monograph. However, Dr. Gupta
could not submit an acceptable revised manuscript in time for publication

of this monograph. Consequently, his manuscript could not be included in
the monograph.

Summaries of discussions on individual papers presented in the statistical
sessions are also presented. Dr. Gross prepared the summary of discussions
that followed the papers by Drs. Mei-Ling Ting Lee and Weng. | prepared all
other summaries. | also prepared the summaries for the discussion session
that took place during the Clinical Session and for the open/panel discussions
during the Statistical Sessions. | have tried to give credit to individual speakers/
participants to the best of my ability. | have tried to reproduce opinions as close
to the those of individual speakers as possible. | have tried not to inject my own
biases to the degree | could. However, | take responsibility for all errors and
omissions and tender my apologies to those whom | may have misrepresented
and/or offended.

This is just a beginning. NIDA’s MDD is busy planning the development of

or is in the process of developing a variety of medications for the treatment of
cocaine, heroin, and other substances that have the potential for abuse. In
addition to buprenorphine (to treat heroin abuse), for which a multicentered
pivotal trial is ongoing, a trial for I-alpha-acetylmethadol (LAAM) (to treat heroin
abuse) will soon be initiated. This LAAM trial should lead to approval for its
marketing by FDA sometime in late 1992 or early 1993. A pivotal trial for a
sustained release formulation of naltrexone should be under way sometime in
1993. There are definite plans for developing a combination formulation of
buprenorphine and naltrexone. New compounds are being acquisitioned from
industry and elsewhere and are being tested for their potential for treatment of
drug abuse.
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Drug Dependence (Addiction) and Its
Treatment

Frank J. Vocci, Jerome H. Jaffe, and Ram B. Jain
INTRODUCTION AND SOME DEFINITIONS

What is drug dependence or drug addiction? How does one become an

addict or dependent on a drug? There is no simple or single answer to these
questions. Dependence and addiction are the terms often used synonymously
(as they are in this chapter). Unfortunately, these terms are often used in
different ways in different contexts. Furthermore, according to Jaffe (1992):

... science has been given no exclusive right to the use
of [these] terms . . . . Among the many behaviors that have
been labeled “addictions” in the mass media are: eating salt;
buying lottery tickets; using gasoline, computers, or foreign
capital; taking educational courses; watching television;
running; and engaging in sex. Some of the uses of the term
are deliberately metaphorical.

This chapter, however, attempts to summarize how dependence or addiction
is currently viewed by most psychiatrists, physicians, and many behavioral
psychologists.

Although the concept of dependence has historically been divided into
psychological dependence and physical (physiological) dependence, the
current approach recognizes that such terms tend to contribute to an
unscientific dualism. Today, most researchers believe that the mind does
not exist independently of the brain. Drug dependence involves body, brain,
and behavior as influenced by the environment. Abuse of drugs does not
necessarily constitute drug dependence. One may keep abusing a drug but
may never be dependent on it and may never need to take it to feel normal.
For someone to change from being a drug abuser who is nondependent to
someone who is drug dependent, the sense of control must change so that the
individual begins to feel a need to take the drug to feel normal, and therefore
the flexibility to use or not to use the drug is diminished. During this transition



from nondependeny to dependency, the pattern of drug abuse does not have
to change, although quite often there is an escalation in terms of the number
of times the drug is used or the amount that is used.

“Drug tolerance is a state of decreased responsiveness to the pharmacological
effect of a drug resulting from a prior exposure to that drug or a related drug.
When exposure to drug A produces tolerance to it and also to drug B, the
organism is said to be cross-tolerant to drug B” (Goldstein et al. 1974). Drug
tolerance can occur because of alterations in the central nervous system or
because of more rapid metabolism (usually by hepatic induction). Although still
used, “physical dependence” is another term that conveys a sense of sharp
distinction between the brain and the “mind.” Physical dependence is used

to mean that the use of a given drug has produced an altered body physiology
so that, when the drug is stopped, there are physiological abnormalities (which
eventually pass) that can be prevented by continued use of the drug. Physical
dependence can be revealed by stopping the drug or by giving an antagonist
that displaces the drug from its site of action in the body. Physical dependence
can result from the therapeutic uses of a drug, for example, by using opioids
to relieve pain in cancer therapy or benzodiazepines to treat anxiety. The
discontinuation of a drug that one is physically dependent on can result in
various pathophysiologic disturbances collectively known as a withdrawal or
abstinence syndrome. It is entirely possible that an individual could be
physically dependent on a drug but still not be “addicted” to a drug; that is,

the appearance of withdrawal symptoms does not necessarily cause the
individual to continue using the drug. Then, what is drug dependence?
According to Goldstein and colleagues (1974), drug dependence consists

of three distinct and independent components: tolerance, physical
dependence, and drug-seeking behavior resulting in compulsive abuse
(psychic craving). Of course, these features are noticed in different degrees
in drug dependence on different drugs. In the case of some drugs, only one
or two of these components are noticed. “An example of tolerance and
physical dependence without compulsive abuse is provided by the morphine
congener and antagonist nalorphine” (Goldstein et al. 1974).

According to earlier concepts formulated in the 1930s, 1940s, and 1950s,

a drug was not considered to be addictive unless it produced physical
dependence characterized by an easily observable withdrawal syndrome.

This view led to popular misconceptions about the dependence potential

of both nicotine and cocaine. However, addiction is still an evolving concept.
Currently, many researchers and clinicians believe that life-threatening intensity
or easy observability of a withdrawal syndrome is not a necessary element in
addiction. For example, nicotine is believed to be addicting even though its
withdrawal syndrome is not dramatic and no one has ever died from its



withdrawal. An increasing trend in the diagnosis of dependence is to
characterize the addictive disorders in terms of the pattern of use, loss of
control over amounts ingested, and continued use despite medical, legal,
occupational, or interpersonal problems.

There are now two widely recognized sets of standard criteria that are used

to determine whether a given individual should be considered to be dependent
on a drug: the DSM-III-R criteria developed by the American Psychiatric
Association (1987) and the ICD-10 criteria developed by the World Health
Organization (1990). The DSM-III-R criteria for drug dependence include
behaviors that allow an observer to infer that the individual has a decreased
freedom to choose whether or not to use the drug. To be diagnosed as drug
dependent, a person must meet three of the following criteria (American
Psychiatric Association 1987):

¢ Ingestion of larger amounts (of drug) or over a longer
period of time than intended, signifying loss of control over

behavior

* Desire to or unsuccessful attempt to cut down drug use,
once again representing loss of control over behavior

« Great deal of time spent in procuring drug and recovering
from its effects

* Frequent intoxication or withdrawal when expected to fulfill
major role obligations at work, school, or home; i.e.,
interference with obligations of life; e.g., reinforcing things
in life like watching TV, reading books, interactions with
people etc.

* Other activities given up or reduced due to substance use

« Continued use despite problems at work, in life (e.g.,
marital problems) or legal problems

+ Marked tolerance
» Characteristic withdrawal symptoms

+ Substance use to relieve withdrawal



In addition, these symptoms or behaviors must persist for more than 1 month.
Furthermore, drug dependence can be graded as mild, moderate, or severe
depending on the number of criteria met. A full remission means no use or use
with no dependence in the past 6 months.

The criteria used in ICD-10 are somewhat different. According to ICD-10, for
someone to be diagnosed as (drug) dependent, at least three of the following
should have been experienced or exhibited at some time during the previous
year (World Health Organization 1990):

* A strong desire or sense of compulsion to take the
substance

* An impaired capacity to control substance taking behavior
in terms of onset, termination or levels of use

* Substance use with intention of relieving withdrawal
symptoms and with awareness that this strategy is
effective

* Physiological withdrawal state

+ Evidence of tolerance such that increased doses of the
substance are required in order to achieve effects
originally produced by lower doses

* Narrowing of the personal repertoire of patterns of
substance use

* Progressive neglect of alternative pleasures or interests in
favor of substance use

¢ Persisting with substance use despite clear evidence of
overly harmful consequences

However, neither of these sets of criteria is used by the Federal Government
for admission to a methadone maintenance program. According to Federal
regulations, dependence criteria for admission to a methadone maintenance
program are at least 1 year of addiction history, physiological addiction for at
least 1 year, andcontinuous or episodic addiction for most of the preceding
year (Methadone maintenance criteria 1989). It would be inappropriate to view
this as a formal definition of addiction; rather, it should be seen as specifying a
degree of addiction or opioid dependence that justifies admission to a



specialized program. In one sense, however, one could say that there is no
standard definition of drug dependence or any standard diagnostic test that
can be administered to classify a drug-dependent individual in need of
treatment. However, in the case of opioid dependence, there is a naloxone
challenge test that, by displacing opioids from the receptors in the brain, will
produce signs of physical dependence, that is, withdrawal symptoms, in anyone
who has been using opioids for a few days or longer. This test can also be
given to an individual who might be taking opioids for therapeutic purposes
(and will produce the same withdrawal symptoms after even a few doses of
opioids). Hence, the presence of a withdrawal syndrome (even a severe
one) does not necessarily mean the individual is addicted. The presence

of a withdrawal syndrome is neither necessary nor a sufficient condition for
the diagnosis of drug dependence. However, as noted above, in an individual
with a history of abuse, the presence of a withdrawal syndrome should be
documented when that person is seeking admission to a methadone
maintenance program. Hence, for the purpose of a clinical trial, the definition
(DSM-III-R or ICD-10) of dependence with or without additional criteria (e.g.,
naloxone challenge scores) can be used. Using DSM-III-R criteria allows
entrance into clinical trials of patients who would not necessarily meet criteria
for admission to a methadone maintenance program.

TREATMENT OF OPIOID ADDICTION

There are more than 1 million opioid abusers in the United States who can
possibly benefit from a treatment program. Of these, about 110,000 are in
methadone maintenance programs, and about 3,000 are in naltrexone
treatment. Many others are treated in detoxification programs, therapeutic
communities, and 12-step, drug-free programs; it is likely that the overwhelming
majority of this population are not participating in any kind of treatment.

Although pharmacologically based treatments are only one approach to
treatment, this approach plays an important role in the American system.
There are primarily two pharmacological approaches to treatment of opioid
dependence: agonist therapy and antagonist therapy.

Agonist therapy for opioid dependence constitutes replacing the abused
opioid with another, most likely a synthetic, opioid (called an opioid agonist or
partial agonist) with relatively less potential for abuse. The ideal replacement
opioid should have a less intense or no euphoric effect, should have a longer
pharmacological effect, and should have a withdrawal effect less severe than
that of the abused opioid. Replacement (maintenance) therapy may last
indefinitely, although in many treatment programs the ultimate goal is to
remove the addicts from all drugs and opioids.

10



Antagonist therapy for opioid addiction treats addicts with an opioid antagonist
that blocks binding of opioids to its receptors and thus blocks all effects of
external opioids and, perhaps in some cases, the action of endogenous opioid
peptides. However, this therapy is likely to be successful only for those who are
extremely motivated to stop using opioids or to comply with taking an antagonist
(e.g., physicians who may risk losing their license to practice if they are not off
the drug), In addition, the currently available antagonist agent naltrexone is not
well liked by addicts for several reasons. In some individuals, it may produce
negative mood states. However, these adverse effects are not usually seen in
individuals who have not been dependent on opioids. However, in many cases,
unwillingness to take the antagonist may stem from its therapeutic effects-it
blocks the effects of opioid agonists,

As noted above, in addition to agonist and antagonist therapy, there are drug-
free programs. The relapse rates for addicts who enter these programs are
very high, but for small percentages who remain in TCs for 6 months or more,
the outcome is generally quite positive (Vaillant 1992).

OPIOID AGONIST THERAPY

Currently, the only Food and Drug Administration (FDA)-approved
pharmacotherapeutic opioid agonist for drug dependence is methadone
maintenance with counseling. Methadone, given orally once a day to a
tolerant individual, has no or little euphoric effect. Its pharmacological effect
lasts for about 24 hours (thus, need for methadone arises about every 24
hours), and it has less severe though longer lasting withdrawal symptoms
than heroin.

Methadone has been found to be an effective treatment in reducing the use

of illicit opioids that are generally administered through an intravenous (V)
route. Since IV use and sharing of injection equipment have been associated
with the spread of human immunodeficiency virus (HIV) infection, reduction in
heroin IV use indirectly reduces the risk of HIV infection. Although a decrease
in heroin use is seen within days after methadone is started, in opioid
maintenance with methadone treatment, patients must be stabilized on
methadone for a certain length of time before they can draw maximum benefits
from the treatment. Compared with drug-free programs, considerably higher
retention rates are seen in methadone treatment.

It must be mentioned here that by FDA regulation, methadone maintenance
treatment must include other services such as counseling in addition to the
administration of oral methadone. Hence, there are nonpharmacological
aspects of methadone maintenance treatment. These additional services aid



addicts, for example, after they have stabilized to the point of ceasing to
participate in crime-related activities, improving social and family relationships,
and remaining in rehabilitation. The quality and quantity of these services can
powerfully affect the results of treatment. Although research has shown that
doses of methadone above 60 mg are more effective than lower doses in
reducing heroin use, there are substantial variations in the methadone dose
(10 mg per day to as much as 100 mg per day) administered in different clinics
as well as in the quality and quantity of nonpharmacological services. Hence,
success rates in reducing IV heroin use vary greatly from one clinic to another
(Ball and Ross 1991; D’Aunno and Vaughn 1992). On the average, over a
1-month period, on a 10-mg daily dose, four of five addicts continue using
heroin; on a 20 to 40 mg per day dose, about half the addicts still use heroin;
on a 40 to 60 mg per day dose, only one of five addicts will use heroin; and on
more than 60 mg per day doses, fewer than one in five addicts continue to use
heroin, provided other services are of high quality.

However, methadone treatment is not without problems. Methadone has a
protracted withdrawal, and, therefore, it is difficult to withdraw from methadone.
It follows that it would be desirable to have an alternative opioid agonist that
induces less severe physical dependence and from which it is easier to
withdraw. Methadone is a full agonist, and fatal accidental overdoses in
unintended users (e.g., nontolerant drug users, children) have been reported.
A treatment agent with less toxicity would be an advantage. Methadone must
be used every day, which can be costly and time-consuming and hinders
rehabilitation; alternatively, addicts must be allowed take-home doses.
Take-home privileges have resulted in diversion of methadone into illicit
markets and, according to isolated reported cases, in the creation of methadone
addicts. Hence, an agent that has longer pharmacological action (e.g., can be
used twice or thrice a week rather than every day and is less susceptible to
diversion) would be an advance. In addition, in certain neighborhoods and
communities, methadone is not well accepted and has been perceived as a
stigma. Alternative treatments that are more acceptable to such communities
would be an advantage.
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Background and Design of a Controlled

Clinical Trial (ARC 090) for the
Treatment of Opioid Dependence
Rolley E. Johnson and Paul J. Fudala

INTRODUCTION

The initial clinical abuse liability study of buprenorphine was reported by Jasinski
and coworkers (1978). They noted that acute single doses of buprenorphine
produced morphine-like subjective, physiologic, and behavioral effects. They
also found buprenorphine to be acceptable to the addict population and to block
the effects of subcutaneously administered morphine. Buprenorphine appeared
to have a long duration of action similar to methadone but, unlike methadone,
was associated with a limited physiologic withdrawal syndrome. In the same
report, the chronic subcutaneous administration of 8 mg/day of buprenorphine
was equivalent to 60 mg/day of orally given methadone for subject-reported
“liking.” A later study (Mello and Mendelson 1980) provided additional data
regarding the potential efficacy of buprenorphine by showing that it suppressed
the rate of heroin self-administration by individuals participating in a clinical
laboratory study.

The relative ineffectiveness by the oral route of administration (Jasinski et al.
1982) led to studies using sublingual buprenorphine. These investigations
demonstrated that sublingually given buprenorphine was two-thirds as potent
as when administered subcutaneously (Jasinski et al. 1989). Subsequent
studies focused on various dose-induction procedures and the appropriate
dose levels for the treatment of street opioid- and methadone-dependent
individuals (Jasinski et al. 1983; Reisinger 1985; Seow et al. 1986; Bickel

et al. 1988a; Kosten and Kleber 1988).

Bickel and colleagues (1988a) reported that sublingual buprenorphine, 2 mg/day.
was significantly less effective than 30 mg of orally administered methadone in
attenuating the effects of a hydromorphone challenge. The same authors later
reported that the opioid-blocking activity of buprenorphine was dose related up to
8 mg/day (Bickel et al. 1988b), with little apparent increase in benefit when the
dosage was increased to 16 mg/day.
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Still to be determined were appropriate induction and dosing schedules for a
clinical comparison of buprenorphine with methadone. Thus, an inpatient trial
was conducted to address these therapeutic issues. Results from this study
indicated that a rapid 3-day dose-induction procedure was both effective and
acceptable to study participants (Johnson et al. 1989). It was also concluded
that daily dosing was probably more appropriate than alternate-day dosing
(Fudala et al. 1990).

The present study was designed to meet Food and Drug Administration
regulatory requirements for a well-designed, well-controlled clinical trial that
could be used in support of a New Drug Application for buprenorphine. To this
end, the investigators attempted to control or account for those aspects of the
study that could confound the data analyses or interpretation (Hargreaves
1983) including issues such as choosing appropriate design and outcome
measures, subject characteristics, attrition, blinding, and others. This chapter
describes the background and design of a controlled clinical trial comparing the
efficacy of buprenorphine and methadone for the short-term maintenance and
detoxification of opioid addicts.

DESIGN

Patients

Inclusion criteria included the following:

1. Male or female volunteers seeking treatment for opioid dependence

2. Age 21 to 50 years

3. Length of present addiction of at least 4 months

4. At least two or more episodes of heroin use per day

5. Daily value of heroin use of $50 or greater

6. A rating of 4 or greater on a self-reported level of withdrawal scale 12
hours after the last heroin dose (0=no withdrawal, 9=worst withdrawal

ever experienced)

7. Three consecutively collected daily urines, at least two of which were
positive for opioids but negative for methadone
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Exclusion criteria included the following:

1. Any acute or chronic medical or psychiatric condition that may have
compromised an individual's ability to complete the study

2. A score of 7 or higher on the interviewer severity rating of need for
psychiatric/psychological treatment on the Addiction Severity Index (ASI)

3. Clinically significant abnormalities in laboratory values

4. Alanine or aspartate aminotransferase levels greater than 99 units/L on
admission

Individuals were recruited through a contract service that identified potential
patients from treatment, general medical, and other facilities having contact
with chronic drug abusers. This service used the Shipley Institute of Living
Scale and the Hopkins Symptom Checklist 90 (Revised) to ensure that
prospective study participants could read and understand both the informed
consent and study questionnaires and also as aids in identifying individuals
who might not be qualified for the study. The study was conducted under
protocol 090 at the Addiction Research Center of the Intramural Division of the
National Institute on Drug Abuse (NIDA), Baltimore, MD, using its outpatient
facilities. Individuals were enrolled in the trial between September 1988 and
November 1989.

Each patient gave informed consent for participation in the study. The consent
forms and experimental procedures were approved by the local institutional
review board in accordance with the U.S. Department of Health and Human
Services guidelines for the protection of human subjects.

Methods

The study was conducted using a double-blind, double-dummy (both an oral
and sublingual dosage form given), parallel groups design. One dosage form
contained the assigned treatment; the other was a matching placebo. The
three treatment groups were:

1. Buprenorphine, 8 mg/day sublingually (n=53)
2. Methadone 20 mg/day orally (n=55)
3. Methadone 60 mg/day orally (n=54)

The 20 mg/day dosage was chosen since one-tenth of the patients in
methadone clinics were treated during the initial 3 months and longer with
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this or a lesser dose (U.S. Department of Health and Human Services 1984;
Allison et al. 1985). Also, it has been reported that 31 percent of patients
entering methadone treatment can be successfully maintained on a dose of

20 mg/day or less for 4 weeks (Peachey and Lei 1988). The 60 mg/day dosage
was chosen because it was reported as the approximate median daily dosage
used in maintenance therapy (U.S. Department of Health and Human Services
1984) and one that the authors hypothesized would give results significantly
better than those obtained from the 20 mg/day group. The 8 mg/day dosage
of buprenorphine was selected based on previous reports indicating possible
efficacy (Johnson et al. 1989; Fudala et al. 1990) and effects comparable to
those seen with 40 to 60 mg/day of methadone (Jasinski et al. 1978). The
working hypothesis of the study was that buprenorphine 8 mg/day and
methadone 60 mg/day would be more effective than methadone 20 mg/day
and that buprenorphine would be at least 80 percent as effective as methadone
60 mg/day.

The dose-induction procedure is shown in table 1. Patients were subsequently
continued on their maintenance dosage through study day 120.

The study consisted of 120 days of induction/maintenance followed by 49
days of gradual dosage reduction and 11 days of placebo dosing. Patients
who wished to voluntarily terminate their participation in the study or who were
administratively discharged were given a 21-day methadone detoxification.

For the purposes of data analysis, the study was divided into a 17-week
maintenance phase (days 1 through 119) and an 8-week detoxification phase
(days 120 through 175) since the detoxification phase was considered to begin
with the last maintenance dose. The gradual detoxification was carried out by
decreasing each treatment group’s dosage by the same percentage for a given
week of the study. Although the study was designed to be carried out over 175
days (25 weeks), patient participation and data collection were extended to a
total of 180 days to parallel existing Federal methadone regulations for long-
term detoxification.

TABLE 1. ARC 090 trial: dose-induction procedure

Study Day
Drug/Dosage 1 2 3 4 5 6 7 8 9 10

Buprenorphine 8 mg 2 4 8 8 8 8 8 8 8 8
Methadone 60 mg 20 30 40 50 60 60 60 60 60 60
Methadone 20 mg 20 30 30 30 30 25 25 25 25 20
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Stratification

Patients were stratified into treatment groups by the following criteria:
1. Age (21 to 35 and 36 to 50 years).

2. Gender

3. Clinical Institute Narcotic Assessment scores (less than 30 and greater
than or equal to 30) (Peachey and Lei 1988). These scores reflect the
results of a naloxone challenge test that was given to all patients
immediately prior to their receiving the first dose of study medication.

Each stratification factor had two levels for a total of eight strata. Treatment
assignment was performed randomly for each stratum using a permuted block
design with possible block sizes of three, six, or nine.

The naloxone challenge test was used as a stratification variable to ensure
approximately equivalent levels of physical dependence between groups.

Age was used since various authors have shown differences in relapse and
retention rates based on a patient's age (Richman 1966; Babst et al. 1971;
Brown et al. 1973). Gender differences have been reported to affect retention
of patients in methadone maintenance (Hser et al. 1991) and therapeutic
community treatment programs (Sansone 1980). Also, since the present study
incorporated fixed-dosage regimens, potential pharmacokinetic differences due
to gender were controlled by stratification.

Clinic Milieu

Thirty to sixty minutes of individual counseling per week, using a relapse
prevention model, was offered but not required. Medical safety was evaluated
using hematology and blood chemistry panels and urinalyses collected on
study days 30, 60, 90, 120, and 180. Vital signs were recorded every 2 weeks,
and urine pregnancy tests were obtained every 2 months. Patient case report
forms and medical records were maintained for each participant. Observed
urine samples were collected three times weekly on Monday, Wednesday,
and Friday. To promote patients’ compliance with the urine collection process,
individuals were required to submit a sample on the day(s) following a missed,
scheduled collection. However, because of potential carryover and other
confounds, these samples were not analyzed. Level 1 to level 2 clinical
services (Childress et al. 1991) were provided to all patients.
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Treatment compliance was maximized by requiring participants to come to

the clinic daily to receive medication. Individuals who missed 3 consecutive
days of medication were dropped from the study, with their third missed day
considered to be the last day of study participation. Every effort was made

to retain individuals in the study. For example, whenever possible, medications
were delivered to and data collected from patients who were incarcerated in the
Baltimore metropolitan area. The last day of study participation for individuals
administratively discharged or those who voluntarily terminated from the study
was their actual discharge or termination date.

One, zero, and three patients, randomized to the buprenorphine and
methadone 20 and 60 mg/day groups, respectively, had their dosages halved
due to an inability to tolerate them. Since this was a fixed-dosage protocol,
these patients were considered treatment failures effective on the first day of
dosage adjustment, although data collection continued. Study staff members
(except pharmacy personnel) were blind to this provision of the protocol.
Primary Dependent Variables

Three primary dependent variables were identified a priori:

1. Patient retention time in the study

2. Monday, Wednesday, and Friday urine samples negative for opioids

3. Failure to maintain drug abstinence as assessed by two consecutive
Monday urine samples positive for opioids following 4 weeks of treatment

The criterion for the last variable was chosen to give patients time to stabilize
in treatment and to account for the probability that patients would more likely
challenge the pharmacologic blockade early in treatment. Monday urine
samples were selected since it was felt that patients were more likely to use
(or use more) illicit opioids on weekends. A 1 -week interval between samples
was chosen so that a positive result would not be due to a previous sample.
Secondary Dependent Variables

Collected within the first 7 study days were results from the following:

1. Buss-Durkee Hostility Scale

2. Diagnostic Interview Schedule
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3. Early Experience Questionnaire

4. Elliot Huizinga Lifetime Events Survey

5. Eysenck Impulsivity, Venturesomeness, and Empathy Questionnaire
6. Eysenck Personality Questionnaire

7. Hopkins Symptom Checklist 90 (Revised)

8. Personality Diagnostic Questionnaire

9. ASI (also obtained at study completion or termination and 3, 6, and 12
months thereafter)

The following patient-reported data were collected daily:

1. An adjective checklist (interval scale from 0 to 9) assessing opioid
withdrawal symptoms, with additional items measuring urge and need for
an opioid, frequent urination, and “hooked on” and “liking” for the study

medication

2. A structured questionnaire (true/false) assessing opioid withdrawal
symptoms

Collected three times weekly were urine samples assayed for barbiturates,
benzodiazepines, cocaine metabolite, methadone, and phencyclidine.

Data collected biweekly (patient reported) included:

1. A visual analog scale assessing “want” and “need” for an opioid and
cocaine

2. A 14-item medication adverse effects questionnaire

3. Beck Depression Inventory

Collected at 30, 60, 90, and 120 days and at termination were:
1. Hematology and blood chemistry panels

2. Urinalyses

3. Vital signs
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Urine Toxicology

Urine samples were assayed in triplicate using appropriate positive and
negative controls, once with radioimmunoassay (Abuscreen; Roche
Diagnostic Systems Inc., Montclair, NJ) and twice with enzyme-multiplied
immunoassay technique (EMIT; Syva Corporation, Palo Alto, CA). A sample
was considered to be positive if the amount of analyte in the sample was
greater than a predetermined cutoff value (e.g., 300 ng/mL for opioids).

If a sample tested negative at least twice out of the three assays, it was
considered negative; otherwise, it was considered positive.

Study Medications

Buprenorphine hydrochloride was obtained from Reckitt and Colman (Hull,
England) through NIDA’s Research Technology Branch (Rockville, MD). Drug
solutions were aseptically prepared in 30 percent ethanol (vol/vol) and stored
at room temperature. All solutions were administered sublingually in a volume
of 1 mL using Ped-Pod oral dispensers (SoloPak Laboratories, Franklin Park,
IL). Buprenorphine solutions have been shown to be stable in these dispensers
for at least 3 months. To maximize the amount of buprenorphine absorbed
from the sublingual mucosa, all patients were instructed to refrain from speaking
and to hold the solution under the tongue for 10 minutes. Methadone HCI
(methadone hydrochloride oral concentrate USP, 10 mg/mL) and cherry flavor
concentrate (Mallinckrodt Inc., St. Louis, MO) were used. A methadone HCI,

2 mg/mL solution was prepared from the concentrate and distilled water.

Final methadone dosages were prepared to a volume of 30 mL using this
solution in a vehicle of cherry flavor concentrate:water (1:4) containing
denatonium benzoate (Bitrex; J.H. Walker and Co., Inc., Mt. Vernon, NY),

0.2 ng/mL, to mask the flavor of the solutions.

SUMMARY

This study represents the largest clinical trial reported to date that demonstrated
the efficacy of buprenorphine for opioid dependence treatment (Johnson et al.
1992). Although the study design was adequate to demonstrate differences
between treatment groups, there has not been a consensus regarding the most
appropriate method for analyzing various outcome measures of this and similar
studies. To present a comprehensive review of these methods, other chapters
in this monograph focus on various analytical techniques for assessing one of
these measures-urine toxicology screens-for illicit opioids.
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Clinical Endpoints: Discussion
Session

Ram B. Jain

Discussants: John Hyde, Charles Gorodetzky, Richard Stein, and Curtis
Wright

The aim of this discussion session was to obtain the opinion of the U.S.

Food and Drug Administration (FDA) about what kind of endpoints would be
adequate and/or appropriate in clinical trials for treatment of drug dependence,
what statistical methods should be used to analyze the data generated from
these trials, and in general, what strategy should be used to design these trials.
Drs. Hyde, Stein, and Wright represented FDA, and Dr. Gorodetzky presented
the pharmaceutical industry’s viewpoint because FDA policy might affect its
ability to conduct clinical ftrials.

Dr. Wright reminded that although most funded research is exploratory in
nature, generating new and exciting information on the cutting edge of science,
most of the drug approval work at FDA is confirmatory in nature, calling for
regulatory decisions to approve or not approve drugs. As a consequence,
results obtained by applying a new mathematical technique should be backed
up or linked with results obtained by a mathematical technique that is known
to work. Drug approval is easy when information about a new drug is coherent
and robust and there is a large effect size. The results obtained in large phase
Il trials—generally used to support a new drug application (NDA)—should be
in coherence with the results obtained from the earlier phase | and Il trials in
selected and general human populations and from preclinical work on animals;
they should get the same answers in all those places. The conclusions
obtained from analysis of data should be robust; that is, they should not be
dependent on a specific experimental design, a specific method of analysis,
or the specific way a trial may have been conducted. Different trials, probably
using different designs, should lead to the same conclusions, This is what

Dr. Stein called clinical robustness as opposed to statistical robustness. The
effect size should be relatively large.
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The results of the pivotal trials should not depend on a set of assumptions
made at any stage of development. Outcome variables (endpoints) selected
for the pivotal trials should tap several different kinds of domains. Subjective
self-reports (e.g., “How are you doing today?”) should be linked or obtained in
parallel with observer rating by a clinical staff member or physician about,

for example, how the addict was doing that day. Physiologic measures or
responses—for example, urine screens, hair analysis, naloxone challenge
scores—should be obtained along with behavioral measures such as retention
rates. Common or similar results across different domains sampled strengthen
an NDA.

FDA’s Pilot Drug Evaluation Division would permit four primary variables
without penalizing for multiplicity. An approval may become difficult if effect is
shown for only one variable in one population in one study only. The results
obtained by analyzing a data set validated by FDA’s Division of Scientific
Investigations using a specific method (of analysis) are cross-validated by
analyzing data using some other techniques to see whether the findings are
robust. Implicit assumptions built into data collection, reduction, and analysis
are evaluated. Knowledge of what took place at each step along the way—
from preclinical work to analysis of phase Ill trials—is helpful. Trial designs
that not only meet the requirements of a particular analytical technique to be
used but also are robust toward dropouts, violation of protocol assumptions,
and alternative analytical techniques are preferable. This is so because ftrials
designed to prove efficacy may also be looked at to try to determine the dose,
to evaluate adverse reactions, or to develop specific instructions for use for
subpopulations. It is also important to look at what information may have been
thrown away and what information may be so confounded that dose, duration
of treatment, patient acceptability, specific adverse events, and management
of patient dropouts are so distorted that the trial cannot be used to make a
regulatory decision.

Dr. Stein believed it important to evaluate the social impact of the proposed
drug in these populations. How healthy and how productive the patients may
be after the treatment is probably a primary variable for these populations. The
endpoints should be reliable and quantifiable. Simple surrogate measures such
as how frequently the drug is abused, what is the abuse pattern, and how much
and what kind of drug is being abused are important. An acceptable analysis
should be able to identify how each patient did during the treatment and what
his or her contribution is to the overall analysis.

Dr. Gorodetzky commented about the use of four primary variables. The

number of primary variables to be used will depend on the kind of experiment
designed and whether it is aimed at the consumer, at the science, or at
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medicine. Some kind of compromise is possible. A clinical trial is an
experiment in which one has to think very specifically about the objectives
and the operational manner in which one is going to attempt to reach those
objectives. One may not want to do certain things in a given situation that
might be interesting to do in another context. It is not as simple as choosing
one variable or four variables; the question is how some very practical
questions can be answered and how specific objectives can be drawn up for
clinical trials.

The end product of an approved drug is a package insert aimed at the
users-the practicing physicians and other scientists. The package insert
communicates what should be expected from the approved drug. As

Dr. Wright put it, what should be communicated to these users is fairly basic
practical data: For example, is the patient going to be arrested less often?

Is the patient going to be using drugs less? Is the patient going to come back
to the clinic? If a package insert communicates information that is too complex,
it would not be understandable to the users of a package insert.

As Dr. Wright pointed out, combination variables are good at supporting a
fairly robust statistical outcome, but they can make it extremely difficult to go
back to the original data for dose selection, to develop instructions for use for
subpopulations, and to establish relationships between adverse events and
treatment drugs.

There was some discussion about the retention rates in these trials. How
should this variable be used? What does this variable mean? Dr. Vocci
wanted to use this variable as an outcome measure not only because it is
important for the analysis, but also because, if a treatment works for only a
subpopulation, there is an interest in knowing the characteristics of that
subpopulation. This variable might tell who is going to be a possible treatment
success. Retention is important because, before patients can benefit from the
treatment and, thus, start changing their behavior (other than drug-taking
behavior), they must stay in the treatment for a certain length of time. This
reflects on the effectiveness of a treatment program vs. the effectiveness of a
drug. According to Dr. Gorodetzky, retention is a complex variable and may
have more practical consequences than some of the other outcome variables.

Because treatment milieu differs substantially from one clinic to another, the
largest treatment by investigator (clinic) interaction is likely to be discovered
for retention in multicenter trials. People may drop out of these trials for
different reasons: because of a 4-hour questionnaire they are asked to
complete on the last day of the treatment; because the treatment failed for
them; or because of how they get paid, how much they are paid, and when.
Dropouts modify treatment effects in these trials in unknown ways.
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Design of Clinical Trials for Treatment
of Opiate Dependence: What Is
Missing?

Ram B. Jain

INTRODUCTION

A typical trial to evaluate the safety and efficacy of a new pharmacotherapy
for the treatment of drug dependence, including opiate dependence, would

be double blind and would use one or more doses of the new pharmacological
agent as well as a placebo and/or an active control as the alternative treatment
arm. The primary outcome variable of interest will be the frequency and/or
the amount of the addicting/abused opiates used by the subjects in the trial

in different treatment arms. The only practical way to determine either the
frequency or the amount of the addicting/abused opiates used by the addicts
would be through self-reports. However, these self-reports are not likely to be
very reliable. Consequently, the addicts are asked to provide urine samples
as specified in the protocol. These urine samples are assayed to determine
the presence and/or the amount of the addicting/abused opiates.

T, and T, are the two consecutive time points (figure 1) at which a subject
provides urine samples for testing. If episodes A, B, and C are three
independent episodes of opiate abuse, then A will not be detected at either
T, or T,, B will be detected at T, only, and C will be detected at both T, and

T, since the amount of opiate abused at these episodes was different, and as
such the duration for which opiates stay in the urine will be different. To detect
episode A or to avoid underestimation of the frequency of opiate abuse, the
urine samples should have been collected and assayed earlier; in other
words, to avoid underestimation, the urine samples should be collected as
frequently as possible. To avoid episode C being detected twice or to avoid
overestimation of the frequency of opiate abuse, the urine samples should

be collected as infrequently as possible. The phenomenon of two or more
consecutive samples detecting the same episode of opiate abuse is called
the carryover from one positive sample to another positive sample. There

are substantial variations in drug-seeking behavior from one addict to another:
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Episode C

Episode A Episode B Cut-off

Amount of Opiate in Urine

Time at Which Urine Samples Are Collected

FIGURE 1. Detection of drug abuse by urine assays

Some abuse large amounts in relatively few episodes; some use small amounts
in relatively large numbers of episodes; some abuse drugs during weekends
only; and some use them every day. For this reason, it is difficult to determine
whether two or more consecutive positive urine samples represent one or more
episodes of drug abuse or, in other words, whether there is a carryover. Also,
since the estimation of carryover is difficult, carryover or overestimation rather
than underestimation of the frequency of opiate abuse is more of a concern.
However, complete elimination of the probability of carryover may not be
achievable. Hence, it is probably best to design the trials so that the probability
of carryover from one positive urine to another positive urine is minimized

and the probability of detecting an episode of drug abuse is maximized. This
chapter provides suggestions as to how a trial can be designed to achieve this
and what may still be missing.

The issues that reflect on the design of these trials can be studied under the
following ftitles:

1.  Sampling schemes used to obtain urine samples

2. Frequency and timing of the collection of urine samples
3. Qualitative vs. quantitative analysis of urine samples
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SAMPLING SCHEMES USED TO OBTAIN URINE SAMPLES

In one of the earlier trials conducted to evaluate the safety and efficacy of
LAAM, Ling and colleagues (1976) collected urine samples once a week using
a random time sampling scheme. In a random time sampling scheme, although
the subjects know how many times during a given week they will be asked to
provide their urine samples, they do not know on which days of the week they
will be asked to provide a urine sample. It is randomly decided who will provide
a urine sample on which day of the week. For example, if the protocol calls

for collection of one urine sample per week from each subject and if the urine
samples are to be collected Monday through Friday only, 20 percent of the total
subjects in the study will provide urine samples on Monday, 20 percent of the
total subjects in the study (from the remaining 80 percent of the total subjects)
will provide urine samples on Tuesday, and so on until all the subjects who
have not provided their urine samples by Thursday will be asked to provide their
urine samples on Friday. Consequently, the probability of a subject providing a
urine sample will vary from day to day, ranging from zero to one. Consequently,
this type of sampling scheme is not truly random. In addition, a subject X may
provide a urine sample on Monday of one week and on Friday of the next week,
thus being allowed free drug-seeking behavior for 10 days. On the other hand,
a subject Y may provide a urine sample on Friday of one week and on Monday
of the next week, thus being allowed free drug-seeking behavior for only 2 days.
Thus, a random time sampling scheme has the potential to make alternate
treatment groups incomparable for analysis. As said earlier, this sampling
scheme is not truly random, but for lack of better terminology, it is called a
random time sampling scheme. This type of sampling scheme was earlier
advocated by Goldstein and Brown (1970).

Certain other types of random time sampling schemes are discussed in Harford
and Kleber (1978) and Goldstein and Brown (1970). However, since these
schemes are not in practical use, they will not be discussed further.

According to a report published by the Council on Scientific Affairs (1987),
opiates stay in the urine for about 48 hours. Hence, unless urine samples are
collected at less than 48-hour intervals, carryover is not likely to be a problem.
Consequently, once-a-week, 5-days-a-week random time sampling is not likely
to lead to carryover, but since an addict may be tested as far apart as 10 days,
it certainly will lead to underestimation of the frequency of opiate abuse. But for
twice and thrice a week, 5-days-a-week random time sampling, as can be seen
from tables 1 and 2, the probability of being tested less than 48 hours apart,
that is, on consecutive days, is 54.9 and 45.8 percent, respectively, which is
likely to lead to a serious carryover. The probability of being tested more than
48 hours apart, that is, probability of underestimation, is 18.9 and 13.7 percent,
respectively.
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TABLE 1. Probabilities of being tested in a twice-a-week, 5-days-a-week
random time testing*

Minimum (Maximum)

Probability of Number of Free Number of Free
Being Tested on Drug-Seeking Days Drug-Seeking Days
M T W T F During the Week During 2 Weeks
X X .1600000 5 5 (8)
X X .1142857 4 4 (7)
X X .0628571 3 3 (6)
X X .0628571 2 2 (5)
X X .1142859 4 4 (7)
X X .0628571 3 3 (6)
X X .0628571 2 2 (5)
X X .0857142 3 3 (6)
X X .0857142 2 2 (5)
X X .1885714 2 2 (5)

*Total probability of being tested on consecutive days=.5485713; probability of
being tested more than 48 hours apart during the same week=.1885713.

Hence, random time sampling could render treatment groups incomparable for
analysis and may result in serious underestimation of the frequency of opiate
abuse and/or a serious carryover from one positive sample to another positive
sample depending on the frequency of sampling.

To further dwell on the merits and demerits of random time sampling, another
type of sampling scheme called fixed time sampling needs to be defined.

In a fixed time sampling scheme, all subjects are asked to provide urine
samples on the same days of the week. In a double-blind, double-dummy
clinical trial to compare the efficacy and safety of 8-mg sublingual doses of
buprenorphine with 20- and 60-mg doses of methadone conducted at the
Addiction Research Center of the National Institute on Drug Abuse (the ARC
090 trial), between September 1988 and May 1990, a fixed time sampling
scheme was used to obtain urine samples three times a week on Mondays,
Wednesdays, and Fridays. Because the urine samples were obtained at least
48 hours apart, the probability of carryover is minimal. According to Dr. Edward
J. Cone (personal communication, July 1991) of the Addiction Research Center,
the mean time to detect (cutoff=300 ng/mL) intramuscular administration of 6
mg of morphine by an enzyme-multiplied immunoassay technique (EMIT)
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TABLE 2. Probabilities of being tested in a three-times-a-week, 5-days-a-
week random time testing*

Probability of Number of Free Number of Free
Being Tested on Drug-Seeking Days Drug-Seeking Days
M T W T F During the Week During 2 Weeks
X X X .1885714 4 4 (6)
X X X .1487258 3 3 (5)
X X X .0227026 2 2 (4)
X X X .1090656 3 3 (5)
X X X .0151350 2 2 (4)
X X X .1142857 2 2 (4)
X X X .1090656 3 3 (5)
X X X .0151350 2 2 (4)
X X X 1142857 2 2 (4)
X X X .1600000 2 2 (4)

*Total probability of being tested on consecutive days=.457637; probability of
being tested more than 48 hours apart during the same week=.1369883.

assay was 21.82 hours (n=5, SD=5.34). Given that the urine half-life of
morphine is 4 to 6 hours, on the average, up to 96 mg of morphine can be
consumed by an addict during one episode and still result in only one positive
urine if the consecutive urines are collected and assayed at least 48 hours
apart. However, since Friday and Monday samples were collected 72 hours
apart, the potential for underestimation is certainly there, but this is likely to
happen only when opiates are abused on Fridays but not on Saturdays and
Sundays. At worst, the addicts have 3 free days of drug-seeking behavior.
But because everybody has the same number of free days uniformly across
the whole study period, the comparability of different treatment groups is
maintained.

The strongest argument in favor of random time sampling is that the addicts
try to avoid drug abuse detection, and as such, if they know they will be tested,
they will not show up for their scheduled visits. In certain special treatment
situations in which a positive result is associated with certain contingencies,
this might be true, but in a clinical trial environment there is no reason to
expect any such contingencies. As such, the argument to use random time
sampling is merely philosophical, with no advantage and many drawbacks,
including a substantial potential to render the data nonanalyzable. If a protocol
calls for administrative withdrawal after a certain number of positive urines, the
addict may be switched to an alternate, possibly more beneficial treatment
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rather than being withdrawn, and makeup urines may be collected on days
following a missed visit; these makeup urines may or may not be used in the
analysis, In addition, there are no published data to suggest that such a
practice does occur in a noncontingent treatment environment.

Hence, a fixed time sampling should be the design of choice.
FREQUENCY AND TIMING OF THE COLLECTION OF URINE SAMPLES

When and how frequently the urine samples should be collected depends

on the kinetics of the drug of abuse and the sensitivity of the assay used to
analyze the urine samples. For heroin, with a cutoff of 300 ng/mL, a sample
every 48 hours seems to be the optimal choice, because as pointed out by the
Council on Scientific Affairs (1987), heroin stays in the urine for about 48 hours
provided EMIT-type assays are used. This is likely to minimize the probability
of carryover and maximize the probability of detecting an episode of opiate
abuse.

With a lower cutoff and/or a more sensitive assay such as gas chromatography/
mass spectrometry, the samples may have to be collected and assayed more
infrequently. Otherwise, the probability of carryover may be increased.
However, this may decrease the probability of detecting an episode of drug
abuse.

Also, for shorter acting drugs, the samples may have to be collected more
frequently. For longer acting drugs, they may have to be collected more
infrequently.

The timing of sample collection should be such that the days of heavy use
do not go undetected. For example, to detect use on weekends, it may be
necessary to collect the first sample of the week on Monday.

In summary, the decision of when and how frequently the samples should be
collected should be made by a joint team: a statistician, who should ensure
that the probability of carryover is minimized and the probability of detecting

the drug abuse is maximized to the degree possible; a pharmacologist/
pharmacokineticist, who should ensure that reliable information on the kinetics
of the drug of abuse is available and is provided to the statistician; and a
physician/clinician, who is adequately informed of the pattern of drug abuse and
should be primarily responsible for the timing of sample collection.
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QUALITATIVE VS. QUALITATIVE ANALYSIS OF URINE SAMPLES

Currently, the clinical trials in the drug abuse area are designed to estimate

the frequency of drug abuse and not the amount of drug abuse. However, a
replacement drug may decrease the frequency of drug abuse, but the addicts
may still be using the same amount of the drug (of abuse), though in a smaller
number of episodes. The amount of drug abuse may be estimated by analyzing
the urine samples quantitatively rather than qualitatively, that is, by estimating
the amount of the drug of abuse in the urine, rather than just the presence or
absence of the drug of abuse. However, a real-life relationship between the
amount of drug present in the urine and the actual amount of drug consumed is
confounded by many factors.

A relationship between the amount of drug present in the urine and the actual
amount of drug consumed may be established in laboratory experiments, and
an inference can be drawn about the amount of drug consumed from the
amount of drug present in the urine. However, a relationship established in the
laboratory is not likely to hold in real-life situations because of the uncertainty of
the timing of the episodes of drug abuse, the variations in the purity of drugs of
abuse with different geographic locations and times, the effect of multiple
episodes of drug abuse on the metabolism of these drugs, the interactions
between multiple drugs of abuse consumed by the addicts in same or different
episodes, the differences in frequency and timing of drugs abused by the
addicts, and so on. And, of course, how accurately this relationship can be
determined will also depend on the accuracy of the quantitative assays used to
analyze urine samples. In addition, instead of urine samples, plasma samples
may be better determinants of this relationship, but once again, this relationship
too will be confounded by the same factors that confound this relationship for
urine samples.

At best, a relationship between the amount of drug present in the urine or
plasma samples and the actual amount of drug abused is very complex and
not easy to capture in real-life situations. However, a joint effort by statisticians,
pharmacokineticists, and physicians/clinicians to model this relationship is likely
to be fruitful.

It must also be mentioned that the estimation of the amount of drug abuse
should not be done in lieu of the estimation of the frequency of drug abuse.
Both should be done simultaneously. Because of the strong relationship
between the frequency of intravenous use and human immunodeficiency
virus infection, it is of paramount importance that the replacement drugs
should decrease the frequency as well as the amount of drug abuse.
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WHAT IS MISSING?

1. The statistical/pharmacokinetic methods/design to model the relationship
between the amount of drugs present in the urine or plasma samples and
the actual amount of drugs abused is missing.

2. The present methods to estimate the frequency of drug abuse provide, at
best, a lower bound on the frequency of drug abuse because of:

*+ The inability to detect possible multiple episodes of drug abuse during
the time two consecutive urine samples are collected, and

* The need to do infrequent sampling to minimize the carryover from one
positive sample to another positive sample.

3. The probability of carryover is not entirely eliminated, and the degree of
carryover is not known. It will be helpful if methods/techniques can be
developed to ascertain whether multiple, consecutive positive samples are
due to one or multiple episodes of drug abuse. This may, for example, be
done by using self-reported episodes of drug abuse during the time
consecutive urine samples are collected.
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Comments on “Design of Clinical Trials
for Treatment of Opiate Dependence:
What is Missing?” by Jain

Sudhir C. Gupta

This chapter discusses the following three important issues in the design of
clinical trials for opiate dependence:

1. Random vs. fixed time sampling scheme for collecting urine samples
2. Frequency and timing for collecting urine samples

3. Estimating the amount of drug abuse in addition to the frequency of drug
abuse

SAMPLING SCHEME FOR COLLECTING URINE SAMPLES

As discussed by Dr. Jain, the main problem with using a random time sampling
scheme is that the methods for analyzing the data obtained using this scheme
may not be available. This means that suitable methods should first be
developed before the analysis of the data can be carried out. As pointed out by
Dr. Jain, this approach is not recommended. The trial should be designed so as
to allow an efficient interpretation of the data. A fixed time censoring scheme is
thus recommended.

The strongest argument in favor of random time sampling is that addicts try to
avoid drug abuse detection. In a fixed time sampling scheme if they know that
they will test positive because of drug abuse, they may not show up for their
scheduled visits. However, Dr. Jain has pointed out that this is not to be
expected in this trial because subjects who are known to be drug addicts do not
have anything to gain by avoiding detection of drug abuse. In a fixed time
sampling scheme all the subjects are required to provide urine samples on each
of the scheduled days. Sometimes it may become necessary to use a random
time sampling scheme if enough resources are not available to handle all the
subjects in one day. If a random time sampling scheme is to be used under
such circumstances, then it should be modified to yield truly random samples as
indicated below.
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Suppose the protocol calls for collection of two urine samples per week from
each subject. Then there should be an equal probability for a subject to be
tested on any 2 of the 5 days of the week. Let MTh denote that a subject is to
be tested on Monday and Thursday, etc. A subject may be tested on MT, MW,
MTh, MF, TW, TTh, TF, WTh, WF, or ThF, resulting in 10 possibilities as pointed
out by Dr. Jain. A subject should be assigned to one of these 10 possibilities
randomly. This random assignment should be done separately for each week,
and it should not be known to the subjects in advance of their urine collection.

In the case of two urine samples per week, the expected number of free
drug-seeking days is 3.15 using table 1 of Dr. Jain’s chapter. For the above
suggestion the probability is 0.10 for a subject to be tested on any of the 10
possible pairs of days. The expected number of free drug-seeking days is
then 3.0.

A similar method can be used for three urine samples per week, reducing the
expected number of free drug-seeking days to 2.2. The corresponding
expected number is 2.74 from Dr. Jain’s chapter.

FREQUENCY AND TIMING FOR COLLECTING URINE SAMPLES

As pointed out by Dr. Jain, the frequency of collecting urine samples should be
determined so as to minimize the probability of carryover and to maximize the
probability of detecting opiate abuse. As discussed in Gupta (1991), a model
that incorporates subject and carryover effects can be developed using the
approach of Bonney (1987). However, in this approach the subject effects and
carryover effects are confounded, and a separate estimate of carryover effect is
not provided. This does not seem to be a serious limitation.

ESTIMATING THE AMOUNT OF DRUG ABUSE IN ADDITION TO THE
FREQUENCY OF DRUGABUSE

Dr. Jain has clearly discussed the problems associated with estimating the
amount of drug abuse in addition to the frequency of abuse. As pointed out by
Dr. Jain, currently the clinical trials in this area are designed to estimate the
frequency of drug abuse and not the amount of drug abuse. If the addict tests
positive for drug abuse, then it is important to find out the extent to which the
drug was abused. In other words, it is important to know if a replacement
therapy is effective in reducing the total amount of drug abused in addition to
reducing the frequency of drug abuse. A relationship between the amount of
drugs present in the urine and the amount of drug consumed by the addict may
be established in laboratory experiments, from which an estimate of the amount
of drug consumed may be obtained. However, as Dr. Jain has clearly pointed
out, such estimates are confounded by many factors. Therefore, such
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estimates derived using the results obtained in the laboratory will not be
precise. Under these circumstances it will be best to study the extent rather
than the exact amount of drug abuse. Let us assume, for example, that the
extent of drug abuse is categorized as low, medium, or high.

Let the outcome variable Y be coded as O if the assay shows absence of
abused opiates in the urine. Similarly, ¥ = 1, 2, 3 will be used to denote that
the assay shows the extent of drug abused to be low, medium, and high,
respectively. Since the outcome variable takes more than two distinct values,
an appropriate polytomous logistic regression model can be developed for
comparing the probabilities under different treatments after adjusting for the
effects of covariates. A patient provides repeated observations up to a
maximum of 17 weeks. Since each dose of a treatment drug provides one
observation, a maximum of 51 replications for a treatment can be obtained for
any patient. These observations from the same patient will not be independent.
Thus, conditional probabilities will be used under the polytomous logistic
regression setup.

Suppose that there are n; observations for the th patient, which are denoted by
Y;, and let X; = (Xy; Xy .. ., X,;;)' denote the vector of covariates
associated with ¥; i=1,2,...,m j=1,2,...,n. Let

Vi = W, Y o Vil

v = v, oy o gij-1)’
P(Yi = yalX = X1) = myy,;

yl'j = 01 11273
i=1,2..,m
i=1,2, .0

Following the approach of Bonney (1987) as discussed by Gupta (1991) for the
case of dichotomous outcome variables, the conditional probabilities as defined
above can be modeled by considering )’(; as covariates. Let
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The logits for comparison with ¥ = 0 are thus obtained as given below. The
logits for comparing with other values of Y can be written down in a similar way.

log (ﬁi) = a, + B, Xn

710
1 Tjs - VS u/}ru
og| == ) = a, + 5, Xi; + n;,Y;;
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s =1,2,3,:=12, .. ,m j =12 . ,n.

Following Gupta (1991), finally the model can be written as given below.
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and n denotes the maximum number of repeated observations possible for a
subject, in the present case n = 51.

The parameters of the model are estimated using the method of maximum
likelihood. Note that in practice certain interactions may be needed to be
included in the model.
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Rejoinder
Ram B. Jain

In his comments, Dr. Gupta seems to suggest that if subjects can be tested on
any x (2) days of the week in an x (2)-days-a-week random time sampling with
the same probabilities, this sampling scheme can be considered to be truly
random. | am not quite sure if this is essentially true. Once the subject has
been tested on any 2 days during a given week, he or she will have zero
probability of being tested again and will be free to abuse the drugs. If the
sampling must be truly random, he or she should have equal probability of
being tested on any given day of the week on which urine samples are
scheduled to be collected.

In addition, the biggest problem with random time sampling schemes is not
that they are not truly random. Their biggest problem is that in these kinds
of sampling schemes some subjects are tested too soon after their previous
test and some are tested too long after their previous test. This leads to the
problem of carryover and the loss in ability to detect an episode of drug abuse.

Dr. Gupta also suggested in his written comments and during the meeting that
carryover can be incorporated in the model based on a previous positive urine.
Unfortunately, two or more consecutive positive tests do not always indicate a
carryover. An assumption that two or more consecutive positive urines always
indicate a carryover is likely to lead to underestimation of the probability of drug
abuse. However, subjects’ self-reports about the past drug abuse may be used
to make a decision as to whether two or more consecutive positive urines
indicate a carryover.

Dr. Gupta indicates in his comments that the logistic regression model he
proposed can be used to incorporate carryover effect, but subject effect and
carryover effect will be confounded and a separate estimate of carryover effect
will not be available. | believe this is a serious limitation. Dr. Gupta does not
agree.

In the absence of methodology to exactly estimate the amount of drug abuse,
Dr. Gupta suggests a logistic regression model to estimate the extent of drug
abuse categorized as low, medium, or high. This certainly would be an idea
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worth pursuing. However, to depend on the assays to categorize as low,
medium, or high drug use will be somewhat unreliable because the amount of
drug present in the urine at the time of testing not only depends on the amount
of drug consumed but also on the time the drug was consumed since the last
urine sample was collected. The timing of the episodes of drug abuse since the
last urine sample was collected is not likely to be known with much accuracy.
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Summary of Discussion: “Design of
Clinical Trials for Treatment of Opiate
Dependence: What Is Missing?”

Ram B. Jain

Dr. Murphy expressed the concern that by asking the subjects to come to

the clinic to provide urine specimens three times a week in a fixed time
sampling, we are creating a compliance problem. Even if there are no
negative contingencies associated with the positive urines, certain subjects
will not enroll because they will have to provide urine specimens three times

a week. Retention rates might be adversely affected in a three-times-a-week
fixed time sampling. | pointed out that if the subjects are asked to come to the
clinic three times a week, the problem will be the same whether it is a fixed time
or random time sampling. If Dr. Murphy’s suggestion was to ask them to come
to the clinic once a week, we would be knowingly collecting fewer data than are
needed to estimate treatment effects. A lot of episodes will go undetected in
once-a-week sampling. This will defeat the purpose of the clinical trials, which
is to estimate the treatment effect from several different treatments and
compare them for efficacy.

As pointed out by Dr. Vocci, the primary purpose of a clinical trial is to
evaluate the pharmacological effect of the treatment in a natural setting

rather than to manipulate dropout rates and/or drug abuse rates by introducing
negative contingencies into the trial, and there were none in the ARC 090

trial. In addition, as Dr. Johnson pointed out, the subjects were asked to

hold medication under the tongue for 10 minutes in this trial; this alone would
create some compliance problems. Since the subjects come to the clinic
every day for their medication and other procedures, asking them to provide
urine specimens for 3 of these 7 days should create no additional compliance
problems.

Dr. Jack C. Lee expressed concern about differences (periodicity) in missed
visit rates, percent positive rates, etc., on the different days (Monday vs.
Wednesday vs. Friday) the urine specimens were obtained, as was seen in
Follmann and colleagues’ chapter. Dr. Lee suggested that, in place of
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collecting the samples a fixed number of times on fixed days of the week, a
random scheme may be adopted so that the expected number of tests during a
week may be fixed (e.g., three), but the samples may be collected on different
days of the week and a different number of times during different weeks. This
may help smooth out the periodic (cyclic) effect seen in the data. | pointed out
that by using such a scheme we will run into the problem of testing some
subjects too soon and some too long after the previous test, and this may

lead to carryover and/or avoiding detection of certain drug abuse episodes.

In addition, differences in missed visit rates and/or treatment effect across

the different days the urine specimens are collected provide some useful
information, and such differences should be expected. Even if the treatment
is working, subjects can be expected to abuse more during weekends than
during weekdays because of social pressures, etc.; the effectiveness of
treatment may be expected to diminish during weekends.
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Efficacy of Urinalysis in Monitoring
Heroin and Cocaine Abuse Patterns:
Implications in Clinical Trials for
Treatment of Drug Dependence

Edward J. Cone and Sandra L. Dickerson
INTRODUCTION

Human self-administration of drugs of abuse begins a series of biochemical
and pharmacologic events that culminates in the alteration of an individual’s
mood state. The physical and chemical processes that ultimately determine
the extent of drug effect, that is, how much active drug accumulates in the
drug-receptor biophase, also serve to terminate the drug’s actions. The primary
processes responsible for the appearance and termination of these effects are
absorption, distribution, metabolism, and excretion. The time courses of these
processes are illustrated in the generic example shown in figure 1, panel A,

for the appearance and disappearance of a drug in urine. Urine drug levels
typically increase rapidly after administration and peak and decline at a

slower rate. In this example, the analytical technique used to measure drug
levels has an assigned cutoff of 300 ng/mL. Cutoffs are used to categorize
urine specimens as positive or negative for drug; they are assigned based on
analytical factors such as assay precision and reproducibility and on therapeutic
considerations such as drug potency and rate of excretion. For opiates and
cocaine, 300 ng/mL was selected as the screening cutoff for use in Urine testing
of Federal employees (Mandatory guidelines 1988). This cutoff is in common
use throughout Federal and private-sector employee testing programs and in
treatment programs.

As shown in figure 1, urine drug levels had declined to the cutoff by 36 hours
after drug administration. All urine specimens obtained prior to that time would
have tested positive. This is an ideal example of a detection time for a drug
obtained by urine testing; this time interval represents the time elapsed from
drug administration to excretion of the last positive specimen. This concept is
extremely useful when implementing a drug testing program for treatment of
drug addicts or conducting a clinical trial for a new medication. In these
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FIGURE 1. lllustration of drug absorption, distribution, metabolism, and
excretion phases for a short-acting drug during excretion in urine

(panel A) and relationship of detection time to cutoff selection
(panel 6)

situations, it is vitally important to know whether illicit drugs are being used.
Urine testing is recognized as the most objective means of diagnosing recent
drug use (Hat-ford and Kleber 1978). Detection of a short-acting psychoactive
substance such as heroin or cocaine in urine obviously indicates recent usage.
In clinical trials that test drug-abusing subjects, the absence of drug use
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generally indicates a successful outcome, whereas multiple drug use patterns
indicate failure. In many situations, the degree of success may be judged on
the basis of the number of positive urine test results obtained during the course
of the clinical trial.

This chapter reviews the usefulness of detection times in relation to the
conduct of clinical trials of new medications designed for the treatment of

drug dependence. A fixed-interval urinalysis schedule is proposed, which
optimizes the chances of detection of cocaine and/or heroin use while
minimizing the risk of overlap of test results from a single episode of drug
self-administration. Although random-interval schedules have been proposed
as being more efficient for detection of illicit drug use in treatment (Goldstein
and Brown 1970; Harford and Kleber 1978), it appears unlikely that the random-
interval schedule would provide sufficient coverage for estimation of the extent
of drug use. Hence, only fixed-interval schedules are considered in this
chapter.

INFLUENCE OF DOSE AND CUTOFF ON DETECTION TIMES

There are many pharmacologic and chemical factors that influence detection
times (Gorodetzky 1977). Pharmacologic factors include drug dose, route

of administration, pH of the biological fluid, and individual differences in rates
of metabolism and excretion. Chemical factors that relate to the analytical
technique used for drug detection include selection of the cutoff, assay
precision, specificity, and accuracy. The authors have systematically studied
the influence of two of these factors, cutoff and dose, on detection times of
cocaine and opiates. Figure 2 illustrates the influence of cutoff on the detection
time of cocaine following administration of a 20-mg intravenous (IV) dose of
cocaine hydrochloride. As the cutoff is lowered (greater assay sensitivity), the
detection time increases (drug is detected longer). Figure 3 is a combined plot
illustrating the changes in detection times of cocaine (panel A), morphine (panel
B), heroin (panel C), and codeine (panel D) on a linear scale. The incremental
changes in detection time with cutoff appear to be linear for cocaine and
codeine and curvilinear for morphine and heroin. Regardless of the shape of
the curve, these increases in detection time with the lowering of the cutoff are
substantial. Clearly, the selection of the cutoff will have a major impact on the
period of drug detectability. Consequently, outcome comparisons of clinical trial
results between participating centers can be made only when identical cutoffs
are utilized. In most cases, the recommended cutoffs by the U.S. Department
of Health and Human Services Mandatory Guidelines (Mandatory guidelines
1988) should be used since most commercial assays are targeted toward and
perform best at these concentrations. Also, since substantial differences occur
in immunoassay specificity from different commercial vendors (Cone and
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FIGURE 2. Mean detection times at different cutoffs for cocaine (20-mg IV
dose) by EMIT d.a.u. cocaine analysis. Error bars represent
standard error of the mean (n=4).

Mitchell 1989; Cone et al. 1992), identical urinalysis technology should be
employed by each participating center.

For pharmacokinetic reasons, there is a log-linear relationship between drug
dose and detection times. Consequently, detection times increase by one half-
life each time the drug dose is doubled. For example, if the detection time of a
3-mg dose of heroin is 14.5 hours (300ng/mL cutoff) and the urinary excretion
half-life of morphine (the analyte tested for heroin use) is approximately 6 hours,
the detection time should increase to 20.5 hours when a person administers a
6-mg dose. The data illustrated in the bar graph in figure 4 indicate that the
mean detection time of heroin for six subjects actually increased to 21.8 hours.
For morphine, the mean detection time (n=6) increased from 34 hours for a
10-mg dose to 44 hours for a 20-mg dose. For codeine, the mean detection
time (n=4) increased from 48 hours for a 60-mg dose to 54 hours for a 120-mg
dose. These data are convincing evidence that a log-linear relationship exists
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FIGURE 3. Relationship of cutoff to detection times for cocaine, morphine,

heroin, and codeine

between dose and detection time for these drugs. Because of this relationship,
changes in drug dose by the user alters detectability of drugs by urinalysis only
slightly. This is fortuitous since the magnitude, frequency, and nature of illicit

drug use by participating subjects are major variables in controlled clinical trials.

FREQUENCY OF TESTING VS. “SAFE TIME”

The dilemma in deciding how many times per week to test subjects arises

from the need to maximize the chances of drug detection while minimizing

the chances of counting a single drug use incident as two episodes and also
minimizing the financial costs to the program and the inconvenience to subjects
and staff. Figure 5 illustrates the amount of time during a week that a subject
can use cocaine without being detected if testing is performed once per week.
In this example, the mean detection time of 35.8 hours for cocaine (Cone et al.
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FIGURE 4. Mean detection times by EMIT d.a.u. analysis vs. dose (300-ng/
mL cutoff) of codeine, morphine, and heroin

1989) is used; hence, if the subject uses cocaine in this time period prior to
testing on Friday, drug use will be detected. Drug use during any other part of
the week will not be detected, resulting in a total of 132.2 hours of “safe time.”

Obviously, the amount of safe time varies with the drug testing schedule.
Figure 6 illustrates the amount of safe time arising from different weekly
schedules of cocaine testing. If testing were performed 7 days a week,
nearly all drug use would be detected; however, this is impractical in most
cases because of subject, staff, and financial limitations. Furthermore,
detection times for cocaine and heroin can extend beyond 24 hours; hence,
drug excretion following a single use would extend through the next testing
session, and a single use would be mistakenly counted twice. In contrast, an
infrequent testing schedule would miss a substantial amount of illicit use and
the urine data would be fallacious.

Figure 7 illustrates the amount of safe time (%week undetected) for cocaine
and opiates for testing schedules varying from zero to 7 test days a week.

It is apparent for three of the four drugs that there is an inflection in the graph
at the 3-days-per-week schedule. Only heroin showed a linear decline. This
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testing was performed on Friday in this example, the results
would have been identical for any other test day of the week.

is likely due to the small doses employed in the heroin study resulting in
minimal detection times. For morphine, codeine, and cocaine, the amount of
safe time declined rapidly from zero to the 3-days-per-week testing schedule.
Thereafter, the amount of safe time decreased more slowly. Consequently, it
appears that a 3-days-per-week schedule provides the most parsimonious
approach to testing when considering how to minimize both safe time and
excretion overlap at the same time.

RANDOM DRUG USAGE VS. DIFFERENT URINE TESTING SCHEDULES

If a drug-abusing subject self-administers a single dose of cocaine during the
course of a week, will the selected drug testing schedule detect drug abuse?
This question was tested by generating four sets of 100 randomly selected
times during a given week in which a subject might administer cocaine. No
restrictions were placed on the time of drug use. A mean detection time of
35.8 hours was used in the calculation of %drug episodes detected. Individual
and mean data are shown in table 1 for different testing schedules. The mean
%drug episodes detected increased in a linear fashion from zero (no test days)
to 63 percent with a 3-days-per-week schedule (Monday, Wednesday, Friday).
Thereafter, the increase slowed and culminated in 100 percent of drug episodes
detected with a 7-days-per-week schedule. Carryover from test to test as a
result of the single drug dose did not begin to occur until the number of test
days increased to 4 days per week. Thereafter, carryover increased
substantially to nearly 50 percent with a 7-days-per-week schedule.
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A second analysis of urine testing schedules was performed by simulating

two random cocaine uses occurring during the same week. The time between
the two doses was varied from 6 hours to 84 hours. Sets of 100 randomly
selected times, separated by the minimum interval between cocaine use, were
generated. The effectiveness of testing three times per week was compared
with testing only once per week. The numbers of times that two uses resulted
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in 0, 1, and 2 positive results are shown in table 2 along with the number of
times that two uses occurred within the same detection time period resulting in
a single positive result. When the testing schedule called for only 1-day-per-
week testing, a substantial amount of drug use went undetected. The number
of times that no drug use was detected varied from 64 to 39 percent depending
on the time interval between uses. Positive results ranged from 36 to 61
percent. There were only a few occurrences of random multiple drug use
occurring within the same detection time.

With a 3-days-per-week testing schedule (Monday, Wednesday, Friday),
detection efficiency increased substantially over the 1 -day-per-week testing
schedule. The number of times that no positive results were obtained by the
3-days-per-week schedule varied from 6 to 16 percent. Single positive results

54



TABLE 1. Effect of urinalysis testing schedules on detection of a single
cocaine use during a week of testing*

Average Single

%Drug Episodes Detected Drug Use
Urinalysis Episodes (Percent)
Testing Tests/ Trial  Trial Trial  Trial Resulting in Two
Schedule Week #1 #2 #3 #4 Mean Positive Tests
M 1 13 18 26 22 20 0
M,Th 2 34 32 47 48 41 0
M,W,F 3 61 53 67 66 63 0
M,W,Th,F 4 68 59 75 74 69 13.8
M,T,W,Th,F 5 77 69 81 81 79 26.3
M,T,W,Th,F,Sa 6 93 89 95 95 93 33.0
M,T,W,Th,F,Sa,S 7 100 100 100 100 100 48.3

*Each trial consists of 100 randomly generated times during the week that a
person might self-administer a single dose of cocaine. A detection time of
35.8 hours was used in the determination of %drug episodes detected.

(one use went undetected) were obtained between 43 to 60 percent of the
time, and double positive results (both uses were detected) were obtained at a
frequency of 27 to 45 percent. When the single and double positive results are
combined, the efficiency of detection of cocaine use for the week averaged
87.3 percent across the different drug use patterns. There were a maximum
of seven instances of drug use occurring in the same detection time window
when the second drug use could occur within 6 hours of the first use. In these
instances, two uses appeared as a single use from the testing result. As the
drug use interval lengthened to 24 hours, this phenomenon disappeared and
was no longer a problem.

The data shown in tables 1 and 2 were generated to challenge the earlier
conclusion that a 3-days-per-week schedule was the best compromise
between maximizing drug detection and minimizing carryover. A Monday,
Wednesday, Friday testing schedule demonstrated a mean efficiency of 63
percent in detecting single incidents of cocaine use. The increase in efficiency
by further testing was relatively minimal until the frequency was increased to 6
days or more per week. Carryover of drug use from one test to another was not
a factor with the Monday, Wednesday, Friday testing schedule but did occur at
higher frequency testing schedules. When multiple cocaine use was simulated,
that is, 2-times-per-week separated by a minimum time interval, the 6-days-
per-week testing schedule was substantially better than a 1-day-per-week
schedule.
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TABLE 2. Effect of urinalysis testing schedules on detection of two cocaine
uses separated by a minimum hourly interval between uses during
a week of testing*

Number of Times That Two

Urinalysis Number of Positive Occurred in the Same
Testing Minimum Hours Test Results Detection Period and Were
Schedule Between Drug Use 0 1 2 Counted as One Positive Test
M 6 64 36 — 3

12 67 33 — 3

18 59 41 — 1

24 50 50 — 1

36 51 49 — 0

48 48 52 — 0

72 47 53 — 0

84 39 61 — 0
MW.F 6 16 50 34 7

12 13 60 27 5

18 13 51 36 3

24 6 49 45 0

36 11 47 42 0

48 12 43 45 0

72 15 43 42 0

0

84 16 43 41

*Each trial consisted of 100 randomly generated time pairs (separated by a
minimum interval) during the week that a person might self-administer two single
doses of cocaine. A detection time of 35.8 hours was used in the determination of
number of positive results.

SUMMARY AND CONCLUSIONS

Urinalysis can be used as an objective criterion for monitoring the outcome

of a treatment program or a clinical trial. Important factors to consider when
implementing a drug testing program include standardization of assay
technology and cutoffs between participating centers and selection of identical
testing schedules. Also, it is vitally important to minimize the amount of safe
time (time that drug use can go undetected) occurring in a testing schedule.
The detection times for cocaine and heroin have been shown to vary with
selection of cutoff and with the drug dose. Obviously, the selection of cutoffs is
under program control, whereas the amount of illicit drug use is under subject
control. Fortunately, changes in the illicit drug dose by the subject demonstrate
a log-linear relationship to detection time. Hence, a higher drug dose by the
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subject only extends the detection time slightly (and improves the probability of
detection) without greatly increasing the risks of drug carryover from one urine
test to another.

The most efficient testing schedule for judging the outcome of clinical trials
for cocaine and heroin appears to be a 3-days-a-week schedule (Monday,
Wednesday, Friday or Tuesday, Thursday, Saturday). When different
schedules were challenged by simulating random times at which cocaine
use might occur during the week, the 3-days-per-week schedule was the
most efficient without the risk of carryover. The 3-days-per-week schedule
also performed better than 1-day-per-week when multiple random drug use
was simulated. Overall, the 3-days-per-week testing schedule with specified
assay technology and cutoffs was the best compromise for maximizing
detection of drug use, minimizing carryover, and providing a standardized
methodology for outcome comparison between programs.
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Comments on “Efficacy of Urinalysis
in Monitoring Heroin and Cocaine
Abuse Patterns: Implications in
Clinical Trials for Treatment of Drug
Dependence” by Cone and Dickerson

Nancy L. Geller

Cone and Dickerson consider fixed-interval scheduling for drug use monitoring
in trials for treatment of drug dependence. They conclude that changes in drug
dose by the user alter detectability of drugs by urinalysis only slightly and that
the Monday, Wednesday, Friday monitoring schedule is optimal because it
maximizes the chance of detection of an episode of drug use and minimizes
the chance of having two detections of the same episode.

The conclusion that dose alters detectability only slightly assumes a log-linear
relationship between drug dose and detection times. This is equivalent to

a one-compartment pharmacokinetic model. The data for morphine and
heroin in Cone and Dickerson’s figure 3 (this volume) suggest that a higher
order compartmental model might be more appropriate. Such a possibility
should be investigated.

The authors’ conclusion that the Monday, Wednesday, Friday test schedule is
optimal rests on certain assumptions:

1. If there is any episode of drug use, the test schedule should be able to
detect it most of the time.

2. Detection of drug use within approximately 36 hours of that use is certain;
that is, there are no false negatives.

3. Having two tests detect one episode of drug use should be avoided if
possible.
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TABLE 1. Effect of urinalysis testing schedules on detection of a single random episode of cocaine use during a
week of testing*

Simulated Probability of

09

Urinalysis Simulated Probability of Drug Episode Resulting Actual Probability of
Testing Detection of Drug Episode Actual Probability of in Two Positive Tests Drug Episode Resulting
Schedule (n=400) Detection of Drug Episode (n=400) in Two Positive Tests
None 0 0 0 0

M .20 213 0 0

M,Th A 426 0 0

M,W,F .63 .639 0 0
M,W,TH,F .69 712 138 140
M,T,W,Th,F .79 .785 263 .281
M,T,W,Th,F,Sa .93 927 .330 .351

Every day 1.00 1.00 483 492

*A detection time of 35.8 hours and a zero probability of false negative tests were assumed in both the simulations and calculations.



4. If drug use is detected, there has indeed been drug use; that is, there are
no false positives.

5. Drug detection will be done in multiples of 24 hours,

The probabilities that are simulated, according to the assumptions above,
can be calculated exactly and are shown in table 1. As in the simulations,
the exact calculations assumed that an episode of drug use is equally likely
to occur at any time during the week (i.e., uniformly distributed). However, a
trial participant who is going to take the drug may recognize that he or she is
less likely to test positive next time if the drug is used soon after a urine test.
Similarly, the probabilities of the model assumed for Cone and Dickerson’s
table 2 (this volume) can be explicitly calculated, but again, the times of an
episode of drug taking may not be uniformly distributed.

Simulation is a rich tool and could allow more complicated scenarios to be
evaluated, including nonuniform times of drug use. The possibility of false
positives and false negatives could be built into a simulation model, which is
equivalent to varying the cutoff for detection from 300 ng/mL. Testing at more
than one time of day, such as mornings or afternoons, could also be evaluated.
Software for simulating stochastic processes, such as the General Purpose
Simulation System, might be used so that, in addition, random test times could
be assessed.

The conclusions in Cone and Dickerson’s chapter follow logically from their
assumptions. However, more complex assumptions might be more realistic
and could be considered in further work.
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Summary of Discussion: “Efficacy of
Urinalysis in Monitoring Heroin and

Cocaine Abuse Patterns: Implications
in Clinical Trials for Treatment of Drug
Dependence” by Cone and Dickerson

Ram B. Jain

Dr. Weng suggested that blood samples from each subject be obtained
prior to entry into the trial so that their individual pharmacokinetic profiles
could be studied and their metabolic rates evaluated. The differences in
metabolic rates will have a bearing on the detectability of drugs in urine.
Individual pharmacokinetic profiles could also be used to appropriately
schedule collection of urine samples. This suggestion was appreciated;
however, as pointed out by Dr. Johnson, it is not practical to obtain blood
samples from every subject, since some have poor venous access due to
abuse of their veins from frequent injections. In addition, the process of
randomization should equally distribute fast and slow metabolizers across
different treatment groups,

Dr. Wright inquired about the cross-reactivity between opiates of abuse and
replacement (treatment) opiates (and over-the-counter drugs) in immunoassays
and about the need for confirmatory testing. According to Dr. Cone, the
probability of false positives in immunoassays to detect opiates is very small
unless a subject is using codeine. Use of a confirmatory assay such as gas
chromatography/mass spectrometry would add little unless there was a need
for quantitative data.

Dr. Gorodetzky asked if, in testing an individual by immunoassay following
drug usage, negative results could be followed by positive results. It was
acknowledged that this does not happen very often except with marijuana.

Dr. Fisher suggested that urine specimens be collected every day to collect the

maximum amount of information. He suggested that this information could then
be used to more appropriately interpret and/or modify information obtained from
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Monday, Wednesday, and Friday specimens. He also suggested the need

for estimating the amount of opiates used by using a method such as

area under the curve. This method is probably impractical since many

urine specimens would have to be collected over time, or timed plasma
specimens with knowledge of duration since injection and amount of drug
injected would be required. Dr. Johnson said different subjects may need
different amounts of opiates to have the same effect, and because of risk of
human immunodeficiency virus infection from intravenous injection of drugs
using shared needles, it is important to know the exposure frequency and what
the treatment drug can do to reduce this frequency.

Dr. Gordon also proposed to collect urine specimens more often than three
times a week and, based on the results of a certain number of successive
specimens (e.g., positive, negative, positive, positive), develop an algorithm
to decide whether two or more consecutive positive specimens represent
independent episodes of drug abuse or carryover. The proposal was well
taken, but the same algorithm cannot be applied to all subjects since the
probability of carryover varies from subject to subject. Such an algorithm
has the potential to underestimate the probability of drug abuse. However,
such an algorithm used in conjunction with self-reported drug use might be a
possibility.
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Open/Panel Discussion: Design
Issues

Ram B. Jain

Panel Members: A.S. Hedayat (Chair), Albert J. Getson, Alan J. Gross,
Sudhlr Gupta, Don Jasinski, Mel-Ling Ting Lee, Carol K. Redmond, and
Margaret Wu

The three primary issues discussed were:

* Fixed time vs. random time sampling, including sampling frequency
« Estimation of carryover
« Estimation of the amount of drug abuse

FIXED TIME VS. RANDOM TIME SAMPLING

It was opined that the objectives of the clinical trials would determine the
adequacy of fixed or random time sampling. If the objective was merely to
evaluate the efficacy of a treatment drug, fixed time sampling would probably
be the sampling scheme of choice. If determination of the effectiveness of the
treatment drug was the objective of the trial, then random time sampling would
probably be the sampling scheme of choice.

It was pointed out that determination of pharmacological efficacy of a
treatment drug was the primary objective of a clinical trial such as the ARC
090 trial completed at the Addiction Research Center. The pharmacological
efficacy was primarily evaluated by posttreatment frequency of drug abuse.
However, as pointed out by Dr. Johnson, variables such as retention rates,
withdrawal symptoms and signs, and opiate- and cocaine-craving scores
were also evaluated in the ARC 090 trial.

Since the frequency of drug abuse is not directly measurable, frequency of
detected drug (ab)use from urine samples on a per-sample or per-week basis
is the surrogate measure used to represent posttreatment frequency of drug
abuse. Using this surrogate measure, it is possible that multiple episodes of
drug abuse are counted as one, but this is the limitation of the sampling
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techniques currently used. In addition to reduction in the frequency of drug
abuse, as Dr. Vocci mentioned, there is also interest in knowing when the
treatment drug starts working. Some individuals in the buprenorphine and
methadone 60 mg arms of the ARC 090 study stopped abusing drugs almost
immediately and remained drug-free throughout the trial. Some individuals
need to build a reservoir of treatment drug in the body before the drug shows
its effect; it takes these individuals some time (4 to 6 weeks) before they stop
abusing drugs. Eventually, a receptor occupancy may be reached for all
individuals that may be consistent with no more drug (ab)use.

Since agonists, partial agonists, and antagonists act differently, there is also
interest in evaluating the pattern of cessation of drug abuse, that is, the pattern
of positive and negative urine samples. There is interest in being able to know
if some daily users are being converted to weekend users only, for example, the
maximum duration for which they can remain drug-free. For example, one of
the outcome variables analyzed for the ARC 090 trial was the time to the (first)
drug-free period of 28 days or more as determined by negative urines.

However, as pointed out by Drs. Wright and Getson, it is critical to remember
that reduction in frequency and/or amount of drug abuse is only a small part
of the claims that can be made for a treatment drug. These medications may
also alter symptoms of drug (ab)use; suffering from drug (ab)use; social
functioning (behavior) such as employment stability, family life, and crime-
related activities; or target behaviors such as needle sharing and injection

of illicit drugs. Evaluation of efficacy should be married to the development
of the treatment compound as a whole. Efficacy trials should be followed by
effectiveness trials, which may focus more on the sociological behaviors, as
mentioned earlier. For these effectiveness trials, random time sampling may
be the sampling scheme of choice. These effectiveness trials should lead

to a broader understanding of the compound as a whole. An efficacy trial
determines whether or not the drug works; an effectiveness trial generates
additional information helpful in writing a good label (package insert) for the
treatment drug.

An efficacious drug in the hands of a good clinician would work more effectively
since these clinicians are likely to supplement treatment drugs with services
such as family and/or employment counseling. However, if these effectiveness
variables are allowed to interact with efficacy variables in the efficacy trials, the
sample size requirements would become prohibitive and it may not be possible
to show the pharmacological efficacy of the treatment drugs. It was suggested
that efficacy trials may include an additional treatment arm in which subjects get
other services, such as counseling, after only 2, 4, or 8 weeks of drug therapy.
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If frequency of detectable drug abuse is the primary outcome variable in an
efficacy trial, the drug abuse phenomenon should be viewed on a continuum,
and as such, fixed time sampling should be appropriate. In fact, Dr. Fisher
strongly favored collection of urine samples more often than three times a
week, probably every day, since more information is generally better. However,
collecting urine samples too often may have a negative effect on dropout

rates and will shape the patient population remaining in the trial in such a

way that generalizations to the addict population-at-large may be difficult. In
fact, dropout rates are substantial (as much as 60 to 80 percent) in these ftrials.
Cost may be another factor that should be considered. A compromise may be
to do less frequent sampling in those who remain in the trial for a certain period
and get as much information as possible on those who dropped out by sending
out nurses, social workers, etc. There was a strong feeling that additional
information should be obtained on those who drop out of the trial because,

with dropout rates as high as they are in these trials, there certainly is a serious
problem in making inferences for the total addict population. Also, such high
dropout rates make it difficult to do an intent-to-treat analysis.

Dr. Jasinski pointed out that clinical trials are unique experiments as opposed
to drug treatment programs. The lack of resources (financial and others) and
practical considerations such as frequent collection of urine samples, if desired,
should not stand in the way of doing these experiments. Resources should be
obtained and study centers identified where these experiments can be
successfully conducted.

There were other arguments in favor of and against both fixed and random
time sampling. It was suggested that fixed time sampling results in nonrandom
missed observations. Since missing at random may be an assumption required
to do some analyses, this may create a potential bias in these analyses.
However, even in random time sampling, addicts are able to determine how
often they will be tested and when, and thus, even random time sampling
cannot ensure random missed observations. The data do not exist to show
which type of sampling leads to higher noncompliance, including dropout rates.
It may be that it is just the frequency (e.g., once a week vs. five times a week)
of urine collection, irrespective of the type of sampling, that has a bearing on
the noncompliance problem. In fixed time sampling, staffing requirements (to
collect urine samples) are known in advance, which helps in planning for
resources. A Food and Drug Administration audit of a trial done using fixed
time sampling is relatively easier to conduct. Also, the choice between fixed
time and random time sampling may be a choice between dealing with a
possible treatment by day interaction and a relatively large error term (noise).
Fixed time sampling may be used to collect data from some experimental units,
and random sampling may be used to collect data from other experimental
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units. But analysis of these data may present unknown challenges and
possible interpretation problems. Alternatively, the data may be collected
frequently using fixed time sampling, and only randomly selected data points
may be used for analyses, In addition, irrespective of the type of sampling
used, a clinical trial that has the ability to test (internally validate) some of the
assumptions used in the analyses is preferred over one that does not have
such an ability.

It was brought to attention that, since efficacy trials do not have any negative
contingencies associated with results of urine samples, the question of whether
data are missing at random may be a nonquestion since addicts may not have
a reason to miss clinic visits. Dr. Blaine agreed. He explained that in their
gepirone study, which did not have any negative contingencies associated

with urine results, patients’ admission of drug (ab)use matched urine test results
most of the time. However, he added that absence of negative contingencies
amounts to permission for drug abuse, as can be seen from the substantially
higher percentage of positive urines (60 to 70 percent) from one of their
buprenorphine trials, which did not have negative contingencies, compared
with some treatment clinics (10 to 12 percent positive urines), which do have
negative contingencies. Dr. Vocci emphasized that “if you are looking for
efficacy in a clinical trial, you are better off . . . allowing individuals to use
[drugs] in a manner that is not proscribed by the policies of the clinic.”

Artificially controlling drug abuse may result in prohibitive sample size
requirements if a pharmacological effect is to be shown.

It was also suggested that the question of fixed vs. random time sampling
should be decided by simulation methods using known pharmacokinetic
profiles of the drugs that the urine samples are supposed to detect. These
simulation methods may allow for a permissible degree of carryover and an
inability to detect episodes of drug abuse. However, since pharmacokinetic
profiles of the drugs of abuse are dose dependent and the dose and timing of
drugs consumed by an addict are not known, such an exercise may be very
difficult.

ESTIMATION OF CARRYOVER

It was mentioned that, in addition to a parallel design, a crossover design
should be considered. A crossover design may be able to better handle the
problem of carryover. However, as Dr. Hedayat pointed out, crossover designs
have their own problems in interpretation of results. Parallel designs may be
used to answer certain questions, whereas crossover trials may be designed to
answer other questions.
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Dr. Mei-Ling Lee visualized the problem in a different way. She observed
that in these ftrials researchers are working with a mixture of distributions, and
data should be analyzed as a mixing distributions problem. However, to
analyze these data as a mixture of distributions, an estimate of the amount
of drug present in the urine or plasma samples will be needed. Dr. Follmann
agreed. Binary data would not be sufficient. Dr. Collins commented that,
unless the timing of the episodes of drug abuse is known, concentration
profiles of drug in the urine or plasma samples may not be fully informative.
And as such, information obtained from pharmacokinetic profiles may have to
be supplemented with that obtained by asking the addicts about the timing of
drug abuse, if any, each time he or she is asked to provide a urine or plasma
sample.

If binary data must be used, information obtained from a self-reported
measure of drug abuse (e.g., “Did you use the drug during the last 24
hours?“) when combined with the urine results may be able to help decide

if a carryover existed. Dr. Wright suggested we should be looking for other
sources of information, such as the staff and clinicians present at the time of
clinic visits, The clinic staff should be able to judge if the subject may or may
not have abused the drugs since the last clinic visit or since the last time a
urine specimen was provided. Various pieces of information from various
sources, including urine test results, can be put together according to a certain
predefined set of rules and converted into some sort of scores that may be
interpreted as a new episode of drug abuse or a carryover from the previous
episode.

ESTIMATION OF THE AMOUNT OF DRUG ABUSE

A reduction in the frequency of drug abuse does not guarantee reduction in the
amount of drug abuse. A daily user may be converted to an occasional user,
but he or she may still be using the same amount of drug. Instead of using the
same amount in, for example, 10 episodes, he or she might be using the same
amount in 5 episodes. However, the binary data currently obtainable from urine
assays cannot provide estimates of the amount of drug abuse. Hence, it was of
interest to discuss this issue of being able to estimate the amount of drug
abuse.

There was a strong sentiment at the meeting against attempts to estimate drug
consumed from the drug present in the urine samples. As Dr. Gorodetzky put it,
‘Do not ask too much from a qualitative urine. You can be as precise as
you want in terms of quantity of morphine in a . . . urine sample. It is not going
to tell you a. thing about how much drug was taken, when and how many
times. You cannot do it . . . There are some theoretical models you can build,
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if you knew what time, when the time of drug administration was, if you knew
when patients urinated, what the time was since last urination, what the volume
was in this timed collection. Then maybe, if you had good enough data on
which to base it, you could make some inferences. Right now, it cannot be
done.” Dr. Jasinski expressed similar sentiments.
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A Bayesian Nonparametric Approach
to Analysis of Treatment for
Drug-Dependence Data

Ram C. Tiwari
INTRODUCTION

In the National Institute on Drug Abuse ARC 090 trial to evaluate the efficacy of
buprenorphine as compared with methadone 20 mg, and methadone 60 mg for
treatment of opiate dependence, urine samples were obtained from patients
three times (Monday, Wednesday, and Friday) every week for a period of 25
weeks. During the first 17 weeks of the study, the patients were maintained on
the treatment drug; during the rest of the study, they were detoxified from the
treatment drug. The urine samples were assayed for the presence of opiates.
This chapter analyzes the data set collected from the first 17 weeks. As each
dose of a treatment drug provides one observation, a maximum of 51 urine
samples were obtained from each patient. The data also contain some missing
observations due to no-shows during the course of study or due to withdrawals
from the study. The accommodation of missing observations is an important
issue and so is the use of information from the withdrawals from the study. To
accommodate some missing observations, we have reduced 5 1 -dimensional
data to 17-dimensional data by developing a weekly index of urine samples
being positive or negative (see, also, Jain, this volume). A week is considered
to be negative for opiates if at least two observations in this week are negative.
Otherwise, the week is considered to be positive for opiates. Thus, the weeks
with censored observations and two or more missing observations are
automatically considered to be positive. This assumption does result in some
loss of information, e.g., one who has three negative urines during a week is
treated the same way as one who has only two negative urines during the week.

The next section presents a Bayesian approach to analysis of the binary

response data. The analysis of ARC 090 trial data is presented in the last
section.
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BAYES ESTIMATION

Here, we consider a Bayesian nonparametric approach to the estimation of the
conditional probabilities of the binary responses. To simplify the notations,
denote a typical point (z,...:,) of the product spaceT, = {0,1}’ byt,

(r = 1,2,. . .). By t.0denote the point in 7,41 that is obtained by augmenting ¢,
by 0, that is,t,0 = (t,...,tr,0),and similarly for ¢.1. Finally, denote byl[t,]the
cylinder set of all points in 7 = {0,1}* whose flrst r coordinates form the
vectort,, that is,[t,] = {s = (t1,t2,...) € T:5, =1t,}.

Let , be the collection of the empty set and the finite disjoint unions of cylinder
sets [t,], ¢, € T, r=1,.... The F,’siform an increasing sequence ofo-fields,
and F* = J7o, Fris a field. The o-fieldF in T is the smallest o-field
containing F*.

Consider a sequence of blocks w of numbers in the closed unit interval [0,1]:

W = {W;(lewo)y(ﬂ'll:”10;‘"‘0177"00))"'} (1)

Fort € {0,1},letn! =m ift=1,andn! =1~ ift = 0. Define a
probability measure on P, on (7, F,.) such that

r r
P"([t"]) = | | LETI t;—1 (1_7rh t; 1) )
j=l:t;=1 j=1:t;=0
=~ gpliglagls  otc 4 T . _ 19 (9)
= zl "12 ...“ir—l’ Er ST vp, T = 1,4,. \~)

(Here and throughout?; is interpreted as the empty sequence, @, and m;,is
interpreted as.) Then, it can be checked that

Pr([t, 1)) + Pra([t,.0)) = Pea([t,) = Po([t,), Lt €F, 7=1,....

Thus, the restriction ofP.4; to F, is P, and P, uniquely extends to a
probability measure P on (7T, F).

Let 2 = {w}be the space of all blocks w with its coordinates lying in [0,1]. IfQ
is equipped with the product o-field, a(€2), then the mapw — P, defines a
transition function from (2, 0(82)) into (7, F). Consider a probability measure
Q on (£, 0(Q)) such that, under @, the coordinates ofw are mutually
independent with

P,([1]) = =~ Beta(a([1]}),a([0])), and
P 1lliL]) = 7y, ~ Beta(a(lt, 1), a(lL,OD), &, € T, v = 1,2,..,(3)
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where Beta(a, b) denotes a Beta distribution with parameters a and b, then,
under @, the random probability measure P, is said to have a Polya tree
process (Ferguson 1974). The posterior distribution of a Polya tree process,
given an observation, is also a Polya tree process and is obtained by updating
one of the Beta distributions at each level of the tree.

If in (3)a | is a finite measure on (7, F), then, under @, the joint distribution of
{P.([t,])); t, € T} is a Dirichlet distribution with parameter{a([t,]); t, € 7},
r=1,2,...(see Basu and Tiwari 1982). Furthermore, if
{A1,Aq, ..., AL} C F* is a partition ofT, then (P, (A1), Pu(Az2), ..., Pu(Ak))

have a Dirichlet distribution with parameters (4;), a(A4z), ..., a(Ax)), since
Aj € F(j=1,2,...,k)implies thatd; € Fr(j=1,...,k) forsomer
(r=1,...,n). The following result is useful.

Theorem 1. (Blackwell 1973). The random probability measure P, is a
Dirichlet process on(7,F) with parameter a.

To prove theorem 1 it suffices to show that, for arbitrary measurable partition
Ay, Az, ..., Ay T F of T, the distribution of (Pu{A1), Pu(A2), ..., Pu(A))is a
Dirichlet distribution with parameters (a(A1), a(Asz), ..., a{Ag)) (cf.

Ferguson 1973). This follows from the following lemmas.

Lemma 1. Let A be an arbitrary set inF. Then, under the assumption (3), the
random variable P,lhas a Beta(a(A4), a(A)) distribution.

Proof. Let C = { A € F: P,(A) has a Beta(a(A), a(A¢)) distribution}. Then,
by definition C C F. It is easy see that C icontains F*. Also, Ci is a monotone
class. To see this, let {An};,“zl Ibe an increasing sequence of sets in C, and let
A= U‘ff’:l An.Then, clearly A € F,and by continuity from below

P,(Ap) 1 Pu(A)for each w € §2, as n — oo, which is a stronger result than the
convergence in distribution. Again, since all finite moments of the random
variable P, (An) converge to the corresponding moments of a random variable
X, say, having Beta(a(A), a(A°))distribution. Hence, 4 € C. For a decreasing
sequence of sets in C, we argue in a similar way. Thus, is a monotone class

containing the field F*, and hence C contains F, the smallest ¢ -field containing
Fe.

Lemma 2. For any arbitrary finite partition (A;, A, ..., Ax) for T in
F-Imeasurable sets, the random variables (P, (A1), P.(Az2), ..., P,(Ak)) have
the Dirichlet distribution with parameters (a(A4,), a(Az), ..., a(Ar)).

Proof. By an approximation theorem (see, Billingsley 1979, Theorem 11.4,
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p. 140) there exists a sequence{(A1n, A2n, ..., Ain)} o, ©Of partitions of T

into F* measurable sets such that a(A4;AA;n) = 0asn —o0,j=1,2,...,k.
Also, from Lemma 1, the random variable P,,(A4; AA;,) has a
Beta(a(A; DAjn), a(AiAA;,)) distribution, j = 1, 2, .. ., k. Therefore, for
j=1,2,...,k we have

IPw(Aj) - Pw(Ajn)l < Pw(AjAAjn) —0 Wpl[Q] asn — oo,
sinceEq Pu,(AjAAjn) = ﬂﬁff’;&) — 0 as n — oo. Thus, the random
variables (P, (A1n), Pu(A21s), ..., P,(Ag)) converge in probability and hence
in distribution to the random variables (P, (A1), P, (As), ..., Py(Ag)). Since,
for each n, the random variables (P, (A1n), ..., Pu(Arn)) have a Dirichlet
distribution with parameters (a(A1n), @(Azn), ..., @(Ars)), and all finite
moments of (P, (A1), Pu(Aan), ..., P,(Ars)) converge to the corresponding
moments of the random variables (X, X3, ..., X)), say, having a Dirichlet
distribution with parameters (a (A1), a(Asz), ..., a(Ayx)), it follows that
(Pu(Ay), Pu(A2), ..., Pu(Ay)) have a Dirichlet distribution with parameters
(a(A1),a(A2), ..., a(Ax)).

For more on the Dirichlet process, see Ferguson (1973, 1974) or a recent
survey article by Ferguson and colleagues (1992).

Themapt = (t1,82,...) = Y. pe; 5= from Tinto [0, 1] induces a random
probability measure on [0, 1]. If P, is a Polya tree process on7, {then the
induced random probability measure on [0, 1] is also a Polya tree process.

Furthermore, if
0
> 2 Var(m,) <o, “)
r=1 LET,.

then the induced random distribution function on [0, 1] is absolutely continuous
w.p. I[Q] (cf. Kraft 1964 and Métiviar 1971). IfP, is a Dirichlet process on
(T, F) with parameter ¢, then (4) simplifies to

Z ) E(gt) ta(t0) )

& % (L) (i) + 1)

Suppose there are m patients involved in the study on a treatment.
Corresponding to the ith patient, lety® = (yi, 4%, ...,y ) denote the vector of
observations on the response variable y taking on only two values: 1 =
presence, and 0 = absence of opiate. Thus, 2‘ € T,Let Q} = (y’l,,,,,y;)_
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Given P, let 11,12, ..., t™ bei.i.d. observations fromP,. Then, the likelihood
function of w is

Lwlta =yt =y™)

n
H Try;u,g;_’ H (I“Wy;...y;_l)

I
jamERN

i=1 j=ly;=1 j=lyl=1
m
= R Yn
= mhmin )
=1 Z2 =n-1

i=1

= D] DD () g ymilioh

n-1
H H 7r;’;‘(Brll)(l _ ”z,)mm’ah' (6)

r=0 5'67',

where M([t,)) = 2272, 8+ ([t]), and m([t.0])) = m — m([t,1]). ¢, € 7., and é,
is the degenerate measure at a.

Clearly, under @,

Pw([ir]) ~ Beta(a([gr]), oT) - a([},])), t,el,r=12,....

Furthermore, from (3) and (6) it can be easily checked that the coordinates of w
are mutually independent a posteriori, and

7le =i, gp=ym ~ Beta(a((1]) + m((1]), «((0]) + m((0]))

and

W‘r'l}.:!‘,.‘.,ﬁ‘“=!"‘ ~ Bet‘a(a([t-r 1]) + m([irll)’ a([y,()]) + m([Q,O])),
t, €T, r=1,2...

From (2), (3) and (7) it follows that if F,, is a Polya tree process, then P,, given
the data, is again a Polya tree process. In particular, if P, is a Dirichlet process
with parameter a, then P,,, given the data, is also a Dirichlet process on(T,.’F)
with updated parameter c(-) + m(-). Also, from (7) under squared error loss,
the Bayes estimators of the conditional probabilities are given by

a({1]) + m((1])
a(T)+m

T =

3
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o el )+ m(e 1)
" T Ta@) )
_ a1 (1) m(lt)  (m(1)
= o) + (D) ( a((t,)) ) I (G )®

wheret, € 7.
The posterior variance of the conditional probabilities are given by

e (et 1)) + m(it, D) (e, 0]) + m(l,0)
Varg(m ltn =¥ ta’ = ¥™) = () 4 (6, )2 (ae)) + (L)) + 1)

Also, the Bayes estimator of the unconditional probabiliies P, ([t,]), t, € T;
and their posterior variances are given by

P(t) = EqPu(ltDlth=y',.. 17 =y™) = a__ﬂizg)T ;fgzrl)
o(7) (L)) m_ (m(L])
a(T)+m(a(’I’)>+a(’]’)+m( - ), (9)
and
Varg(Ru(lL]) |8 = .ot = ) = Sl 0 m—mllL]),

respectively.
ANALYSIS OF ARC 090 TRIAL DATA

As mentioned earlier, we have reduced 51-dimensional data to 17-dimensional
data by developing a weekly index of urine samples being positive or negative.
A week is considered to be negative for opiates if at least two observations in
this week are negative. Otherwise, the week is considered to be positive for
opiates. Clearly, this approach takes into account the censored observations,
We have denoted the positive weeks by 1’s and the negative weeks by 0’s. For
simplicity, we assume that the parametera of the Dirichlet process is given by
a([t,]) = &.t, € F..This corresponds to the Lebesgue measure on [0, 1].
Thus, for no sample case, the prior guess of the unconditional probability
P([t.]) is3= and that of the conditional probabilityr, = P([t.1] | [¢,]) is §. The

corresponding Bayes estimates }5([1,]) and m , for some selected sequences
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for the three treatments buprenorphine, methadone 20 mg, and methadone

60 mg are given by the columns 2 and 3 in tables 1, 2, and 3. For example, if
r=>5and [t ] = [11111], then from table 1 we observe that

}5([1,]) = 0.37094907407 and 7; = P([111111]][11111}) = 0.9921996880.
Graphs of unconditional probabilities for some sequences (up to length five) for
the three treatments are given in figures 1, 2, and 3.

TABLE 1. Conditional and unconditional probabilities of some selected
sequences for buprenorphine treatment
L P([t,]) P((t I ])

1 7.1296296296E-01  7.0779220779E-01
11 5.0462962963E-01  86.8532110092€-01
10 2.0833333333E-01  2.7777777778E-01
00 2.6388888889E-01  1.4912280702E-01
111 4.4675925926E-01  8.3160621762E-01
100 1.5046296296E-01  3.7692307692E-01
1111 3.7152777778E-01  9.9844236760E-01
1110 7.5231481481E-02  9.9230769231E-01
1001 5.6712962963E-02  6.6326530612E-01
11111 3.7094907407E-01  9.9921996880E-01
11101 7.4652777778E-02  7.4806201550E-01
10011 3.7615740741E-02  9.9230769231E-01
00000  2.0428240741E-01  2.7337110482E-01
111111 3.7065972222E-01  9.4964871194E-01
111011  5.5844907407E-02  6.6580310881E-01
100000  7.4363425926E-02  5.0000000000E-01
100111 3.7326388889E-02  9.9612403101E-01
1111111 3.5199652778E-01  9.9979449240E-01
1110111 3.7181712963E-02  9.9805447471E-01
1000001  3.7181712963E-02  9.9805447471E-01
1001111 3.7181712963E-02  9.9805447471E-01
11111111 3.5192418981E-01  9.4727646454E-01
11101111 3.7109375000E-02  8.9902534113E-01
10011111 3.7109375000E-02  9.9902534113E-01
111111111 3.3336950231E-01  9.4439622437E-01
111011111 3.7073206018E-02  9.9951219512E-01
100111111 3.7073206018E-G2  9.9951219512€-01
1111111111 3.1483289931E-01  9.4115112873E-01
1110111111 3.7055121528E-02  9.9975597853E-01
1001111111 3.7055121528E-02  9.9975597853E-01
TI1111111 2.9630533854E-01  9.3748664897E-01
11101111111 3.7046079282E-02  9.9987795948E-01
10011111111 3.7046079282E-02  9.9987795948E-01

111111111111
111011111111
100111111111
ARARARARRRARY!
11101111111
1001111111111
LARRARERRRRARE]
1110111111111
1001111111111
ARRRRRERRRRARESI
1110111111111
100111113111111

2.77782296890E-01
3.7041558160E-02
3.7041558160E-02
2.7778003834E-01
3.7038297598E-02
3.7038297598E-02
2.7777890806E-01
3.7038167318E-02
3.7038167318E-02
2.7777834292E-01
3.7037602177E-02
3.7037602177E-02

9.9999186211E-01
9.9993897229E-01
9.9993897229E-01
9.9999593102E-01
9.9996948428E-01
9.9996948428E-01
9.9999796550E-01
9.9998474168E-01
9.9998474168E-01
9.9999898275E-01
9.9999237072E-01
9.9999237072E-01
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The tables and figures show that for all the three treatments the probabilities for
consecutive positive weeks of a fixed length are larger than the probabilities of
any other sequences of the same length. The probabilities of consecutive
positive weeks for buprenorphine and methadone 60 mg are smaller than the
corresponding probabilities for methadone 20 mg.

TABLE 2. Conditional and unconditional probabilities of some selected
sequences for methadone 20-mg treatment

t P([,)) P([t1]IL])
1 7.9464285714E-01  8.3707865168E-01
00  1.8303571429E-01  4.0243902439E-01
11 6.6517857143E-01  9.6979865772E-01
10 1.2946428571E-01  5.6896551724E-01
001  7.3660714286E-02  7.4242424242E-01
111 6.4508928571E-01  8.8754325259E-01
100  5.5803571429E-02  6.6000000000E-01
0011  5.4687500000E-02  6.6326530612E-01
1111 57254464286E-01  9.6783625731E-01
1110 7.2544642857E-02  7.4615384615E-01
1001  3.6830357143E-02  9.8484848485E-01
00111  3.6272321429E-02  9.9230769231E-01
00000  7.1986607143E-02  5.0000000000E-01
11111 5.5412946428E-01  9.9949647533E-01
11101 5.4129464286E-02  9.9484536082E-01
10100  5.4129464286E-02  9.9484536082E-01
10011 3.6272321429E-02  9.9230769231E-01
001111  3.5993303571E-02  9.9612403101E-01
000001  3.5993303571E-02  9.9612403101E-01
111111 55385044643E-01  9.9974811083E-01
111011 5.3850446429E-02  9.9740932642E-01
100111 3.5993303571E-02  9.9612403101E-01
0011111 3.5853794643E-02  9.9805447471E-01
1111111 5.5371093750E-01  9.9987402368E-01
1110111 5.3710937500E-02  6.6623376623E-01
00111111 3.5784040179E-02  9.9902534113E-01
11111111 5.5364118303E-01  9.9993700390E-01
11101111 3.5784040179E-02  9.9902534113E-01
001111111 3.5749162946E-02  9.9951219512E-01
111111111 5.5360630580E-01  9.9996849997E-01
111011111 3.5749162946E-02  9.9951219512E-01
0011111111 3.5731724330E-02  9.9975597853E-01
1111111111 5.5358886719E-01  9.6772720113E-01
1110111111 3.5731724330E-02  9.9975597853E-01
00111111111 3.5723005022E-02  9.9987795948E-01
11111111111 5.3572300502E-01  9.6665907 130E-01
11101111111 3.5723005022E-02  9.9987795948E-01
001111111111 3.5718645368E-02  9.9993897229E-01

LARRARARRARA)
1110111111
[CORRRRRRRRRA]
LRARRRARARRANI
JRRIARARARRAN]
0011111111111
ARARAREARARARE]
1110111111111
0011111111111
1111111111111
1110111111111

5.1786150251E-01
3.5718645368E-02
3.5716465541E-02
5.1785932268E-01
3.5716465541E-02
3.5715375628E-02
5.1785823277E-01
3.67153756268E-02
3.5714830671E-02
5.1785768781E-01
3.5714830671E-02

9.9999579071E-01
9.9993897229E-01
9.9996948428E-01
9.9999789535E-01
9.9966948428E-01
9.9998474168E-01
9.9999894767E-01
9.99968474168E-01
9.9999237072E-01
9.9999947383E-01
9.9999237072E-01
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TABLE 3. Conditional and unconditional probabilities of some selected
sequences for methadone 60-mg treatment

L P(lt)) P([t1)/[t])
0  2.2727272727E-01  5.0000000000E-01
1 7.7272727273E-01  7.1176470588E-01
01  1.1363636364E-01  8.2000000000E-01
10 2.2272727273E-01  4.1836734694E-01
11 5.5000000000E-01  8.3057851240E-01
011  9.3181818182E-02  9.8780487805E-01
101 9.3181818182E-02  7.9268292683E-01
100 1.2954545455E-01  4.2982456140E-01
111 4.5681818182E-01  7.9850746269E-01
110 9.3181818182E-02  4.0243902439E-01
0111 9.2045454545E-02  7.9629629630E-01
1011 7.3863636364E-02  7.4615384615E-01
1001  55681818182E-02  6.6326530612E-01
1111 3.6477272727E-01  9.4859813084E-01
1110 9.2045454545E-02  4.0123456790E-01
1101 3.7500000000E-02  9.8484848485E-01
01111 7.3295454545E-02  9.9612403101E-01
10111 55113636364E-02  9.9484536082E-01
10011 3.6931818182E-02  9.9230769231E-01
11111 3.4602272727E-01  9.9917898194E-01
11100  5.5113636364E-02  6.6494845361E-01
11101 3.6931818182E-02  9.9230769231E-01
11011 3.6931818182E-02  9.9230769231E-01
011111 7.3011363636E-02  9.9805447471E-01
101111 5.4829545454E-02  9.9740932642E-01
100111 3.6647727273E-02  9.9612403101E-01
111111 3.4573863636E-01  9.4700082169E-01
0111111 7.2869318182E-02  9.9902534113E-01
1011111 5.4687500000E-02  9.9870129870E-01
1001111 3.6505681818E-02  9.9805447471E-01
1111111 3.2741477273E-01  9.4425162690E-01
01111111 7.2798295454E-02  7.4975609756E-01
10111111 5.4616477273E-02  9.9934980494E-01
10011111 3.6434659091E-02  9.9902534113E-01
11111111 3.0916193182E-01  9.9988513669E-01
011111111 5.4580965909E-02  9.9967469095E-01
101111111 5.4580965909E-02  9.9967469095E-01
100111111 3.6399147727E-02  9.9951219512E-01
111111111 3.0912642045E-01  9.9994256174E-01

[ORARRRRRD]
1011111111
1001111111
mnnn
o1111111111
1011111111
10011111111
LRARRRARRRR)
[CARARREARAADI
101111111111
100111111111

5.4563210227E-02
5.4563210227E-02
3.6381392045E-02
3.0910866477E-01
5.4554332386E-02
5.4554332386E-02
3.6372514204E-02
3.0909978693E-01
5.4549893466E-02
5.4549893466E-02
3.6368075284E-02

9.9983729255E-01
9.9983729255E-01
9.9975597853E-01
9.9997127922E-01
9.9991863303E-01
9.9991863303E-01
9.9987795948E-01
9.9998563920E-01
9.9995931321E-01
9.9995931321E-01
9.9993897229E-01
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FIGURE 2. Unconditional probabilities for methadone 20-mg treatment
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Three Estimators of the Probability of
Opiate Use From Incomplete Data
Alan J. Gross

INTRODUCTION

Drug testing in biologic fluids, especially urine, has become the usual method
by which addicts in a treatment program are evaluated to determine whether
they are adhering to the treatment regime in which they have been placed.
Unfortunately, issues such as sensitivity and specificity of the various tests have
caused difficulties in the past. The Council on Science Affairs (1987) has dealt
with these important issues.

Besides these issues of sensitivity and specificity, there are concerns about
whether a random time or a fixed time sampling scheme should be used when
collecting urine specimens from subjects who are involved in a clinical trial that
is designed to test the safety and efficacy of a new pharmocotherapy for
treatment of opiate dependence.

It is the purpose of this chapter to consider three estimators of the probability
that an addict tests positive for a particular opiate and compare these estimates
for the ARC 090 data that were generated by means of fixed time sampling.
The properties of these estimators will also be investigated, and some
preliminary results will be given. Although other important issues exist in this
area of research, such as random time sampling schemes, they are not
specifically addressed in this chapter.

ESTIMATORS OF THE PROBABILITY OF OPIATE USE
In an effort to estimate the probability of opiate use by an addict during the time
period in which he or she is enrolled in a clinical trial designed to reduce drug

dependence, the following assumptions and definitions are required.

Assume that an individual within a clinical trial is scheduled to present m times
for testing of the presence of the opiate for which he or she is being treated. On
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theith visit, the random variables U; andA; .are defined as

Us = 1 the individual tests positive for the opiate,
! 0 the individual tests negative

and
the individual appears for the test and is still in the trial,
the individual does not appear
t=1,...,m. It is noted that m can and does change from subject to subject,

and in the data set that is considered when treatment groups are compared,
once a subject has been censored from the ftrial, that subject never returns for
any future testing. It is further assumed that

(a) {U;}M, are Bernoulli random variables such that

(i) pr{lUi=1}=p,0<p<1,and corr(U;,U;j) = pij, 0 < pij < 1, where
in the first case o
pij = pil, (1)

in the second case

(it)
pij = P (2)

i # j,and in the third case, the correlation structure
(i) e .
p,-j:{g :;jizii forj>i, i=1,....m-1.  (3)
and
(b) {Ai}, are iid Bernoulli random variables such that
pr{A; =1} =, 0< 7 <1,
U; and A;, Us and A;, i # j are assumed independent.

The three correlation structures considered here deal then, respectively, with
the following three scenarios:
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1. There is correlation between all pairs of visits for a given individual. In this
case, the correlation between successive visits is assumed to be greater (in
absolute value) than visits that are more distant. The structure is the same
as in the simple autoregressive model.

2. The correlation in this case is assumed to stay constant between all pairs of
visits, successive as well as more distant, within an individual. This
assumption may tend to be somewhat conservative.

3.  The correlation between successive visits within an individual is assumed
and is constant within individuals. It is also assumed constant from
individual to individual. However, more distant visits are assumed to be
uncorrelated.

The dependence or correlation structure presented in this chapter differs, to
some extent, from correlated binomial random variables that were considered in
other applications. These earlier applications include correlated binomial
models to predict the probability of rainfall on a given day realizing that the
occurrence or nonoccurrence of rain on a given day depends on the occurrence
or nonoccurrence on the previous day. Such models were developed by
Gabriel (1959), Gabriel and Neuman (1962), and Klotz (1973). In the model
considered by Klotz (1973), it can be shown that

Pl = [(p" = p)(1 = p))* T where px = pr{Xe = 1] Xpy = 1},

As a second example in ophthalmology studies, a particular disease may be
present in one eye, both eyes, or neither eye in a patient. Rosner (1984)
considers a correlated binomial model in this situation because, clearly,
absence or presence of disease in the two eyes of an individual is not
independent from eye to eye. Finally, in this vein, Kupper and Haseman (1978)
and Haseman and Kupper (1979) apply correlated binomial models to analyzing
data within and among animal litters for which the responses are dichotomous,
e.g., occurrence or nonoccurrence of a malformation.

Consider now, the estimator for the probability of opiate use. Define P as

P _ {Z:Zl U,A,/z:';l A, Z!n;l A >,

4
1, tA;=As=---= A, =0 “)

This definition indicates that an individual who is never present for a test to
determine his or her drug abuse status is very likely, if not certain, to be still
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abusing the drug. It should be noted that (1) this definition does not distinguish
all sequences, for example, it does not distinguish 000111 and 111000; and
(2) P represents an average across visits for each individual. Although, these
are somewhat limiting, it is an initial attempt to deal with such binomial data in a
relatively simple manner.

The first principal goal of this chapter is to obtain (f’) and Var(f’) under the
three correlation structures as indicated by the three points listed above. This
constitutes the next section.

E(P) AND Var(P)
DefineV = E:’;l A;. Then,
E(P)=E(P|V > D)pr{V > 1} + pr{V = 0}.

Now,
pr{V =0} = (1 - 7).
Furthermore,
m |4
p Us A U;
E(P >1)= E >1| = —L >
(P|V>1)=Ey (A,U)[; 7 |V > EVEU;le—l]

where (U;,, ..., Ui, )is the vector of the u-values obtained by the subject on his
or herv-visits, v > 1. Thus, E(P |V > 1) =p and

EP)=p[l=(1-m"+(1-m™ =p+q(l-m)™. (s)

Derivation of Var(f’) is considerably more complicated. Thus, some preliminary
considerations are in order prior to obtaining VarP) for the three cases that are
dealt with in this chapter. Let the random vectorU’ be a single m dimensional
observation from a population whose cdf is FQ: (_l_]_'), that is,l/’ is multivariate
in nature. Suppose, E(U?) < 00,i=1,...,m and let p;; = corr(U;,U;), i # j

and suppose, in total generality, E(Ui) = pyi and Var U= o',?i =l,..., m
Assume, further, a hypergeometric sampling process such that (Uy,,...,Ux,)
are sampled from (U, . . ., U,), v < m without replacement. Then if

S =3 5=1 Ux; we may rewrite Sas S =312, U;I(U;) where

i=1

1 ifU; is selected in the sample
;) = P
() 0 otherwise (©)

The sampling process is assumed independent of U,, ..., Um That is,

E(U:I(U:)) = E(U)E(I(U;)).  Note: E(I(Us)) = pr{I(U;) = 1} = v/m.
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Thus, v
EUAU:)) = pi—

Hence,

E(S?)

E(S) = (i I(U)):”Zu. 1)
¢ (Euien)

(iU,I(U ) ZU“ (V) +2 3 U U ()
i=1

i<

Now,

Furthermore, I*(U,) = I(U,) since I(Ui) takes only the values 0 and unity; and
I(U)iUj) = 1 if both U; and U; are selected in the sample. Otherwise,
IUyIyj) = 0. We note,

m—1

E(I(U)I(U;)) = pr{l(Ui) = I(U;) =1} = (m) (U = ) .

Finally, we obtain

E(S?) = ZE(U (L(U:) +2Y DU EU))EU(U;))
i<j
- v 2 v
- E;E(Ui)_i-?rn(wn— ),E;JEUL) (&)
Var§ = % ZE(U?)+2( >Z(UU “E(Z#:)
i=1 1<) =1

Consider, again, the estimator for interest, i.e.,

. nOUAY, itV >,
= {1Z'=~1 p - (4
, itV =0

Recall, the three correlation structures among the Us’s of interest, i.e., 1), 2),
and (3).
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In the first case, E(U;) = p, VarU; = pq and corr(U, U) = Pl i £ G,
0 < p < 1. Auseful result that is easily verified is

LA =y [’"‘ (11__,,:>] | ®

i<j

An application of (8) and (9) then yields

(G o B ) - ()
Thus,
=2 o 20 () - (25)] o
Unconditioning on V7 except requiring v > 1 yields
b 1vey = cS () - ()b o

*op [1 - m(mQ— ) (1 _’f,,) {m" (11__;):)}] BV,

In the second case, E(Ui) = p, Var Ui = pq and corr(Ui,Uj) = p, i # j,
0 < p < 1.Thus, one can show, without difficulty,

Var (ZU,{&,‘ [v) = vpq[l + (v — 1)p]. (13)

i=1
Hence,
(14)

Finally, in the third case, E(U;) = p, Var(U;) = pq and corr(U;, Ui+1) = p,
0<p<l,i=1,...om—-1and corr(U, U) =0,j>i+1,i=1,...,m-2.
Here,

(15)
Define, generically, # = Var(P v >1) to represent Var(P [ v > 1) for all three
cases of interest. It then follows that, unconditionally,

Var(P) = [0+ ¢*(1 = m)"] [L = (1 - m)™]. (16)
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Thus, to review, E(P) is given by (5) and Var(f") is given by (16).

It can be shown without much difficulty that ifd is given (12) or (15)
limy, .o Var(P) =0 implying thatP is a consistent estimator of p assuming
7 < 1. On the other hand, if # is given by (14), then consistency does not hold.
Finally, iff is given by (12) it is noted that at p = 0,
0 =pgE(V™) (17)

and atp =1,
8 = pg. (18)

10 =(5) (- (=5
it can be demonstrated with some difficulty that f(p) is an increasing function of
£, 0 < p <1 and so the bounds on Var( £’ )are
[paE(V") + (1 = m)™] (1 = (1 = m)™] < Var(P)
<[pg+¢*(1-m" 1= (1=m7]. (19)

Consideration of f(p) is contained in the appendix. Finally, Mendenhall and
Lehman (1960) show that

m—2

E(V~Y) = (—) (mm — (1 —m))~! (20)
m
and provides two significant figure accuracy formm > 5.
COMPARISON OF TREATMENT GROUPS

The goal of this section is to develop a test of the hypothesis H): p, = p,
where p; is the probability an individual in theith treatment group tests
positively for the presence of the opiate. It is noted, in the example to be
presented in the next section, that there are three treatment groups in question;
therefore, multiple comparison methods are used in comparing the results
among the three groups. In this section, the notation adds subscripts k7 to
represent the jth time the sth individual is tested within a treatment group.

Let 15,-,C be the proportion of the trials in which the xth individual tests positive on

the ith treatment, & = 1,...,n. Then, it is clear from (4) that
N mMyx U"‘ZA"‘Z H g
Pi;c = zj:l Vi ’ If ‘/”c 2 1 (41)
1, itV =0.
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Define P, = ey P;./ni. Again, note that

(5)

since within each treatment group it is assumed p;, = +++ = pim,. = pi. Thus,
N i (1 - 71',')'""‘
E(P)—p,+qu—;£—- (19)
k=1
If the same reasoning is followed concerning Varf’m one finds

VarP,-,gz [0,-K+qf(l—7r,-)'""‘] [l—(l—n’,‘)m"‘] (16"

where, generically, 8;, = Var(ﬁ’,‘,C | Vix > 1). Since P,-,c and 13‘-,;: are
stochastically independent fork # «’,it follows that

Oix + q, 1 - ) e [1 - (1 - ﬂ’i)]mm
VarP Z [ ]n~2 . (20)

It is easy to show that for all three cases, i.e., all threed;., Var 13; — (O as
n; — oo, i =1,2,3.Thus, p; is a consistent estimator of p; + ¢;a; where

(l-m )"‘"‘
a; = nh-inoo E

In order to reduce the bias, let

A Zn_n)m-ﬁ o

f’,-' is termed the reduced estimator and its realizations are presented as
reduced estimates in table 2, i = 1, 2, 3.

The variance of (21) can be approximated by the delta method. Thus,
(1 mw )
VarP! = Varh {1 + Z — ﬂ-') }

2
: o i (1 = )
+Var*i‘i?{zm (- $ : (22)
J

\;c:l o
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Hence, to test for treatment difference, the following confidence intervals all at
(1= a/6) can be used:

(B — ;) % Zaysr/ VarP; + Var P} (23)

i# 71,7 =1,2,3, where Z,/¢ is the a/6th percentile of the standard normal
pdf. Thus, confidence intervals for p, — p,, p, — p; and p, — p; can be
constructed using (23) with overall confidence of at least (1 — «).

ANALYSIS OF THE EXISTING DATA AND CONCLUSIONS

The methodology that has been developed in this chapter is now applied to the
double blind, three-armed controlled ARC trial. This trial was conducted to
evaluate the efficacy of buprenorphine (arm 1), methadone 20 mg (arm 2), and
methadone 60 mg (arm 3) in the treatment of opiate addiction. Data on only the
first 17 weeks of the study were used to study how well the patients were
maintained on the treatment drug. No analysis was performed on weeks 18
through 27.

Table 1 shows the summary results for the three treatment groups.

The correlation coefficient in each treatment group was estimated as an
average (unweighted) of the serial correlations for the patients in that group. It
should be noted from table 1 that there is no statistically significant difference
among the #"’s. That is, roughly 77 percent of all individuals presented urine
samples in the first 17 weeks of the study. Furthermore, it can also be shown
that all three of the correlation coefficients are not statistically significantly
different from zero. However, it was decided to use the established values of g
for illustrative purposes.

TABLE 1.  Estimates of p, w, and p

Treatment Group p T p n
Buprenorphine 0.483 0.773 0.087 53

Methadone 20 mg 0.687 0.767 0.013 55
Methadone 60 mg 0.564 0.786 0.133 54
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TABLE 2. Estimates of the probability of opiate use

Treatment Group p Var; P Var215 Va.r;;]5

Buprenorphine (raw) 0.483 3.83'10* 6.7610% 3.33- 10"
Methadone 20 mg (raw) 0.687 3.80-10* 4.15'10* 3.51-10™
Methadone 60 mg (raw) 0.564 4.79-10* 9.05 10* 4.16- 10™
Buprenorphine (reduced) 0.468 4.05°10* 7.08 10 3.52- 10

Methadone 20 mg (reduced) 0.685 3.87 10*  4.22-10* 3.57-10™*
Methadone 60 mg (reduced) 0.558 4.90- 10* 9.25 10" 4.26- 10™

Table 2 provides the raw and the reduced estimates of p;, i := 1, 2, 3, the
probability of detecting the opiate in each of the three treatment groups. Also,
the three estimates of variance are provided for the three different patterns of
correlation that are assumed.

Where V;trlls assumes Vvisits ¢ and j have correlationp""“, \/ﬁargl5 assumes
all visits, adjacent as well as nonadjacent, have correlation p and, finally, Varaf’
is such that adjacent visits have correlation p and nonadjacent visits have
correlation zero.

Overall, 95 percent confidence intervals for p; — pi, & ;6 I k,0=1, 2,3 are then
easily obtained for each pair of treatment differences. The formula used is

(B1 = Px) % Zo.0083\/ Var;p; + Var; py,

to ensure an overall 95 percent confidence, / = 1, 2, 3, the three variance
estimates based on the three correlation patterns assumed. Note that
Zo.00833 = 2.409.

As one would expect, the largest variance occurs when p is constant across all
visits, has a value between the smallest and largest values when visits ¢ and j
have correlation p""“, and is smallest when adjacent visits have correlation p
and nonadjacent visits have zero correlation.

If one examines the confidence intervals that are generated from table 2 (see
table 3) it is clear that buprenorphine is superior to methadone 20 mg,
regardless of the correlation pattern assumed. Furthermore, methadone 60 mg
is clearly superior to methadone 20 mg. However, it is still not clear that
buprenorphine is a better treatment regime than methadone 60 mg. However,
the analysis is suggestive of this conclusion, since the only situation where the
confidence interval contains the null hypothesis is when the correlation between
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TABLE 3.

Confidence intervals of the difference of the probabilities of opiate

use

Group Difference c.11. c.ia. c.13.
Meth 20 - bup (raw) 0.137-0.271 0.124-0.284  0.141-0.267
Meth 20 - meth 60 (raw) 0.052-0.194  0.036-1.210 0.056-0.190
Meth 60 - bup (raw) 0.010-0.152  -0.014-0.176  0.015-0.147
Meth 20 - bup (reduced) 0.149-0.285  0.136-0.298 0.153-0.281
Meth 20 - meth 60 (reduced) 0.056-0.198  0.039-0.215 0.060-0.194
Meth 60 - bup (reduced) 0.018-0.162 -0.007-0.187  0.023-0.157

pairs of visits remains constant over all pairs of visits. If, however, this is the
situation, then mathematically random testing vs. systematic testing does not
make a great deal of difference, since fixed as well as randomly spaced times
between visits will have the same correlation.

It should be noted at this point that the true correlational structure between pairs
of visits does not and should solely determine whether random or systematic
testing is appropriate. If the sampling scheme is determined on the basis that
an individual is still using a given substance during a given week or throughout
the study period, then random sampling is likely appropriate to detect his or her
use. However, if the extent of drug abuse is of importance, such as with the
ARC 090 study, then capturing all the episodes of drug abuse is important and,
hence, systematic sampling is likely to be more useful since drug-seeking
behavior is not random. Finally, it is noted that carryover effects are probably
quite important but are not considered here.

APPENDIX

Theorem: Suppose

o) = TE—m - [“”m}- (4.1)

1-p
Then f(0) = 0 and f(1) = T-(-";—'l-l and f(p) increasesinp, 0 < p < 1.

Proof:  f(0) = 0 is trivial. To find f{1) an application of L’ Hopital's rule twice
is needed. Finally, to show f(p) increases in p, it is noted that

Inf(p) =lnp+2In(1 —p)+In{(m—1)+p™ - p]. (A.2)
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Thus,

dinf(p) _ (m =11 p™*] — (m+ Dp[l — p™""]
dp p(1 = p){m — 14 p™ — mp} '

The denominator is positive for 0 <p < 1 since m(1 - p) > 1 —p'™ forp in this
domain. This is easily established by induction on m.

Finally, it is necessary to establish that
(m— D= p™] = (m+1)p[l - p" '] 20 (A.3)
form > 1 and 0< p < 1. If g(p,) is defined as
g(p) = (m—1)+ (m +1)p™ — (m — 1)p"+! — (m + 1)p, (4.4)

then g(0) = m— 1 and g(1) = 0. To complete the establishment of (A.3), it
suffices to show g(p) is monotone on 0 < p < 1. To this end,

g'(p) = (m+1)[mp™ (1 - p)+p" = 1] <0
for 0 < p < 1, which completes the demonstration.
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Summary of Discussion: “Three
Estimators of the Probability of Opiate
Use From Incomplete Data” by Gross

Ram B. Jain

Dr. Redmond, who reviewed Dr. Gross’ chapter prior to the technical review
meeting, questioned the appropriateness of the assumption that data are
missing at random. Dr. Gross agreed that this assumption may not be
appropriate and that further work needs to be done in this area.

Dr. Fisher warned against jumping to conclusions too soon even if the
missing value and/or dropout rates are the same across different treatment
groups. In the placebo group, for example, patients may miss visits and/or
drop out because of the lack of efficacy, whereas in the other groups, they
may miss visits and/or drop out because of adverse events. These different
reasons for the same missed visits and/or dropout rates must have a bearing
on the inference that is drawn and must be carefully looked into since they
may have different implications for different treatments.

Dr. Redmond also raised the issue of using an estimator in which one looks
at the average of visits across time. Two treatments might result in the same
average across visits over time, but for example, positive urines may be
clustered at the end of the visits in one case and toward the beginning or
scattered throughout in the other case. An estimator that looks only at the
average across visits over time would not be able to discriminate this different
pattern of positive urines over time in the two treatments.

| suggested that a model be considered that incorporates possible different
correlational structures for different segments of the study. The addicts do
not suddenly stop abusing the drugs, because drug abuse medications take
time to work. During the first segment of the study, there probably will be
longer sequences of positive urines with occasional negative urines. This
will be followed by a probably random pattern of negative and positive urines
indicating the medication has started working. During the last segment of the
study, if the medication did work, there probably will be longer sequences of
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negative urines with occasional positive urines. Dr. Gross indicated that such
a model may be possible if a close form variance estimator can be obtained; for
example, different correlational structures suggested by him in his chapter can
be used for different Segments Of the study or a piece-wise fitting Of the data
can be attempted (see Weng, this volume).

Dr. Hedayat suggested that the patient characteristics, for example, sex or age,
be included in the model rather than reduce the problem to only a few factors,
that is, p’'s, ®'s, iand p’s as in Dr. Gross’ chapter. One of the participants also
suggested that visit number be used as a covariate since the probabilities of a
positive urine are likely to change over time.
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Issues in the Analysis of Clinical Trials
for Opiate Dependence

Dean Foilmann, Margaret Wu, and Nancy Geller
INTRODUCTION

The analysis of clinical trials of opiate dependence presents special challenges.
In particular, the amount of missing data tends to be substantial. In trials of
cardiovascular disease, dropout rates higher than 5 percent per year are
considered high. In contrast, in a recent trial of three treatments for heroin
addicts, ARC 090, more than two-thirds of the patients dropped out by the end
of 17 weeks. In such a trial, any pronouncement of treatment efficacy depends
on how one deals with missing data.

There are two main possibilities for dealing with missing endpoint data in a
clinical trial: ignoring them or using imputation or modeling. Ignoring the
missing data can lead to bias in inference if the data are not missing at random
and can violate the intent-to-treat principle, which demands that all subjects be
analyzed as part of the treatment group to which they were randomly assigned.
Imputation or modeling is inherently assumption dependent but can provide
accurate answers if the assumptions are met. A problematic feature of opiate-
dependence trials is that some assumptions are completely uncheckable. In
essence, a guess is made about drug use on days of missed visits. Although
the guess can be based on other data or informed opinion of observed
behavior, the degree to which the guess reflects unobserved behavior is
unknowable.

Wu and Carroll (1988), Wu and Bailey (1989) and Wu and colleagues (1991)
considered the effect of censoring when comparing changes Of a continuous
response variable between treatment groups. They used the term “informative
censoring” when the probability of a missing data point depends on the
parameter of interest. They showed that, when the censoring is informative,
falsely assuming random censoring could give biased estimates of the group
slope means and the between-group differences. Statistical procedures to
account for informative censoring were also proposed.
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This chapter discusses different methods of dealing with longitudinal data with
many values missing. It is assumed that individuals are supposed to be tested
at a fixed number of times (e.g., Monday, Wednesday, and Friday of each week
for 17 weeks) and that each test is either positive, indicating drug use, or
negative, indicating nonuse. However, because some individuals do not show
up for some tests, the test value for that visit is missing. For simplicity, the
authors’ primary method of analysis will compute a summary measure of each
individual's sequence of tests and compare these measures between the two
groups.

A second section of this chapter considers different methods of imputation and
modeling for these data, which are considered to be binary repeated
measurements. Notation is developed and the case of no missing data
discussed. Ad hoc tests for missing data are explored, followed by the simple
approach of imputing a specific value to all missing observations. Combining
test statistics for treatment efficacy and equal missing data is considered. Next,
models for informative censoring are introduced whereby individuals’ imputed
values depend on their observed data. This generalizes previous work to the
case of binary data. Section three applies some of these methods to the data
of ARC 090. The discussion section suggests some tests for more complicated
null hypotheses.

NOTATION

The authors assume that the subjects are randomly assigned to one of two
treatment groups with subjects in group k = 1,2. The data of interest consist of
the repeated binary measurements where

Y, = { 1 ifthe jtf_J test of the ith subject in group k is positive
! 0 otherwise

forj=1,...m,andi=1,..n.

In the background, we imagine a population of (8,,,.. . ..8,,,) vectors that govern
the response of the ith subject in the kth group. These vectors are paired with
subjects via the randomization process. For notational convenience, we define
p(Y/(:' 1) = 6,/,(.

Because subjects can miss visits as well as drop out of the study, define

D = { 1 ifthe jth test of the ith subject in group k is absent
* L 0 otherwise
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Similar to the 6, notation, let P(D%: 1) = Mg We also define, for the ith subject
in the kth group,L,kzthe last visit number and mj as the number of available
test results.

For simplicity, it is assumed that the hypothesis of interest is whether the
average 6, differs between the two groups, A useful notation for this is
H{V.E[8,) = E[8,,), where the expectation is over the subscripts (here i and j).
Note that each subject is allowed a different average response proportion and
response proportions are averaged over time. The probability of a positive
response within a subject over time may or may not be the same. With no
missing data, a reasonable test of Hf" is the standardized difference in the
mean proportion of positive tests of the two samples

_ z::'-115;1-1/"1 - Erf‘yle/nz

[+]

T

1

T

where Y,

.« is the proportion of positive tests for the ith subject in the kth group,
and

2

&7, = LW,V )0, -1) « T,V )Hn,-1) 2)
where Y, is the average of the ¥,s.

Alternately, 62 may be taken as the pooled sample estimate of the variance.
With either estimate of variance, T, has an asymptotic standard normal
distribution. Another reasonable test in this situation is the two-sample
Wilcoxon test.

AD HOC TESTS WITH INCOMPLETE DATA

If some of the tests are missing, (1) may require modification. Suppose that
B,.,k= Oik(i.e., that there is no variation in the probability of a positive test over
time), but again different subjects are allowed different positive propensities.
Implicit in this formulation is that the observable data on an individual reflect the
unobservable data on that individual. Note, however, that these assumptions
do allow for a dependency between the probability of a missing test and the
probability of a positive response. An unbiased estimate of an individual's 6,
here is the average response on completed visits orY,, = Z,Y,i,(/m,.k. A simple
way to compare these proportions in the two groups is to use (1) with a modified
variance estimate. In effect, the authors are comparing the unweighted
within-group averages )7,_k = Z,.V,_k/nk and testing a new hypothesis

Hf) E[6,]=E[

-
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A consistent variance estimate can be derived under the assumption H.
Since the 0, are allowed to vary within each group, a random effects model is
specified for the®,sfor each k. The mean and variance of 6,:are denoted by
ukand 'rf The following expectations can be used to provide simple method-of-
moments estimates of p,and TZ:

EY,) =un,
E [;(V,.k Y0, -1 = W (1-p,) -0+

3 [g,:(qu‘)?-k)z / §(mu<‘1)] = w(1-n) -

where W, = 1/n, ¥,1/m . The last two equations can be used to estimate tZ.

Under the random effects model,
v [Yk] = (1/mlk) [ll,,(1 _pk) + (m/k"“)ti ]' (3)

and an estimate ofV[V,], say, \A/[V,]‘can be gotten by estimating w, and 7.
With missing data, the dgnclminator of (1) is then estimated by the square root
of 67, = TV [Y,] + TV [Y, )Call this test T,

One variation on this theme is to use a weighted comparison of the average
responses where Y, is weighted by m;,. However, this weighted analysis
requires the stronger assumption that the probability of missing a visit or
dropping out is unrelated to a person’s average response. If persons who drop
out early have a higher proportion of negative tests, the weighted estimate will
tend to be biased downward. However, if the additional assumption is
warranted, the weighted analysis can be more efficient than that based on the
unweighted average.

Another method is to calculate ranks based on the \st and to perform a rank
test. This approach is appealing since it is based directly on the unbiased
response averages for each subject, Furthermore, ranks tend to dampen the
influence of the more variable )_7*: based on few observations (Wu et al. 1991).
Suppose the proportion positive is ranked from lowest to highest. Tied
observations can be resolved by evaluating the number of complete
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observations and whether the ties are above or below the overall mean
V=32 3% Y /n+ny). 1Y, =Y, > ¥, and m, > m,, take Rank (Y ) <
Rank (Y,)If the equal sample averages are below the overall mean, take
Rank (Y,) > Rank (Y,,). Treating ties in this manner is consistent with the
ranking based on the shrinkage or Empirical Bayes estimates of thef,s.This
generalizes a method for breaking ties suggested by Sahlroot and Pledger
(1991). Call this rank test T;.

The assumption that 6, = = 0,/may be untenable. For example, the chance of a
positive test may increase as the study_progresses and subjects lose interest.
Even in this case, the subject average ¥, {provides an unbiased estimate of his
or her average 6,/k1over the complete visits. Therefore, tests of the hypothesis
that

HEE [8,,( 0,)10,]

' l/l //2
can in principle be made by looking at either the ranks of the E,ks or the
difference of the unweighted within-group averages. One problem with the
former test is that a variance estimate requires additional structure to be put on
the 8,,s. Although the test based on ranks can be used in a straightforward
manner, Hf¥ may be of limited interest if the distribution of the Dﬂs differs from
that of theD S. For example, if Gukllncreases with j for both groups and subjects
drop out early for one group, the group with the earlier dropouts will tend to
have a lower test average. The test statistic could identify the better treatment
as the one with the earlier dropouts even if later Gllks were higher for the group
with earlier dropouts.

Since the rank test of Hf)wmay result in a misleading inference, it is necessary
to examine whether the missed visits and dropout times differ between the two
groups. Tests of equality of the pattern of missingness between the two
groups should be calculated. Rank tests, tests of means, or logrank tests
could be used. Informally, these tests could be used to see how meaningful
the test of Hf’ is. For example, if a similar pattern of missingness is expected
to occur over time in the treatment groups, one could use a test of the
difference in proportlons of missing data in the two treatment groups, which is
analogous to (1) with D, .« replacing Y,k and a suitable estimates of variance, say
G replacing Gr,. Call this test statistic M,. A Wilcoxon test based on D, is
also considered; call this test statistic M,.
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More formally, a test for missingness can be combined with a test of efficacy
using a multivariate test (O’Brien 1984; Pocock et al. 1987). Here the null
hypothesis is

H®(E [8,).E [x,]) = (E [8,]E [x,,))

and the alternative is

H2(E [8,1E [my,]) > (E [8,).E [m,,)) or

(E [6/1]lE [’t/”]) < (E [elzl’E [7!,,-2]);

that is, one treatment is better than the other with respect to both the proportion
of positive tests and the proportion of missing tests.

As an example, consider combining two rank tests, such as T; and M, O’Brien
(1984) proposed ranking each outcome separately, as one would to perform a
Wilcoxon rank sum test on each outcome and summing the ranks over the two
outcomes, He then proposed calculating a Wilcoxon rank sum test for these
sums. Call the resulting statistic 0,. In the case of more than two samples,
O’Brien suggested ranking each outcome over all samples, forming the rank
sums for each subject, and then using one-way analysis of variance on the
sums. Alternatively, a Kruskal-Wallis test could be used on the sums.

More complex combinations of test statistics may be formed using the method
proposed by Pocock and colleagues (1987). To combine T, with M, in an
O'Brien-type statistic, the correlationp(T,, M,) between T,and M, would need to
be estimated. Pocock and colleagues (1987) gave an explicit reduction of the
formula for O’Brien’s generalized least-squares statistic when endpoints are
equally correlated and the within-group data_are iid. The within-group data here
are not iid, however, since the variance ofﬂ_k depends on m,. Estimation of the
correlation between these test statistics requires further work.

SIMPLE IMPUTATION
If the assumption that 8, = 8, is untenable, an imputation of a specific value for
each missing data point may be reasonable. We will call this simple imputation.

One possibility is to replace missing responses with positive responses. This is
appropriate if it seems likely that subjects would have tested positive if they had
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been tested. Another rationale for this imputation is that it defines a new
endpoint: missed test or positive test. This endpoint tests a new hypothesis

H®:E ["l,,,] =E [11;,2]:

where Nk is the probability that the ith person in the kth group is positive or
missing for the jth test. One could argue that both positive tests as well as
missing data suggest failure of the program. An advantage of the simple
imputation approach is that the analysis then proceeds as if complete data had
been obtained, and (1) or its rank analog can be used. The test statistic T, is
referred to as (1) with a value 1 imputed for missing values.

MODEL-BASED IMPUTATION

The basic idea here is to use a model to provide an accurate test of the original
hypothesis Hj".E (6] = E[8,,] even if individuals likely to test positive tend to
drop out or if G,I.k # 6,. The authors attempt to succinctly describe 6,, for each
group with a model, estimate the parameters of the model separately in each
group, and then compare the estimate of 2. ;‘19i/,/(n1m) to the estimate of
Z,"’_‘?‘,Z;:’,Bil?/(n?m).Although this approach is heavily modél "based, one can allow
for quite general effects of dropping out, missed visits, and other factors as long
as they are correctly incorporated into the model.

To justify our procedure in a simple setting, ignore the treatment identifier k and
suppose that the following model holds:

in [ el/ = B+f (4)
rurd i o
1-6,
m,
In [1 — ] = a +a, By (5)
i

where Bo,. is a random parameter with some distribution H with mean zero, and
B, a,, a, are fixed-effects parameters. In other words, each subject draws a
random propensity for a positive test, ., from H, which also affects the
probability of a missed visit. Ifet, is not zero, the missing observations are said
to be informative with respect to the parameter of interest, B, (Wu and Carroll
1988).
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Although maximum likelihood estimation could be performed using the (¥, D,),
a simpler approach can be argued as was done by Wu and Bailey (1989).
Suppose the Y,./saare ignored. The model defined by (5) can be viewed as an
Empirical Bayes model. The information from the ith individual is given by
;'_’10, or equivalently m; since m;= m—Z/-"_'1[7,j. For the ith individual and any
prior .LI the posterior expectation E [B°,|m,] ‘is increasing (decreasing) as a
function of m; when a, is negative (positive). A proof of this result is presented
elsewhere. In other words, if @, is positive, individuals who are likely to test

positive are also likely to miss tests.

This result suggests that a simple way to capture the information contained in
is to use the model

=

in{_—_| = B+p, + h(m)
]

where By, lhas a distribution H( ) with mean 0, and h( ) is some function that is

allowed to be either increasing or decreasing, such as a polynomial, perhaps

with restricted coefficients.

The above argument justifies fitting a logistic regression model with random
subject effects and other fixed effects that describe the missingness. Such
models have been discussed in a more general setting by Pierce and Sands
(1975), Stiratelli and colleagues (1984), and Follmann and Lambert (1989). The
approach of Follmann and Lambert (1989) is used and H is estimated via
nonparametric maximum likelihood, along with parametric estimates of the fixed
effects. Under this approach, H is assumed to follow a distribution with a finite
number of support points. The number of support points is estimated by the
data.

For the problem at hand, consider the following model:

In [ O
1 -G,Ik

for k = 1,2. Note that the probability of a positive response is assumed free of j
and the test derived from it is appropriate for the hypothesis H/Z.E [8,] = E [8,)].
Therefore, results from this procedure can be compared with other tests of the
same hypothesis from the previous sections.

= B+ Bouct B oM+ Bod (6)
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The numerator of the model-based test statistic is

E:.I\E [6,,]/ nfﬁ‘f‘g [612]”’2

where the expectations are Empirical Bayes posterior expectations using the
within-group estimates of the random effects distribution, the fixed effects, and
each individual's data. The asymptotic variance of this test statistic can be
estimated by the delta method, given a covariance matrix for the estimates.

The authors use the observed Fisher Information (pretending that the number of
support points is known) to estimate this covariance (Follmann and Lambert
1989).

In general, trends in the 8,8 could be made to depend on j via a covariate, for
example, polynomials of j or log(j). If the Bﬂs depend on j and this dependence
is accurately summarized via the random effects model, the original hypothesis
H{V:E [8,,] = E [8,;] can be tested, even with missing data.

EXAMPLE

A recent randomized clinical trial compared three treatments-buprenorphine,
methadone at 20 mg (methadone 20), and methadone at 60 mg (methadone
60)-for their ability to reduce opiate use within a group of addicts. This section
focuses on the buprenorphine and methadone 20 groups.

Respectively, 53 and 55 subjects were randomized to these two groups. The
methadone 60 group contained 54 subjects. Following randomization, urine
tests were conducted three times per week for a total of 17 weeks. One subject
was assigned to the buprenorphine group who never took a test. Although one
might include this subject with some imputed value in an analysis of the
treatments, she is excluded for simplicity.

Figure 1 displays the proportions of positive tests over visits for the two groups.
Buprenorphine is almost always better, and there seems to be little trend in the
proportion positive. Figure 2 displays the proportion of missed tests over time.
Both groups show increasing trends that seem fairly comparable. Figure 3
displays the scatter plot of )_’; vs. 1-m/51, that is, the proportion positive vs. the
proportion missed for the two groups. A moderate positive correlation (p = .51)
is seen between the two in the buprenorphine group, whereas the correlation is
less strong in the methadone 20 group (p = .18). Also note that subjects in the
buprenorphine group who always test positive have many missed tests. Some
subjects in the methadone 20 group who always test positive rarely show up.
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FIGURE 1. Proportion of positive tests over time, by treatment

Table 1 shows some sample statistics for the two groups. Burprenorphine has
a lower average response proportion, a larger random-effects variance, and
also a larger variance of Z,Vi_/n. The latter discrepancy is influenced both by the
larger 12:and the average response being closer to .5 for the buprenorphine
group. The average proportion missing is somewhat larger in the methadone

20 group.

Table 2 provides the results for the various tests discussed in the text. For all
test statistic numerators, the methadone group result is subtracted from the
buprenorphine group result. The first two tests provide very similar results for
the hypothesis that the average 8, is the same for the two groups. The first test
is obtained from the results of table 1. Both tests indicate that the
buprenorphine group has a substantially lower probability of a positive test.

For the rank test, the authors determined the number of times that the Empirical
Bayes approach adjudicated tied observations. With no ties, each of the 107
observations forms a “cluster” of 1. For these data, there were 69 clusters,
ranging in size from 2 to 25. For example, for 7;-'-' .5, there are four
observations, one with m; = 4 in the buprenorphine group and 3 in the
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FIGURE 2. Proportion of missed tests over time, by treatment

methadone 20 group with m; = 4, 2, and 2. For 7,,: 1.0, there were 25
observations. Following the Empirical Bayes method of breaking ties, there
were 92 clusters. Interestingly, when the ties are not broken, the Wilcoxon rank
test is -2.85. Thus, how ties are treated makes a difference here.

Although the overall proportion missing is somewhat higher in the methadone
group, a test of the difference in these proportions is not significant. However,
this difference explains why the test statistic that imputes 1 for missing
observations is higher than the analogous test without imputation.
Burprenorphine is better both with respect to missing data and with respect to
the proportion of positive tests.

The O’Brien rank test shows that buprenorphine was better than methadone 20
simultaneously with respect to efficacy and missingness. In calculating this
statistic, average ranks were used for ties. The final ranking had 80 clusters, 1
of size five, 4 of size three, and 15 of size two. It is not surprising that the value
of this test statistic is smaller in absolute value than the rank test for the
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FIGURE 3. Proportion of positive and missed tests, by subject

proportion of positive tests. The difference in proportions of missingness,
although not significant by itself, has a modest diluting effect.

The test based on the model for informative censoring provides the smallest
p-value of all tests of the hypothesis E[6,=E[0,] It is substantially larger
than the test based on the Y, s. This is not surprising since tests that require
more assumptions are generally more efficient.

The estimated models for the two groups are presented in table 3. Using the
Wald statistics, the missing data are seen to be highly informative for the
methadone 20 group and not as informative for the buprenorphine group. Since
subjects with fewer missing observations tend to drop out later, it is somewhat
misleading to talk about the separate effects of m; and L, However, note that
for the methadone 20 group, subjects with larger m;s (i.e., fewer missing
observations) tend to have a lower proportion of positive tests. Subjects who
drop out later are more likely to test positive.
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The estimated average proportion of positive tests for the two groups in table 3
is quite close to the average of the ¢,s. However, the variance onE[ . /n, is
substantially smaller than V[Z, ,,k/nk] from table 1. As mentioned previously,
the smaller variability is not surprising since the model introduces more
“structure” to the data. However, the ratio of the estimated variances is similar
for the two approaches.

For simplicity, detailed comparison involved two groups. Finally, the authors
use an evaluation of the three arms using the O’Brien rank test, which
simultaneously tests equality of efficacy and missingness over all three arms.
The Kruskal-Wallis chi-square test with two degrees of freedom had the value of
8.55 (p=.01). We then considered the three pairwise comparisons and used a
Bonferroni correction to determine an (approximately normal) critical value of
2.39. Buprenorphine is better than methadone 20 (0, = -2.70), but not better
than methadone 60 (0, = -.95). Methadone 60 was better than methadone 20,
but not significantly so (0, = 2.15).

TABLE 1. Some summary statistics for the buprenorphine and methadone 20

groups
Group
Buprenorphine Methadone 20

Statistic (n=52) (n=55)
3Y./n 49 69

12 A1 .07
ORAL .0025 .0016
x.D./n 48 58
Sample variance of D, 1163 1119
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TABLE 2. Tests comparing the response proportions between the
buprenorphine and methadone 20 groups

Test Hypothesis Z Value
Difference in average Tj_ks with E[e ]=E[6,] -3.05
random effects variance

Rank version of above with Empirical -3.01
Bayes adjudication of ties

Difference in averageﬁ,_ks -1.63
Difference in average )—f_kswith missing -3.48
to 1 imputation

O’Brien’s rank test -2.70
Difference in average £ [8d/n,s -3.82

TABLE 3. Parameter estimates for the models of informative censoring. The
estimated mixing distribution for the buprenorphine (methadone
20) group had 4 (2) points of support. Estimated Wald statistics
are provided in parentheses.

Effect

A

B,

By
'B2k
T E8,.)n,

Sample variance ofV[E,f::[Gik]/nk]

Group

Buprenorphine Methadone 20

1.20 38
-.022 -136

(-1.29) (-6.14)
-.021 131

(-1.14) (5.59)
48 68
.00133 .00116
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DISCUSSION

This chapter briefly introduces and illustrates several techniques that may be
useful for dichotomous repeated measures with a substantial proportion of
missing data. A more rigorous evaluation would be useful before definitive
recommendations are made. Nonetheless, several points can be offered.

The rank test with Empirical Bayes adjudication is an appealing procedure
because it allows an unbiased robust comparison of two proportions as long as
it is assumed that the probability of a positive test does not vary with j. The
analogous test of means may be more substantially affected by\_’,.'s lbased on
few observations. Furthermore, the means test requires some structure to
derive a variance estimate.

The simple imputation of missing to positive might be favored either if one felt
that subjects were taking drugs on missed days or if a combined endpoint were
thought reasonable.

The attraction of the model-based approach is that, in principle, it can provide a
test of the original hypothesis. The disadvantage to this approach is in the
implementation. Issues of covariate selection and model fit need to be
explored. Additionally, optimization requires some care due to the possibility of
local maxima and numerical stability. For example, in the methadone 20 group,
it seemed that an additional support point at —ee would slightly increase the log
likelihood. However, this point was not included due to numerical problems with
the information matrix.

In general, there may be additional information to aid investigators in deciding
how to deal with each specific missing datum. For example, some missing data
might correspond to occasions when the subject was strongly suspected of
using opiates. Such additional information can be incorporated into a
combination procedure in which the imputation from missing to positive is made
for a subset of the data. The other procedures discussed in this chapter could
then be applied to the partially transformed data. However, it is important to
recognize that no statistical procedure will improve the results from a trial with
more than two-thirds of the endpoint data missing. Ultimately, the quality of
evidence from such a trial is more like that of an observational study.
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Summary of Discussion: “Issues in
the Analysis of Clinical Trials for Opiate
Dependence” by Follmann, Wu, and
Geller

Ram B. Jain

Dr. Jack C. Lee of the National Institute of Child Health and Human Development,
National Institutes of Health, who reviewed this paper, expressed concern about
the missing-at-random assumption implicity made by the authors in some

of the models used by them. The same concern was expressed by many other
participants at one time or another. The assumption of missing at random is
questionable since a missed visit might be dependent on opiate abuse during

the days just prior to missed visits. Dr. Follmann replied that the model-based
imputation method presented by him did not require the assumption of missing

at random. The parameters a, and a; will be zero if the data are missing at
random.

| believe the distinction between a missed observation and a censored
observation was lost during this discussion. An observation is considered to
be censored when a subject permanently drops out of the study. For the
censoring to be informative, fotal experience or abuse history of the subject till
the time of censoring should play a role and should be investigated. A missed
observation, on the other hand, is a temporary event. For a missed observation
to be informative, a single or only a few events just prior to the missed visit
should play a role.

Dr. Lee also made a number of other suggestions that can be incorporated
in the models to describe the phenomenon of drug addiction. He suggested
that cyclic effects introduced by, for example, the pattern of drug abuse and
their relationship with missed visits can be incorporated in the models, and
the covariates that may affect by, should be included in the models. He
suggested that the whole patient population may be divided into four or five
relatively homogeneous strata, and these strata can then be separately
analyzed. These analyses may not need the assumption of missing at
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random. Dr. Lee was also of the view that the total study, for example,
may be divided into three periods and that each of these periods may be
studied separately. This might help in studying the issue of compliance.
Finally, he thought a goodness-of-fit test was lacking from the presentation.

There was a rather involved discussion about imputation of missing values

and the effect this may have on the inferences that are drawn. Dr. Hedayat
was concerned about always imputing missing observations to a single value.
Variations in patient characteristics across different areas may justify imputation
to different values. Dr. Wright was concerned about one treatment being
favored over another because of the specific imputation procedures used by the
statistician. Dr. Fisher was in favor of some kind of sensitivity analysis where
missing observations are imputed to different values in different treatment
groups to describe various possibilities under a different set of imputed
observations. However, Dr. Geller was of the view that you may come up

with any conclusion when the missing (censored) data are as massive as in
drug abuse trials.

Another suggestion was to consider some of the multiple imputation procedures
used by Dr. Don Rubin, Harvard University. This might give a handle on the
variability induced by the imputation procedure itself. It was pointed out that
one of the natural sets to select for multiple imputation would be the entire
history of the patient,
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Analysis of Clinical Trials for
Treatment of Opiate Dependence:
What Are the Possibilities?

Ram B. Jain
INTRODUCTION

One of the major primary outcome variables in clinical trials for treatment

of opiate dependence is the frequency of drug abuse, that is, of opiates
(primarily heroin), after therapy for opiate dependence has been initiated.
Because the episodes of opiate abuse are not directly observable, an estimate
for the frequency of opiate abuse is obtained from the urine samples collected
with a prespecified frequency and tested for the presence of opiates and their
metabolites. Hence, a data sequence of binary numbers for each addict is
available for analysis. Analyses of these data present serious obstacles.

To obtain the “true” estimate of the frequency of opiate abuse, it will be
necessary that each positive urine sample represent an independent episode
of opiate abuse. However, depending on the amount of opiate consumed

by an addict during a given episode, it will not always be true. Two or more
consecutive positive urine samples may represent the same episode of opiate
abuse. In other words, there is a probability that treatment effect will be
confounded with the carryover from one positive urine to another. It is difficult
to estimate carryover, because the probability of carryover for a given addict
varies from day to day and among addicts from one addict to another because
of differentials in drug-seeking behavior. Consequently, using the available
information on the kinetics of opiates, the frequency of urine samples is
selected in such a way that the probability of carryover is minimized and the
probability of being able to detect an episode of opiate abuse is maximized;
note that the probability of carryover is not entirely eliminated. This is the first
obstacle in analyzing these trials.

In clinical trials among drug addicts, the dropout rate is unavoidably high, to

the order of 80 percent in a placebo group. Also, even during the period the
addicts stay in the trial, they miss about one in every five scheduled visits for
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treatment. Hence, the number of missing or censored data points may be as
much as or more than the number of available data points, which reduces the
power of the statistical tests of hypotheses.

In 15- to 20-week trials, urine samples may be collected up to three times a
week. Hence, each addict may have 50-or-so data points for analysis. As
such, the problem of analyzing these trials may be perceived as a 50-or-so
dimensional problem. The selection of a powerful statistical method that will
permit 50-or-so dimensions with sample sizes on the order of 150 to 500
patients with substantial missing data to detect “true” treatment differences
is a serious challenge.

Before the possibilities for analyzing these data are considered, it would be
beneficial to understand the nature of treatment for opiate dependence.
Agonist therapy for opiate dependence essentially constitutes replacing the
abused opiate with another, most likely a synthetic opiate (called an opiate
agonist or an opiate partial agonist), with relatively less potential for abuse.
In replacement treatment, the next dose is given when the effect of the previous
dose is about to wear off. If the next dose is not given in time, the addict is
more likely to go out and seek the illegal drug of abuse. Overdosing amounts
to exposing the addict to the addictive potential of the replacement opiate.
Hence, each dose of the replacement opiate has its own pharmacological
effect and may be considered as one unit of treatment.

According to Blaine and colleagues (1981), replacement therapy “is intended
to . . . achieve a more pharmacologically stable physiological state.” Each unit
of replacement therapy, if successful, should lead to a physiological state that
is pharmacologically more stable than with the previous unit of replacement
treatment. Hence, attainment of a fully pharmacologically stable physiological
state at which the addict does not seek the abused opiate and is ready for
detoxification is going to be a gradual, one-step-at-a-time process.

WHAT ARE THE POSSIBILITIES?

Let Pil. (i=0,1,2 ..., m) be the probabilities (table 1) of an addict using the
abused' opiate before entering the trial (i = 0) and after scheduled dose i (i > 0)
of the replacement opiate j. If each unit of the replacement opiate is
consistently successful and has no “reverse” therapeutic effect, P.<.P;

i=0,.... m- 1. However, because of missed doses and other factors, P; can
assume any value between 0 and 1. Also, a data point s after scheduled dose
s, s=2,..., m, for a given addict may not be available because of the missed

dose s or because he or she dropped out of the trial after dose n, n < m.
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TABLE 1. Probabilities of opiate abuse

Dose Urine Sample Probability (Opiate Abuse) on Treatment j
0 0 POj P:O] P+Oi
1 1 I P, P,
2 Py
3 2 Py P P
m n ij P’n} P+ni

P. = probability of opiate abuse after administered dose ! for treatment j

P, = probability of opiate abuse after the last administered dose before
scheduled urine sample j for treatment

P = probability of urine sample k being positive for treatment j

Also, because urine samples are not collected after each dose, not all P; are
estimable. For example, in the ARC 090 trial, urine samples were collected
only after the Sunday, Tuesday, and Thursday doses, that is, on Mondays,
Wednesdays, and Fridays. Thus, the number of doses of replacement opiate
administered between consecutive urine samples varied from 1 to 2.
Furthermore, because different addicts enter trials on different days of the
week, the number of doses of replacement opiate administered between urine
samples n and n + 1 varies from addict to addict.

Let Py (k =0, 1,. .., n) (table 1) be the probabilities of an addict using the
abused opiate before entering the trial (k = 0) and after the last administered
dose before urine sample k (k > 0) is scheduled to be collected for the treatment
group receiving the replacement opiate j. Again, not all data points are
available because of addicts missing one or more of the scheduled doses
before the urine sample k is scheduled to be collected or because of not
providing one or more scheduled urine samples, for example, for nonvisits or
because of dropping out of the study after providing u (u < k) urine samples.

The most practical way to estimate P'. is to assay urine sample k for the
presence of the abused opiate(s) and/or its (their) metabolites. However,
because of many reasons, more fully described in Jain’s chapter “Design of
Clinical Trials for Treatment of Opiate Dependence: What Is Missing?” (this
volume), the probability of a urine sample detecting an episode of opiate abuse
depends on several factors, primarily the duration between the /ast episode of
drug abuse and the time the current urine sample was obtained. Let P,
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(table 1) be the probability of a urine sample k for treatment j being declared
as positive for opiate. Then, in an experiment, the best that can be done is
to estimate P, ; and hope that P, is the best available estimate of Py

There are at least three distinct possibilities for analyzing these data or
estimating P.,. First, reduce the multiple data points for each addict to one
and then use regular inference procedures to compare the efficacy of different
treatments. For example, multiple data points obtained from urine samples for
an addict may be reduced to a single data point defined as the proportion of
positive urines, or alternatively, his or her overall profile/pattern of +/- urines can
be classified by some rank order procedure as a single rank. Let this possibility
be denoted as DATA-REDUC-1.

If sequential performance of successive units of replacement opiate is of
interest, estimates of P, ,;'s can be obtained, trends studied, and a summary
statistic ZWMP+kj obtained to evaluate the program performance of the different
treatments. Weights wy; can be defined in many different ways and are well
documented in statistical literature. Let this possibility be denoted as ANAL-

SEQ-UNIT.

It will be in order here to clarify the major distinction between the summary
statistic obtained from ANAL-SEQ-UNIT and the single statistic obtained from
DATA-REDUC-1 procedures. Whereas the summary statistic obtained from
ANAL-SEQ-UNIT procedures is adjusted for differentials in treatment
performances and sample sizes over time, the single statistic obtained from
DATA-REDUC-1 basically ignores these differences in treatment performances
and sample sizes over time. However, the latter is simpler to compute and
understand.

Also, attention can be focused on only the positive urines, and a correlational
structure between time to various positive urines or failures can be studied. In
other words, data can be analyzed as a multiple failure problem. Let this
possibility be denoted as MULT-FAIL.

Some of these possibilities were explored in analyzing the ARC 090 data for
buprenorphine vs. methadone 60 mg treatment, and some of these results are
presented.

DATA-REDUC-1

If the multiple data points are reduced to one data point for each addict, one of

the first temptations would be to use some form of parametric or nonparametric
analysis of variance. However, censored observations are not permitted in
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analysis of variance, and then what is to be done with missing observations?
Both missing and censored observations can be considered as “negative” or
“positive,” as can some other combination of “negative” and “positive,” probably
depending on the reason for missing and censored observations. But then
there are at least as much “made-up” data as the real observed data. This is
probably not acceptable to most analysts.

If the proportion of positive urines, p. ;, is to be computed for addict v,v =

1, . . ., n;in treatment jfor using parametric analysis of variance, the censored
and missing observations may be excluded from the analysis; that is, a different
denominator is used for each addict. This would violate the assumption that
each subject in a given treatment group is drawn from the same population. In
addition, since the probability p., of a positive urine for urine sample k varies
with k, the single variable y denved from multiple data points will be the sum
of u binomial variables with parameters n = 1 and P = P,y Is y normally
distributed and with what parameters? However, irrespective of theoretical
objection, this possibility was explored for the ARC 090 data, and the results
are given in table 2. No significant differences were observed.

An additional problem with both parametric and nonparametric analysis of
variance is that information about the pattern of positive and negative urines or
temporal correlations is lost. Also, since the kinetics of the drugs are different,
the information about the relationship between drug effect and time is lost.

Survival methods that permit censored observations can be used with a little
more confidence. However, in addition to the problem of missing observations,
the definition of what constitutes a failure may be subjective, and depending on
the definition used, the power of statistical procedure may become too low

TABLE 2. Parametric analysis of variance results for the ARC 090 study
(maintenance period only)

Treatment Missing Values Mean p,
Group Treated as N (SD) t ol
Buprenorphine Negative 48 .33(.26) -.46 .85
Positive 48 .54(.33) -.85 .40
Excluded 47 .45(.35) -.29 .78
Methadone 60 mg Negative 51 .35(.30)
Positive 51 .60(.33)
Excluded 47 .48(.36)
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(because of too few failures) or the trial may be over too soon, thus making
most of the data observed unused. For example, if the first positive urine is
used as a measure of treatment failure, ARC 090 would probably be over in a
week or so. For ARC 090, two consecutive Monday positive urines were used,
starting with the fourth Monday of treatment as the measure of treatment failure;
the results are given in table 3. No significant differences were found. Kaplan-
Meier survival curves are displayed in figure 1. The number of failures in each
group was 25.

Another measure of treatment failure, that is, the beginning of first drug-free
period of 28 days or more, was also used. The number of failures using this
criterion was 13 in the buprenorphine group and 7 in the methadone 60 mg
group. The results are given in table 4, and Kaplan-Meier curves are plotted
in figure 2. As can be seen from table 4, the two statistics can give different
results. Only the Breslow statistics provide significant results. Hence,
depending on the definition of a failure, different methods of inference can
give different results.

Another possibility is being explored by Dr. John Harter, director of the Pilot
Drug Evaluation Division of the Food and Drug Administration, in analyzing
analgesic trials that use a combination of a sorting routine and a nonparametric
rank sum test. The sorting routine first sorts all subjects by their pain intensities
at time (sample) 1; then each distinct subgroup obtained after first sort is sorted
by its pain intensity at time (sample) 2, and so on. After the last sort, the
subjects are ranked according to their profiles in ascending or descending
order. Then, ranks are summed for each treatment group, and a rank sum test
to evaluate treatment differences may be used. This approach may also be
tried for drug abuse ftrials.

TABLE 3. Results of survival analysis of the ARC 090 study (maintenance
period only) using two consecutive Monday positive urines starting
with the fourth Monday of treatment as treatment failure

95-Percent Brookmeyer-Crowley
Confidence Intervals in Days Mantel-Cox Likelihood Ratio
for Median Survival Time for Chi-Sq (p) Chi-Sq (p)

Buprenorphine Methadone 60 mg

48.0-90.0 35.0-77.0 0.50 (.48) .09 (.77)
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FIGURE 1. Kaplan-Meier survival curves for ARC 090 study

B = buprenorphine, H = methadone 60 mg

Consider six addicts on two different treatments who have their urine results
on three samples as shown in table 5a. The subjects are first sorted according
to their results on sample 1 as shown in table 5b. Subjects 1, 3, 5, and 6 have
positive urines and as such are subgrouped first, followed by subjects 2 and

4, each of whom has a negative urine. If there were to be more than two
distinct scores, the procedure would be the same. After the first sort, the
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TABLE 4. Results of survival analysis of the ARC 090 study (maintenance
period only) using the beginning of the first drug-free period of 28
days or more as a treatment failure

Mantel-Cox Chi-Sq (p) Breslow Chi-Sq (p) Likelihood Ratio Chi-Sq (p)
2.95 (.09) 5.51 (02) 2.94 (.09)
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FIGURE 2. Kaplan-Meier curves for ARC 090 study when treatment ‘“failure”
is defined as the first drug-free period of 28 days or more

distinct subgroup of subjects 1, 3, 5, and 6 is sorted first by their results on
urine sample 2, and then the second distinct subgroup of subjects 2 and 4 is
sorted by their results on urine sample 2. This creates three distinct subgroups:
subjects 3 and 6 with a (+,+) profile; subjects 1 and 5 with a (+,-) profile; and
subjects 2 and 4 with a (-,+) profile (see table 5c). As shown in table 5d, each
of these three subgroups is then sorted by results on the third urine sample,
thus creating six distinct subgroups of subjects: subject 6 with a profile (+,+,+)
ranked 1, subject 3 with a profile (+,+,-) ranked 2, subject 5 with a profile (+,-,+)
ranked 3, subject 1 with a profile (+,-,-) ranked 4, subject 2 with a profile (-,+,+)
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TABLE 5a. Results of three urine samples from a hypothetical trial

Results of Urine Sample

Patient Identification Treatment Received 1 2 3
1 A +

2 A - + +
3 A + +

4 B - +

5 B + +
6 B + + +

TABLE 5b. Results from a hypothetical trial after first sort

Patient Identification Treatment Received Results After First Sort
1 A +

3 A +

5 B +

6 B +

2 A

4 B

TABLE 5c. Results from a hypothetical trial after first two sorts

Results After First

Patient Identification Treatment Received Two Sorts
3 A + +
6 B + +
1 A + R
5 A +

2 A +
4 B +
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TABLE 5d. Results from a hypothetical trial after three sorts

Patient Identification Treatment Received Results After Three Sorts Rank
6 B + + + 1
3 A + 4 - 2
5 B + - + 3
1 A + 4
2 A - + + 5
4 B - + 6

ranked 5, and subject 4 with a profile (-,+,-) ranked 6. For subjects with the
same profiles, average ranks can be calculated. The sum of ranks for treatment
A = 11 may then be compared with sum of ranks for treatment B = 10.

There are two problems with this approach. First, as with any nonparametric
rank test, the magnitude of treatment differences on original measurement
scale is not available. Second, this approach puts too much weight on the first
observation. For example, subject 3 with a profile of (+,+,-) is given the rank
of 2, whereas subject 2 with a profile of (-,+,+) is given the rank of 5. Both
the subjects have two out of three positives, but they are considered (almost)
opposite extremes in this approach. However, it may be possible to come
up with certain variations of this approach that do not rely on the first
observations so heavily. For example, if clinically acceptable, the first few
results may be ignored or a ranking mechanism may be developed based

on some combination of result profiles and number of positives.

ANAL-SEQ-UNIT

The first approach to explore this possibility would be to construct 2x2 tables
for each urine testing opportunity and compute, for example, a Mantel-Haenszel
z-statistic (Mantel and Haenszel 1959; Miller 1981). For the ARC 090 study,
the z-scores are displayed in figures 3, 4, and 5 when missing values are
considered as missing, negative, and positive, respectively. A consistent
pattern of superiority of buprenorphine over methadone 60 mg is observed,
except probably during the middle of the study period. However, the degree
of superiority of buprenorphine seems to be decreasing over the first half of
the study period and then increasing again during the second half of the study
period. Some, but not all, of this is explainable based on the process of self-
selection as the study progresses and because of different sample sizes at
different times during the study period. The differences probably lie in different
kinetics of buprenorphine and methadone. Methadone is probably catching
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FIGURE 3. Mantel-Haenszel z-statistic for each urine testing opportunity
when missing values are considered as missing

up with buprenorphine during the first half of the study period, as may be
suggested from percent of positive urines at different times during the study,
as seen from figure 6.

However, a summary Mantel-Haenszel statistic cannot be validly calculated
from individual 2x2 tables because this summary statistic does not account

for correlations between individual 2x2 tables. How then can one calculate a
summary index of program effectiveness? First, a simple though somewhat
questionable alternative may be to score the direction of the relative efficacy of
the two drugs for each time point or urine testing opportunity and use a binomial
test to evaluate if, “overall,” one drug is more effective than the other. Another
alternative may be to use a weighted summary statistic for correlated tables as
described in Wei and Johnson (1985). However, the use of, for example, a
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FIGURE 4. Mantel-Haenszel z-statistic for each urine testing opportunity
when missing values are considered as negative

51-dimensional variance-covariance matrix as in the ARC 090 study with the
data as sparse as they are, particularly during the last few weeks of the study,
would certainly lead to some problems. For example, to solve such a huge and
sparse matrix will be numerically difficult, and the dimension of the problem will
adversely affect the power of the statistic.

The use of parametric repeated measure of analysis is even more problematic.
In addition to the inadmissibility of missing and censored observations, the
degree of robustness of repeated measure analysis of variance to analyze
binary data is unknown when there are as many repeated measures as in
these studies. Also, these studies do not generate traditional repeated
measures data. Each of the two consecutive repeated measures is interrupted
by the administration of the replacement opiate and possibly the use of opiate
of abuse. This is different when compared with using a new instructional
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FIGURE 5. Mantel-Haenszel z-statistic for each urine testing opportunity
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method for several months and comparing the effects of the traditional and the
new method over a period of time. It is not certain if the repeated measure
theory is applicable to these data. At best, these data seem to be multiply
interrupted time series data.

MULT-FAIL

Several authors have considered the problem of analyzing multiple failures
under various configurations (e.g., failures of the same type over time or failures
of different types at a fixed point in time and space). Recent work in this area
has been done by several researchers (Lagakos et al. 1978; Hsieh et al. 1983;
Prentice et al. 1981; Gail et al. 1980; Lawless 1987; Wei and Lachin 1984; Thall
and Lachin 1988; Wei and Stram 1988; Wei et al. 1989; Lin 1990). Some of
these authors, for example, Wei and Stram (1988) and Wei and colleagues
(1989). used a regression-based approach, whereas others, such as Wei and
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Lachin (1984) and Thall and Lachin (1988), used multivariate versions of log
rank (Mantel 1966) and/or the Gehan test (Gehan 1965) to analyze multiple
failures. The regression approach of Wei and colleagues (1989), which is a
multivariate version of Cox’s proportional hazards model (Cox 1972), imposes
the least restrictive structure on recurring events (failures) and thus is very
appealing.

The regression approach of Wei and colleagues (1989) will be an excellent
choice if the number of failures in the model is limited and there are many
subjects in the study. In the ARC 090 study, the number of subjects, 162
across three treatment groups, was probably sufficient to use this model,
but each subject could also experience up to 51 failures in the 17-week
maintenance phase of the study. Hence, to use this model, there was no
choice but to use an algorithm that reduces the maximum number of failures
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to 17. Even though this approach does permit censored observations, the
missing observations must still be handled in some way. In fact, the algorithm
used to reduce 51-dimensional data to 17-dimensional data more or less solved
this problem, except when all three samples during a week were missing.

A weekly index was developed for urine samples being positive or negative for
opiates. If at least one of the three samples was positive or all samples for a
given week were missing, that week was considered to be positive for opiates.
Otherwise, that week was considered to be negative for opiates. Thus, the
maximum number of failures was limited to 17 for this analysis. However, to
avoid too many ties, the time (in days) to each failure used to compute various
statistics was defined as the time to first positive urine or missing observation (if
all observations were missing during a week) during the week in consideration.

This algorithm does result in some loss of information, for example, one who
has three positive urines during a week is treated the same way as one who
has only one positive urine during that week. Hopefully, this loss of information
will be random and uniform across different treatment groups and will result in a
valid comparison. No formal statistical tests were done to verify this.

Only one covariate-that is, treatment assignment-was used for analyzing
ARC 090 data (1 = buprenorphine, 0 = methadone 60 mg). Thus, 17 regression
coefficients, one for each week, were estimable. A joint test of hypothesis
testing H:R = 0, k =1, . . ., 17 was conducted. An estimate of common
regression coefficient, Q = ZCin i=1,...,17 was also obtained and tested
forQ2 = 0. The weights ¢; were optimally calculated by the program MULCOX
(Lin 1990). A negative regression coefficient indicates a decreased hazard
rate for buprenorphine compared with methadone 60 mg, that is, a negative
regression coefficient favors buprenorphine treatment. Also, a hazard ratio

of less than one favors buprenorphine treatment. The hypothesis H:B3, = 0
was not rejected (Wald statistic with 17 degrees of freedom = 20.89, p = .23).
However, the estimate of 2 = Z¢R; was found to be significantly different than
zero (2= -0.294, p = .04), indicating an “average” superiority of buprenorphine
over methadone 60 mg. The 95-percent confidence interval for the common
hazard ratio of .746 was (.566, .983).

The hazard ratios for each week are plotted in figure 7 indicating consistent
superiority of buprenorphine.
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FIGURE 7. Hazard ratios for each week for ARC 090 study

WHAT ARE THE PROBLEMS?
The biggest problems in analyzing these data are:

1. The order of dimension (51-dimensional)
2. The sparseness of data
3. The problem of missing values

None of these problems seems to be handled too well by any of the possibilities
explored in this chapter. DATA-REDUC-1 methods do reduce the data to

one dimension but at a tremendous cost-complete loss of information about
correlational structures between various dimensions and more or less no

ability to handle missing and/or censored observations. In fact, some of the
DATA-REDUC-1 methods make no distinction between missing and censored
observations. ANAL-SEQ-UNIT methods do handle one dimension at a time
but have difficulty combining information unless some sort of miniature data
reduction scheme can be implemented. MULT-FAIL methods do handle
censored data, but heavy censoring causes loss of power, and dimension
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of data must be reduced somewhat by using a miniature data reduction
scheme. However, the possibly informative nature of censoring causes
interpretational difficulties. The sparseness is either ignored or subjectively
handled in DATA-REDUC-1 and ANAL-SEQ-UNIT methods.

None of the methods has any ability to handle missing values without outside
intervention. The solution may be to consider a missing observation as the
third stage as discussed by Weng (this volume). Another possibility suggested
by Dr. Gross of the Medical University of South Carolina is to consider a
quadrinomial model with four categories—positive, negative, missing, and
censored-and then to consider a conditional binomial model in which
conditioning is on the later two categories.

OTHER PRIMARY VARIABLES AND THEIR ANALYSES

One of the other three primary variables of interest in these clinical trials is the
retention rates in the treatment program. These data can easily be analyzed
by any one of the survival analytic techniques. However, the problem of
informative dropouts may have to be handled in some way. Some of the work
in this area is due to Dr. Margaret Wu of the National Heart, Lung, and Blood
Institute (Wu and Bailey 1988, 1989; Wu and Carroll 1988).

One of the self-reported measures of drug abuse is the “craving” scores
obtained periodically during the course of the study. Before entry into the trial
(time 0) and at times i, i = 1, . . ., m, addicts are asked to report how much
craving or need or desire they had during the last few days (e.g., a week or
since the last time they visited the clinic) for the abused drug. Usually they are
asked to “mark” the intensity of their craving or need on a 100-mm-long line
called a craving scale, such as the one shown in figure 8. A score of zero
means no craving, and a score of 100 means the most intense craving ever
experienced. Let S;, be the craving scores reported by an addict on treatment
jattime i i =0, 1, ... m. These data, like the urine data, have missing and
censored observations. There are several ways to analyze these data.
Regression analysis can be performed on either S; (i =0, ..., m) oron S; -
Sy (i =1,... m), and standard tests for B = 0 or -B,, = 0 can be performed.
Alternatively, regression analysis for multiple failures based on proportional
hazards model such as those described by Wei and colleagues (1989) can
also be used.

Another important outcome variable in the drug abuse trials IS the physician’s
(or staff's or patient’s) global impression of an addict’s status with respect to
his or her drug-seeking behavior at different time points during the study as
compared with a previous time point or compared with his or her status at the
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FIGURE 8. Craving scale used in drug abuse research

time of entry into the study. Generally, these physician’s (or staff's or patient’s)
scores are obtained on a 3- to 5-point rating scale. These data can be
analyzed the same way as craving scores data, or in addition, change in the
status can be evaluated by a one-sample or two-sample (Feuer and Kessler
1989) McNemar's chi-square test statistic.
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Summary of Discussion: “Analysis
of Clinical Trials for Treatment of
Opiate Dependence: What Are the
Possibilities?”

Ram B. Jain

During my talk | made a comment about the difficulty of explaining certain
statistical methods to clinicians. Dr. Gorodetzky thought the likelihood of
explaining the details of some of the statistical analysis to clinicians is very
remote. If the statisticians can agree on what is an appropriate method of
analysis, a qualitative discussion or description of the method along with
discussion of results in relation to analysis would be sufficient. For Dr. Fisher,
war was too important to be left to generals. He would not hesitate to speak
on clinical matters, and sometimes the best statistical ideas do come from the
clinicians. Dr. Gorodetzky remarked,

| think the real problem is sometimes we tend not to talk
each other’s languages, and we tend to be way out here
clinically and way out here statistically. If we can come

a little bit more towards the middle with a little bit of
mathematical understanding from a clinician and a little
bit of clinical understanding from the statistician, there
can be a very productive interchange.

Dr. Geller found pictures (e.g., cumulative hazard plots) to be very useful in
helping clinicians understand some complicated statistical concepts. One
should not try to explain every little detail because it is really not important to
clinicians.

Dr. Geller found ranking methods to be a rich tool for analyzing multiple
endpoints data (e.g., proportion positive and proportion missing) also.
However, there may be some price to pay (e.g., loss in power) when
parametric methods are applicable but nonparametric procedures are
used. In addition, magnitude of treatment effects is not easily discernible
when ranking methods are used. There are ways to go back to the original
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unranked data, but they do not always work and may not always be desirable.
Dr. Fisher did not think one should necessarily be tied to description of, for
example, magnitude of treatment effect going along precisely with the specific
test of hypothesis used to compute p values.
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Toward a Dynamic Analysis of
Disease-State Transition Monitored
by Serial Clinical Laboratory Tests*

T.S. Weng
INTRODUCTION

In many clinical trials dealing with the monitoring and/or management of

a chronic disease under medical treatment, it is customary to follow each
patient up to some censoring time. The observations usually consist of
longitudinal counts of patients in cohorts with common disease states

identified by an ad hoc laboratory test repeatedly administered over a fixed
sequence of time points. For example (see Jain’s chapter, “Analysis of Clinical
Trials for Treatment of Opiate Dependence: What Are the Possibilities?,” this
volume), in a randomized clinical trial (ARC 090) to evaluate the efficacy of
buprenorphine for the treatment of opiate addiction, 162 qualified patients were
put through a 17-week maintenance phase in three separate treatment groups:
Group 1 was maintained on 8 mg of buprenorphine administered sublingually
daily, and groups 2 and 3 were maintained on 20 mg and 60 mg, respectively,
of methadone (positive control) administered orally daily. To evaluate the
frequency of opiate abuse, all patients were asked to provide urine samples
three times weekly on Mondays, Wednesdays, and Fridays. These samples
were assayed to detect the presence of opiates (mainly heroin or morphine).

A positive sample was defined as a possible treatment failure. Due to missed
clinic visits or other reasons, 19.8, 17.7, and 17.7 percent, respectively, of urine
samples from the three treatment groups were uncollected. Furthermore, the
percentages of patients lost to followup in these groups were noted to run up
to 60.4, 80.0, and 63.0 percent, respectively. If it were not for the massive,
possibly nonrandom missing observations and loss of patients to followup,

as well as for the seemingly time-dependent nature of the data encountered,
this clinical trial could have been analyzed by the popular method of survival
analysis using either the multivariate versions of Gehan’s log-rank tests (Gehan
1965; Peto and Peto 1972; Wei and Lachin 1984) or the generalized versions

*The views presented here are those of the author. No support or endorsement by the Food and
Drug Administration is intended or should be inferred.
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of Cox’s semiparametric, proportional hazard model for censored failure time
with covariates acting as treatment responses (Prentice et al. 1981; Gail 1981;
Wei et al. 1989; Lin 1990).

The purpose of this chapter is to propose a stochastic compartmental model
as an alternative for modeling the data generated from the aforementioned
study, thereby evaluating the efficacy of buprenorphine against methadone in
the treatment of opiate addiction. The plan of this chapter is as follows: First,
a closed three-compartment system is introduced by which patients are
classified according to their patterns and directions of response to medication
during the course of treatment. This is followed by the introduction of a Markov
process, which provides a natural context for addressing the problem of
statistical dependence among successive observations and characterizes the
dynamics of disease-state transition within the compartmental system. Based
on the assumption that this synthesized stochastic compartmental model is
piecewise stationary in time, an iterative weighted conditional nonlinear least-
squares procedure is then developed to facilitate parameter estimation. The
results are then applied to analyze the ARC 090 study to draw conclusions on
the efficacy of buprenorphine treatment. Finally, a general discussion is given.

COMPARTMENTAL MODEL

The patient pool in the ARC 090 study can be partitioned into three cohorts
or compartments (see figure 1 below) that are each numbered 1, 2, or 3
depending on whether they encompass patients who have tested negative (-)
for opiates, positive (+) for opiates, or have missed the test with the potential
for being lost to followup (M/L). In figure 1, the compartments are represented
as boxes with arrows between boxes indicating the direction of disease-state
transitions, Let N be the total number of patients and N,(t) be the number of
patients in compartment i (i = 1,2,3) at time t > 0 and let lji(t) denote the
transition rate from compartment i to compartment j (i,j = 1,2,3) at time t > 0.
Patients will then be included in different compartments depending on the
results of their urinary tests or on whether they comply with the urinary test
schedule. This compartmental system, within which all compartments (or
states) communicate with one another, is regarded as closed in the sense
that ZN;(t) = N at any time t > 0. The individual patients in the system are
assumed to act independently without being influenced by others.

STOCHASTIC PROCESS
The dynamics of changes in disease states within this system may be described

by a Markov process {X(t): 0 < t <=}} defined on the state space S = {1,
negative; 2, positive; 3, missing or lost to followup} with the associated transition
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FIGURE 1. Schematic diagram of a closed three-compartment model
with ll.,(t) representing rates of transition between pairs of
compartments at time t > 0 (ij = 1,2,3)

probability matrix (or transition matrix, for brevity) P(tty) = [Pj(tt)], 0=t <t
and the transition rate matrix (or rate matrix, for brevity) K(t) =[k‘i(t)], i,eS,
where

Pilt, to = Pr {X(t) = jIX(to) = i}, (3.1)
0 < 4,(1) = limy, Pyt + 8t0/8t, j » i, and 4, = -B.A0. (32

For the time being, let k(t) = k for all i,j so that (X(t)} becomes a stationary
process with P(tt,) belng a functlon of t - t,, only. Without loss of generality,
therefore, it may be assumed that t; = 0, so one can simply write P (t) = P(t,0)
Under these assumptions, the transition matrix P(t) is uniquely given by the
Kolmogorov forward differential equation

(d/d)P(t) = KP(t) (3.3)
with the initial condition P(0) = I, a 3x3 identity matrix. In the above equation,
the rate matrix K is singular, as can be seen by the expressions in (3.2). Thus,

the eigenvalues of K are given by 0,-a,and - (0 < a, B < 1,00 # R where

ap = (1A, + A, + ) = (VV[(A, + 22+ 2)* - 4y, + v2 + ¥, (34)
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with A, =”'lu (i = 1-2'3)' Y1 = Aghg - Apgrap Yo = ARy - A gy, and Yy = A, - Aighar
The explicit forms of the elements of P(t) = [P;(t)] are then given by (Chiang

1980, pp. 416-426):

Pl = v/(ap) + T78B2) oxpiay) + YrBad) on gy,

P, (@) = 72«“3) +

P() = v./(ap) +

a(a-p) B(p-a)

_Y7%R2 explat) + T PAa gp( gy,

a(a-B) B(p-a)

’(1'“112 exp(_at) + 71-DA'12 exp(_pt)'

a(a-B) p(«-p)

(3.5)

Pot) = va/(ap) + Y22 B oup(an) + 1B AD gy,

Pia® = v/(ap) +

Palt) = vo/(aB) +

a(a-p) B(p-a)

Y1 &iig exp(-at) + T1-Bi; exp(-pt),

a(a-p) B(B-a)

Yo a 123 exp(-at) + YZ'pA'?G exp(-pt), and

a(a-p) B(B-a)

Pu(t) =1 - Pyt - Pu), i =123
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It is noted that

1,i=]
IimuoPll (t) = (3.6)
0, otherwise,

and that for all i,
lim, P, () =y/(aB) ==, (j = 1,2,3), say. (3.7)
The s, known as the (asymptotic) state probabilities, are independent of the

initial state i. It is further noted that the elements of the rate matrix K contain
structural information about the process, for example,

A = expected length of time (or mean residence time) for

a patient in state i to remain in that state. (3.8)

Also useful for checking the validity of parameter estimates (see section titled
“Analysis of the ARC 090 Study and Conclusion”) are the relations

A+A,+A =a+f (3.9)
and

Y +Y,+Y,=0f, (3.10)

which follow immediately from expression 3.4.
WEIGHTED CONDITIONAL NONLINEAR LEAST-SQUARES ESTIMATION
Suppose that the Markov process {X(t)} is piecewise stationary (Faddy 1976)
so that the transition rates K(t) = [?\.ii(t)] may take on different sets of constant
values for disjoint segments (time Intervals) of {X(t)}. These stationary

segments are in fact chosen to approximate the true process, which may be
time dependent. The chosen segments should each contain a sufficient
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number of observations to make the parameters (namely, the transition rates)
statistically estimable. To fix the idea, let

Kt) =K, fore,, <t<t,h=12..,and, =0 (4.1)

so that for each time interval T, , <t <T,, a unique solution P(t -T,.,) to equation
3.3 can be obtained in the same fashion that led to the explicit form given by
equation 3.5. Suppose that within each such interval, observations are made
at times tz T, , <t <..<t, =1, Let there be N""x ) patients in state i

(i = 1,2,3) at the end of the preceding segment, and for the sake of notational
convenience, this number will be used interchangeably with Ni(h)(to). For now,
let h be suppressed so that it will not be used to index the related expressions
in the subsequent discussion. Furthermore, let u, = t, - .4 k = 1,...,m, and
suppose that the data consist of the number X;(u,) of patients who occupy state
i at time t,_, and state j at time t,, i = 1,2,3, j = 1,2,3, k = 1,...m, where, by abuse
of notation, the total number m of observations in a particular segment may not
be the same as in the other. Then, given Nj(t.,) for i = 1,2,3, the component
variables in each of the vectors

Xj(uk) = [xqi(u)Xi(uy)xsi(uy)l (4.2)

win

where means transposition, will follow a trinomial distribution with parameters
Ni(tc1), Pi(ug), Pauy) and Psi(uy) = 1 - Pyuy) - Py(uy). Let us also write

P(u) = [Py(u),Pa(u).Py(u)]’ (4.3)
and
Yiu) = Xy, Xa(u), X (U1 N(E ) (4.4)

For simplicity, let us drop the argument u, momentarily. It IS thus easily seen
that, for each i (i = 1,2,3),

E(Y) = P,
and - -

P1i(1 'P1i)

1 Symm

var(Y) = — PPy, Pa(1-P,)

N;

'Paapﬁ ’Paipzl Pa&“ 'Paa)
= @, say.
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At this point, it should be noted that the goal for this section is to set up a
statistical model to estimate the parameters in each of the stationary pieces (or
segments) of the Markov process {X(t)} represented by the parameter vector

[y hgyhiphsg g hog, ot B, (4.5)

21°7 731
which will sometimes be written in an alternative expression as
6=100,8,0,06,6,6,0,06,] (4.5a)
Because in the above equation the variance-covariance matrix ®, of Y; is
singular with rank equal to 2, we may proceed to estimate 8 by utilizing just the
2x2 principal minor'¥, of @, along with the 2-vectors P;* and Y;* obtained by
deleting the third elements of (4.3) and (4.4), respectively (i = 1,2,3). Next, let
us string together these two sets of 2-vectors separately to form the following 6-
vectors:
Q - [P1*l, Pz*l’ P3*I]l
and
a Z = [Y1*l’ Yz*l’ Y3*l]l.
It then becomes obvious that
E(Z)=Q
and
Var(Z) = Diag[¥,, ¥,, ¥,] =¥, say.
By replacing the argument u,, we can now write a statistical model as follows:
Z(u,) = Q(uk) + e(uk), k = 1,...m, (4.6)
where the elements of Q(u,) are nonlinear functions of8, E{e(uy)} = 0, and

Var{e(u,)} = ¥(uy) for all k. It remains to find the least-squares estimates for the
parameters © by fitting the data from the ARC 090 study, prearranged in the
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form (4.4), to the nonlinear model (4.6). Before taking this step, let us make a
linear transformation of model (4.6) to remove the statistical dependence in its
error structure. Note that each of the diagonal blocks‘¥.(uy) in ¥{(uy) has the
following expression:

Pu(1 'Pu) 'PﬁPZi

¥ = Li=123,
'Pzipn P25(1'P2|)

where the argument u, is again suppressed. Because the variance-covariance
matrix ¥((u,) is positive definite, there exists a nonsingular lower triangular
matrix T(uy) such that

Pu) = TUYT (u).
Specifically, T(uyx) = Diag[T(uy), To(uy), Ts(uk)] with

VP, (1-P,)] 0
T = i =123
'Pzifpnlf(" 'Pll f(Pztpsi)N-U 'Pﬂ)

the argument u, having been omitted. By virtue of the matrix T(u,), we can then
deal with the new transformed model

T (u)Z(u) = T'(u)Qu) + e(uy), k = 1,..m, 4.7)
where g(u,) = T (uy)e(uy) is the new error term with Ee(u,) = 0 and Vare(u)) = |,
a 6x6 identity matrix. Thus, we see that the new model (4.7) has achieved an

independent error structure. Based on this model, we can now find the least-
squares estimate for 8 by minimizing the object function

S(0)

2. (uje(u)
(4.8)

24[Z(u)-QuI]T (U [Z(u)-Q(uy)].
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This may be achieved by an iterative SAS function minimization program (SAS
Institute, Inc. 1988, chapter 23) using the derivative-free DUD option (Ralston
and Jennrich 1978). The starting values for® can be derived from the
maximum likelihood estimates (MLEs) for the transition probabilities P;
associated with a discrete-time Markov chain {X(k): k = 1,2,...} resulting from
the original continuous-time Markov process {X(t): O<t<e!} when periodic
observations are made on the latter. Specifically, let Xj(k) be the number of
transitions i—j during the interval u, = t- t4, kK = 1,2,...m, where m is the total
number of observations made within a particular stationary segment of {X(t)}.
Then, given the initial state i (i=1,2,3), the joint trinomial distribution of X;(k),
aggregated over Kk, will produce the MLEs of P in the form

Py = XK/ N(k-1)] (4.9)

where Nik - 1) = Ziji(k)is the number of patients in state i at time t, k =
1,2,...m. If we denote by u the length of the interval between successive

observation times, then it follows from the first equation of (3.2) that
A = Pjlu, jej (4.10)

Because, according to the study design, observations were taken every other
day except for the weekend, we can roughly set u = 2 and use the quotient
K"ji = Py/2 as the initial estimate for A, j#i (ij = 1,2,3). These values are in turn
substituted in equation (3.4) to obtain the initial estimates for a and B.

ANALYSIS OF THE ARC 090 STUDY AND CONCLUSION

Some details on this clinical trial have been given in the introduction. For the
purpose of saving space, only a subset of the observed data is presented here
(table 1). The first column gives the treatment indicator TRT, which has value 1
if the treatment was buprenorphine, 2 if it was methadone 20 mg, and 3 if it was
methadone 60 mg. The second and third columns give, respectively, the serial
observation times t (three times per week taken on Monday, Wednesday, and
Friday) and the intervals u in days between successive observation times.
These are followed by three columns of state totals N; (i = 1,2,3) representing
the total numbers of patients in state i at various observation times. Because
the state total N5 is of composite nature, it is further split into two components,
M and L, which occupy the next two columns, with M and L representing,
respectively, the number of patients who missed the urinary test and the
number of patients who were lost to followup. The last nine columns are
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Partial listing of observed data from ARC 090 study

TABLE 1.

Transition Count

N3

Stale Total

X214 X31 X12 X22 X32 X13 X23 X33

X4

M, 1)

N, Ns

Ny

TRT

24
14
1
14
10
9
10
7
7
8
7

21

24
20
18
20
23
22

10
6
8
1
3
2
1
6
7
3
6

17

36
30
18
19
18
13
16
16
13
12
12
10

27
23
22
26
26
23
28
25
26

21

1"

14
104

20
224

12

18 50 127 36 17 29
.24 A7 19

.07

31

189 1563

294

SUM
MLE

.69

.60

.82
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25

.20

17
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39

45

18
15

32
27

68
.58

250 127

118

16

66

18

(5.0)

43

28

10

(6. 0)

32
23

16
22

19
16

(7.2)
(10, 4)

15

14

23
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(continued)

TABLE 1.

Transition Count

N

State Total

X13 X23 X33

X32

X21 X31 X12

(M, L) X14

N, N,

N

TRT
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27 23 33 30 15 17 18 42
42 .39 19 23

A3

155

78 77

205

55

22

.76

MLE

(1, 43)
(1, 43)
(1, 43)
(0, 44)

42

43

44
45



(continued)

TABLE 1.

Transition Count

N

State Total

X21 X34 X12 X2z X32 X13 X3 X33

(M, L) X114

N, Ny

Ny

TAT

2
1
1
2
1

46
47
46
49
50

51

47

27
Al

59

38

SUM
MLE

.64

18

18

.05

.79

.05

.24

10
10

42

43

13

44
45

12

46

0
10

47
48

148

49

50
51

64
82

10

A3

10
A4

43

17
.24

15
.20

51

70 78

7

SUM

.05

61

14

.66

MLE

maximum likelihood estimate

lost; TRT = treatment; SUM = sum; MLE =

= missing; L =

KEY: M



allocated to the transition counts X; (i,j = 1,2,3) representing the number of
patients who were observed to undergo the transition i~{j during an interval u.
At the bottom of each segment the sums of N; and X; are given, followed by the
MLEs for transition probabilities calculated from equation (4.9).

To estimate the parameters in (4.5), the observed serial data were partitioned
into disjoint stationary segments (3 to 6 weeks in length), which were empirically
identified and fitted to the model (3.5). These segments were selected by trial
and error to ensure the following: (1) a convergence for the weighted
conditional nonlinear least-squares estimation procedure described in the last
section-the convergence criterion used was “§8) < 107 (2) a reasonable
closeness between the estimate of % (i.e., XA, j#i)and that ofe + f—

see equation (3.9); and (3) a good fit of the data to the model. The data

from treatments 1, 2, and 3 comprised four, five, and four such segments,
respectively. Of these, the first and the last segments from each treatment are
shown in table 1. It should be noted that, barring the first segment for each
treatment, all subsequent segments contained data from only those patients
who had stayed in the study long enough to enter into these segments,
although some of the segment members might still fail to stay for the whole
segment-for example, taking the last segment of treatment 1, the 29
(cumulative) losses at the end of the preceding segment were not counted,
whereas the two losses (= 31 - 29) that occurred during this last segment
remained nominally counted. Moreover, data from the week between the fourth
and the fifth segments for treatment 2 as well as those from the week between
the second and the third segments for treatment 3 were omitted because
inclusion of them in either of the neighboring segments would have resulted in
poor fit of the data to the model. Table 2 lists by treatment and segment the
least-squares estimates of the transition rates [Xﬁ] and the transition
probabilities [Pji(u)], where u = 2 days if transition counts were made every other
day during weekdays and u = 3 days if counts were made over weekends.

As can be seen from the last block of columns in table 2, the observed data,
after having been partitioned into empirically identified stationary segments,
appear to accord well with the model. With estimates for the rate matrix and the
transition matrix in place, some useful information may now be extracted from
these estimates. Here the transition rates A;, j# i, measure on a daily basis the
propensity for a patient to move between pairs of disease states, granting that
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TABLE 2. Least-squares estimates of transition rates and transition probabilities for empirically identified stationary
segments, listed by treatment

Rate Matrix Transition Matrices Goodness of Fit

Seg Wks K=[) P =[P 2)] P =[P,3)] DF X2 p

Treatment = Buprenorphine

1 4 -.087 102 .089 857 .160 .098 .802 216 41 64 79.32 .0939
.055 -.184 .054 .086 718 130 17 .624 A7
.032 .082 -.143 .057 122 772 .081 160 689

=283 P~.168 a+p= 451 Tk =-3Ih = 413

2 3 -127 135 .049 .799 195 095 .728 .254 139 46 50.10 3140
.080 -.233 114 119 .663 160 157 .562 204
.047 .098 -.163 .082 REX 745 115 .183 657

a=.341 B=.209 a+f=.550 T =-IA = .523

3 5 -114 124 .044 .809 190 .086 .738 .252 125 82 82.22 4724
.070 -219 .07 .108 .862 110 144 .551 146
044 .095 -116 .082 148 804 118 198 729

a=.218 B=.209 a+f = 427 I =-3A =.449

4 5 -.122 212 A 816 .294 191 756 376 .264 82 71.39 .7923
.066 -.308 117 .096 877 .148 125 461 .182
.056 .096 -.228 .088 128 661 119 183 .554

o=.392 B=.292 e =684 I\ =-TA =.658
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TABLE 2. (continued)
Rate Matrix
Seg Wks K=[)
1 3 -.214 .088 .067
139 -.164 .096
075 076 -.163

@=.277 B=.239 a+p=.516 Tk =-Ih = .541

2 4 -218 .080 .020
129 - 143 079
.08g .063 -.099

@=.324 (=.194 04 =.515 TA =-3A, = 450

3 3 -.188 .092 027
152 -.165 .087
.035 .073 -114

@=.301 =183 a+p = 484 T = -D) = 467

4 3 -.209 110 .031
164 -.202 123
045 082 - 154

0 =.353 B=.231 a+p = .584 T =-XA, = .565

5 3 -.145 .077 .091
119 -.102 .100
.026 .025 -.191

=222 Bx 207 o+P = 429 Th =-Th = 438

Transition Matrices Goaodnass of Fit

P=[P] P=[P(3)] DF X2 p

Treatment = Methadone 20 mg
671 131 106 565 AYA 143 46 49.99 3179
.207 .746 .156 270 663 21
122 123 .738 165 .166 646
675 BRR} .037 571 41 .054 64 68.41 .3300
.186 .782 125 242 .708 170
139 107 838 .187 1580 776

Treatment = Buprenorphine

VAR 133 052 615 172 076 46 38.09 7901
.219 751 138 283 871 .187
.070 116 .810 102 1587 737
.688 151 062 .589 192 .090 46 61.55 0623
228 712 181 290 .628 237
.084 137 .758 121 .180 673
.765 .125 144 681 170 .193 46 37.57 8074
192 .833 .168 .260 773 231
.043 .042 .688 .058 057 576
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TABLE 2. (continued)

Rate Matrix Transition Matrices Goodness of Fit
Seg Wks LEL| P-[P(2)] P = [P,(3)) DF x? p
Treatment = Methadone 60 mg
1 3 -.169 104 052 743 150 .089 657 196 125 46 48.36 3778
109 -177 108 161 739 160 212 .656 21
.060 .073 -.160 .096 A .751 AN .148 .664
=283 B=.168 0+f = 451 A =-TA = 413
2 4 =161 109 .043 778 167 079 700 218 113 64 53.49 8227
.094 -.184 .087 AN 724 AN 174 635 174
.057 .075 -130 .091 109 .790 126 147 713
a=.281 B=.232 a+p =.513 A =-Ti = 495
3 6 -101 118 .050 .763 162 .093 .681 212 A3 100 79.63 9337
o7 -179 097 144 722 .160 191 633 210
.030 .064 -.147 .093 118 747 128 155 .659
o= 274 B=.189 o+p = 463 TA =-TX, = 427
4 3 -.169 122 .026 735 73 .051 644 221 .076 46 41.81 .6483
.098 -.194 .064 143 706 101 .187 610 135
072 .072 -.090 A21 .848 .169 169 788

122

a=.291 §=.176 a+p = 467 Th =-Ih = 452



transition does take place, and these rates are in turn related to Pj(u), u = 2 or
3, by equations (3.2) and (4.10). Now let us proceed with comparison of
treatment effects by looking into the difference A, - A,, over successive
segments, as given below:

Segments: 1 2 3 4 5
Buprenorphine: 0.047 0.055 0.054 0.156
Methadone 20 mg: -0.051 -0.049 -0.060 -0.054 -0.042
Methadone 60 mg: -0.005 0.015 0.044 0.024

From these comparisons it is clear that, in contrast to both buprenorphine and
methadone 60 mg, methadone 20 mg tended to induce a greater rate of
transition from state 1 to state 2 than from state 2 to state 1 (which refers to an
improvement in the clinical sense); however, buprenorphine is superior even to
methadone 60 mg because, from the first segment on, it reversed the direction
of transition in its favor, with its strength culminating in an impulsive surge at the
last segment. This tendency appeared to be unperturbed by the continual

loss of patients during the course of the study because (1) between-group
differences were seen to be highly consistent from the first segment (which had
kept all patients formally under observation) till the last segment (which left out
all patients who had been lost to followup in the preceding segments), and (2)
both the buprenorphine group and the methadone 60 mg group had about the
same patient-loss rate (63.0 percent for the latter vs. 60.4 percent for the former
according to Jain, “Analysis of Clinical Trials,” this volume) during the course of
the study. However, the substantially increased loss rate (80.0 percent) seen in
the methadone 20 mg group could mostly be ascribed to its poor performance.

The above observation is also applicable to Pj(u), which refers to the likelihood
of the transition i—j (j # i) during an interval u. This likelihood tended to be
greater with u = 3 days than with u = 2 days, irrespective of the direction of
transition. That is, more transitions are likely to occur during weekends than
during weekdays.

Put in another perspective, the effect of treatment may also be reflected by the
duration of improvement defined as the mean length of time a patient spends in
state 1 during each segment-see expression (3.8) and table 3. It was found
out that, once the patient had been in state 1 (i.e., negative for opiate), he or
she stayed there much longer when on buprenorphine (7.9 to 11.5 days) than
when on methadone 20 mg (4.7 to 6.9 days), with his or her duration of
improvement ranked in between when on methadone 60.mg (5.9 to 9.9 days).
The same was also true when the effect of treatment was evaluated in terms of
the asymptotic state probabilities for the successive segments-see equation
(3.7) and table 3. These state probabilities may be interpreted as the expected
state-specific proportions of patients in the population, assuming that each

153



TABLE 3. Mean residence time and asymptotic state probabilities

Mean Residence Time Asymptotic State Probability

Seg  Wks St1 st2  st3 , n, r,

Treatment = Buprenorphine

1 4 1.5 54 7.0 474 .266 .260
2 3 7.9 4.3 6.1 419 .288 293
3 5 8.8 4.6 8.6 403 244 .353
4 5 8.2 3.3 4.4 .566 .208 .226
Treatment = Methadone 20 mg
1 3 4.7 6.1 6.2 .268 414 .318
2 4 4.6 7.0 10.2 183 .397 420
3 3 5.3 6.0 8.8 .249 409 .342
4 3 4.8 5.0 6.5 .264 412 .324
5 3 6.9 9.8 5.2 .353 527 119
Treatment = Methadone 60 mg
1 3 5.9 5.7 6.3 .325 .381 294
2 4 6.6 5.4 6.3 .354 .352 293
3 6 9.9 5.6 6.8 465 .308 .227
4 3 5.9 5.2 1.2 271 .285 444

segment continues to maintain its own stochastic characteristics beyond the
segmental cutoff point.

Based on the results of this section, we may draw the following conclusion:
Relative to methadone, buprenorphine, as demonstrated in a randomized
comparative clinical trial, is found to be a substantially effective drug indicated
for the treatment of opiate addiction with steadfast action-patients on
buprenorphine treatment tend to achieve an opiate-negative state faster, and
on reaching that state, they stay there longer.

DISCUSSION

The stochastic compartmental model proposed in this chapter provides a
probabilistic description of disease-state transitions for opiate-addicted patients
under medical treatment whose disease states were monitored by serially
administered urinary tests. The result of a test at each visit was retrospectively
assigned to one of three compartments numbered 1, 2, and 3 according to
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whether it was (1) negative for opiate, (2) positive for opiate, or (3) test was
missing or patient was lost to followup. The dynamics of changes in the
disease state were then analyzed by a regular (all transition probabilities being
nonzero) three-state continuous-time Markov process with constant transition
rates. The author is aware of the fact that lumping patients who missed the
urinary test and those who were lost to followup in a composite compartment,
numbered 3 in the above, would result in underestimated rates of transition out
of that compartment. Therefore, these rates were deliberately slighted in the
reporting of results because they were not as important as the remaining ones,
which still contain unabridged information. In theory, it is known that an
arbitrary rearrangement of the state space associated with a Markov chain may
render the new chain non-Markovian (Kingman 1972; Kemeny and Snell 1960).
In applications, however, all that is required is that the model employed be
sufficiently near to reality. Therefore, rearrangements are often made on states
regarded as less germane to the question of interest (Bartholomew 1982; Fix
and Neyman 1951). The three criteria, (1) through (3), used in the preceding
section for identification of stationary segments as well as the partial truncation
of lost patients from successive segments are in fact the embodiment of
practical efforts made to ensure that the theoretically coarser model employed
in the analysis is sufficiently correct. Naturally, we could have separated the
two states M and L in compartment 3 to model the data via an absorbing
Markov chain or, perhaps, via a semi-Markov process. However, this would not
only introduce more parameters to be estimated but also shift the focus of the
problem toward examining the clinically less important parameter, namely, the
mean absorption time. The author is nevertheless still intent to pursue the
problem along these lines as a supplementary analysis of the ARC 090 study.

Originally, the ARC 090 data set did contain values of several prognostic
variables such as the age and sex of the patient. However, the possible effects
of these variables were not taken into consideration in the model employed
above. Based on the fact that the ARC 090 trial was a genuine prospective
study having been executed under strict adherence to the principle of
experimental design and randomization, it is deemed unlikely that the treatment
comparisons had been severely confounded by these covariates.

It is also perhaps proper and necessary to add that the SAS program for
function minimization utilized to estimate the rates of disease-state transition
was capable of providing neither a valid asymptotic standard error for each of
the estimates nor an asymptotic correlation matrix for them. This limitation has
precluded the present approach to the analysis of the ARC 090 study from
going into the realms of interval inferences and/or hypothesis testings. It is
hoped that this deficiency will be resolved subsequently.

155



REFERENCES

Bartholomew, D.J. Stochastic Models for Social Processes. New York: Wiley,
1982.

Chiang, C.L. An Introduction to Stochastic Processes and Their Applications.
New York: Krieger, 1980.

Faddy, M.J. A note on the general time-dependent stochastic compartmental
model. Biometrics 32:443-448, 1976.

Fix, E., and Neyman, J. A simple stochastic model of recovery, relapse, death,
and loss of patients. Hum Biol 23:205-241, 1951.

Gail, M.H. Evaluating serial cancer marker studies in patients at risk of recurrent
disease. Biometrics 37:67-78, 1981.

Gehan, E.A. A generalized two-sample Wilcoxon test for comparing arbitrarily
singly-censored samples. Biometrika 52:203-223, 1965.

Kemeny, J.G., and Snell, J.L. Finite Markov Chains. Princeton, NJ: Van
Nostrand, 1960.

Kingman, J.F.G. Regenerative Phenomena. New York: Wiley, 1972.

Lin, D.Y. MULCOX: A computer program for the Cox regression analysis of
multiple time variables. Comput Methods Programs Biomed 32:125-135,
1990.

Pete, R., and Peto, J. Asymptotically efficient rank invariant test procedure (with
discussion). J Roy Stat Society, Ser. A 135:185-206, 1972.

Prentice, R.L.; Williams, B.J.; and Peterson, A.V. On the regression analysis of
multivariate failure time data. Biometrika 68:373-379, 1981.

Ralston, M.L., and Jennrich, R.I. DUD, a derivative-free algorithm for nonlinear
least squares. Technometrics 20:7-14, 1978.

SAS Institute, Inc. SAS/STAT User’s Guide, Release 6.03 Edition. Cary, NC:
SAS Institute, Inc., 1988.

Wei, L.J., and Lachin, J.M. Two-sample asymptotically distribution-free tests for
incomplete multivariate observations. J Am Stat Assoc 79:653-661, 1984.

Wei, L.J.; Lin, D.Y.; and Weissfeld, L. Regression analysis of multivariate
incomplete failure time data by modeling marginal distributions. J Am Stat
Assoc 84:1065-1073, 1989.

ACKNOWLEDGMENT

Dr. Harry F. Bushar and Professor Joel B. Greenhouse made helpful comments
on an earlier draft of this chapter.

AUTHOR
T.S. Weng, Ph.D.

Mathematical Statistician

156



Division of Biometric Sciences, HFZ-162
Office of Science and Technology

Center for Devices and Radiological Health
Food and Drug Administration

Suite 405

1801 Rockville Pike

Rockville, MD 20852

157



Summary of Discussion: “Toward a
Dynamic Analysis of Disease-State
Transition Monitored by Serial Clinical
Laboratory Tests” by Weng*

Alan J. Gross

In his chapter, Dr. Weng considers a three-compartment model applicable
to data generated from a randomized clinical trial designed to evaluate the
efficacy of buprenorphine for the treatment of opiate addiction. The model
allows for missing observations due to schedule noncompliance or lost-to-
followup patients.

Although the transition probabilities are expected to be time dependent, the
time axis is subdivided into intervals over which the transition rates are
assumed to be constant.

As indicated during the discussion, several generalizations of this model are
possible:

* A four-compartment model can be considered whereby those patients
who are lost to followup or censored are in a compartment separate from
the noncompliant patients. Since such patients always remain in this
compartment once they have entered it, it is an absorbing compartment
or state.

* A mover-stayer model was also suggested whereby a fraction of the patients
would always remain in a state whenever they were in it. This would allow
a fraction of addicts to be considered “cured” and another fraction to be
considered “not cured” in spite of the intervention.

*The chapter by Dr. Weng was reviewed by Dr. Greenhouse prior to the technical
review. Dr. Gross reviewed the revised chapter submitted by Dr. Weng and wrote
this summary of the discussion that took place at the meeting.
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* The same transition rates were not assumed in the distinct treatment
groups. In fact, methodology may be developed to test the hypothesis
that the transition rates are equal across the treatment groups, leading
to development of statistical inference techniques for this type of model.

The difficulties that need to be addressed in using this model include (1)
determining the points on the time axis where the parameters change and (2)
how the parameters are to be estimated given the data.

Overall, the model is an excellent beginning for the analysis of this type of
clinical trial data and with modification can be very useful.

AUTHOR

Alan J. Gross, Ph.D.

Professor

Department of Biostatistics, Epidemiology, and Systems Science
Medical University of South Carolina

171 Ashley Avenue

Charleston, SC 29425-2503
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A Markov Model for NIDA Data on
Treatment of Opiate Dependence*
Mei-Ling Ting Lee

INTRODUCTION

This chapter models the data set collected from the first 17 weeks of the
National Institute on Drug Abuse ARC 090 trial by two-state Markov chains.

For complete data, empirical Bayes procedures are considered. Assuming that
the one-step transition probabilities have independent Beta priors, the posterior
transition probabilities are derived. As a consequence, the expected number of
positive results in a sequence of m + 1 urine samples can be estimated. For
cases where data sets contain missing values, we consider the adjusted
likelihood function obtained by taking into account the i-step transition
probabilities contributed by (kK — 1) consecutive missing values and compute
the maximum likelihood estimates (MLEs) for the one-step transition matrix by
the Newton-Raphson method.

COMPLETE DATA
A Two-State Markov Chain

Assume that the sequence of a patient’'s urine sample test results, denoted by
X=X, ..., X,,), forms a sequence of Markov-dependent Bernoulli trials,
where X; takes on values of 0 or 1, representing negative or positive results,
respectively.

Assume that the process is time homogeneous; that is, transition probabilities
pij = P(Xipr=Jj | Xy=1d), 4,5 {01},

are independent of . Also, assume that 0 < p;j< 1 for alli,j € {0,1}. Then,
by the Markov property, the likelihood function based on the sample sequence

*Computer programs used to do the calculations in this chapter are available upon request.
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of test results of a patient is given by

f(zy, - 2me1 | por, pro)
= P(’Yl = I])P(X’? = I3 I‘YI = -rl) 'P(I\’m+1 = Im41 | Xm = xm) (1)
= P(X1 = 21)p5a°poy P Pit

= P(X; =21)(1 = por)"ppp 14" (1 — pro)™!

where n; = { the number of times X, ,a = i is followed by X, = j,
I=2,...,m+1}is the one-step transition count.

Let pgk') = P(X; =0)and p',k) = P(X} = 1) denote the state probabilities of
the " test result of a patient. Let po=Ilm, _candp, = lim p(lk'J
denote the stationary probabilities of the urine sample testing process of this
patient when the process has achieved statistical equilibrium after a large

number of tests have been taken. Then we have

(po,p1) = (P1o/(Pro + Po1), Por/(pro + por1))- 2)

If tests are given systematically with an equal number of days between tests,
then the recurrence time can be estimated as follows. Suppose a patient’s urine
sample result is positive at the first trial. Let ¢+ denote the recurrence time, that
is, the time of his or her next positive result. That is, X; = 1,
X,=...=X,, =0, and X, = 1. Let T be the random variable of the
recurrence time, then

E(T) = (po1 + p1o)/por- (3)
Moreover, let Y41 = E:’SI X; denote the number of positive results in a
sequence of m + 1 urine samples from a patient. Then Y,,,, is asymptotically
normal with mean

E(Yimg1) ~ (m+ Vpor/(poi + pio)
and variance
Var(Ying1) ~ (1 + Dpoipio(2 = por — pro)/(por + p10)>. 4
See Cox and Miller (1965) for a review of properties of Markov chains.
An Empirical Bayes Approach

Bayes decision methods for finite-state Markov chains with complete
observations have been discussed by Martin (1967) and Basawa and Prakasa
Rao (1980). We consider in this section empirical Bayes procedures.
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If results for sequences of m + 1 urine samples are collected from each of the r
patients, chances are that transition probabilities p,, and p,, will vary from
patient to patient. Let U and 7 denote random variables that correspond to the
respective transition probabilities p,, and p,,, which vary across patients. For
simplicity, equation (1) can be rewritten as the following form:

f(l'], N -,-L'm+1 | u,U) — P(/\’l — 131)(1 - u)nou nallnw(l ,U)ﬂn (1[1)

Assume that U and V are independent with prior distributions Beta(a,, 51) and
Beta(wq, 32 ), respectively. Let g;, g2 denote their corresponding density
functions. Then we haveg(u,v | ay, 31, aq, F2) = g1(u | a1, B1)ga(v | a2, F2)
where

F(al +/Bl) -1 _ 1 _ _
3,) = ay 1= G-l oy =171 _ ,\B1—1
gi1(u]ar, B) —_I‘(m)l‘(ﬂl)u (1-u) 3(0‘1.231)“ (1 —u)
. _ Plaz+82) 4,04 Br=1 _ 1 az-1 a1
dvlon®) = w0 T B Y
Hence,
fley, o xme1 | ar, B1, a0, B2)

/ / fler o zmer | u,v)g(u, v | ay, 81, as, fa)dudy (5)
= C B(ay + noy, f1 + ngo) Blag + nyg, Fa + n11)

where i
P(,\l = Il)

Cy = .
' Blay, $1)Blas, )

Therefore, the posterior joint density of U and V, given a sample

X =(z1,...,Tm41), is of the form
g(",lf'l-’P1w‘-,1‘m+1,(11,%31‘0125132)
_ f(l'], ' '71""1‘0‘1 l U,v)g(u,v l alvﬁlla'lali:!)

fler, . . Tmg1 | ar, B1, oo, B2)

- c?udﬁ-ﬂu—l(l _ lt)ﬁx+ﬂnu—1v02+"m—1(] _ ,U);B*H-ﬂn—l

where
1

Cq = - 4
: Bl{ay +noy, B1 + noo)Blas +nyy, 2+ nyy)
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This implies that the posteriors of U and ¥V are conditionally independent, given

a sample sequence of observations (&, ...,Zm+1). Moreover, the posterior
distribution of U is Beta [011 + noy, 51 + nog), and the posterior distribution of 7
is Beta(az + n10, B2 + n11), given X =(zy,...,Zms1). Hence, the posterior
means and variances of U and V are:
a1+ n
ay + B1 + noy + noo
as+n
az + Bo+nyg+nn (7a)

(a1 + ng1)(B1 + noo)
(ay + B1 + no1 + ngo)?(a1 + B1 + noy + noo + 1)

Var(U | X) =

(@2 + n10)(B2 + n11)

Var(V | X) = .
ar(V 1 X) (a2 + B2+ nig+n11)2(az+ P + o+ 111+ 1)

(7b)

Employing an empirical Bayes approach, we want to replace in equation (7) the
unknown parameters «a; and g; by their corresponding MLE estimators &; and
Bi,which may be obtained numerically from a likehood function for » patients
based on equation (5).

INCOMPLETE DATA
Maximum Likelihood Estimates

Maximum likelihood methods are commonly used to analyze Markov-chain
data. The asymptotic properties of maximum likelihood estimators and
likelihood ratio tests for complete data have been studied by Anderson and
Goodman (1957) and Billingsley (1961), among others. Aalen and Johansen
(1978) considered nonhomogeneous Markov chains with censored
observations. Keiding and Gill (1990) discussed random truncation models for
Markov processes. Muenz and Rubinstein (1985) discussed cases where
missing values are present. This section investigates the case where there are
missing values in the binary sequence of urine sample results.

Because a transition through (k¢ — 1) consecutive missing values contributes a
k-step transition probability to the observed likelihood, we can calculate the
k-step transition probabilities in terms of elements of the one-step transition
probabilities. Therefore, it is natural to adjust the likelihood function as follows.
Let
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denote the two-state transition matrix considered in section 2. Then

Pt = (pff)) denotes the matrix of k-step transition probabilities. Let n,(-;), for

i, j =0, 1, denote the number of transitions from state i to state j with (k — 1)
consecutive missing values in between. Then, conditional on the first test result
X1 = z, the log-likelihood function for an individual can be written as

m 1 1
log f(z1,...,Tm+1 | Po1,P10) = C+ZZZ"(H10$(P;H) (8)

k=14=0 ;=0
where
pS'S) = (po1 + p10)~ P10 + Por(1 = por — p1o)*]
pS’i) = (po1 + p10) " [po1 — Po1(1 = por = p10)*)
P(xo) = (po1 + P10) ' [p10 — Pro(1 = po1 — pr0)*]
P(ﬁ) = (po1 + p10) "} [Po1 + P1o(1 — por — p10)*]. 9)

To simplify notation, let u, v denote the one-step transition probabilities p, and

p10, respectively. The conditional log-likelihood function can be expressed as
follows:
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where C is a constant.

Estimates for each patient for the maintenance phase of the study are
calculated. MLEs of u and v, denoted by # and#, can be obtained numerically
by the Newton-Raphson method. Therefore, p; = 4/(u + ©), estimate of the
probability of using opiate of each patient, can be obtained.
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For weeks 1 through 17,131, MLE of the probability of using opiate for patients
assigned with buprenorphine, methadone 20 mg, and methadone 60 mg have
means (standard deviation) given by 0.4734 (0.3719), 0.6288 (0.3616) and
0.4970 (0.3157), respectively. These figures are listed in table 1. Note that
patients who have only one urine sample result do not contribute any
information in the study of Markov transition probabilities and, hence, are not
included in the computation.

Due to the fact that there are many cases where the length of the binary
sequence is very short, weighted means of P, are calculated in table 2. The
weights used in the calculation are the numbers of informative transitions, that
is, transitions that do not begin or end with a missing value, in the sample
sequences. The weighted means oflsl are 0.3664 for buprenorphine, 0.6260
for methadone 20 mg, and 0.4854 for methadone 60 mg.

MLEs of U, ¥, and P, vary widely. This phenomenon, however, may be
attributed to the heterogeneity of individuals involved in the study. To take into
account the variability among individuals within each treatment group, an
empirical Bayes approach is undertaken. By adjusting Anderson and
Goodman’s (1957) results for complete data, procedures for testing the
homogeneity for a data set with missing values will be investigated. Censored
cases can be incorporated by modifying Aalen and Johansen’s (1978) method.
This will be done in a subsequent paper.

TABLE 1. Summary statistics for P1. The probability of using opiate.

Method Number of Cases Mean (standard deviation)
Buprenorphine # of cases=50 0.4734 (0.3719)
Methadone 20 mg # of cases=53 0.6288 (0.3616)
Methadone 60 mg # of cases=52 0.4970 (0.3751)

TABLE 2. Summary statistics of P1. The probability of using opiate.
Weighted mean. (The weights used in the calculation are the
numbers of informative transitions in the sample sequences.)

Method Mean (standard deviation)
Buprenorphine 0.3664
Methadone 20 mg 0.6260
Methadone 60 mg 0.4854
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LIMITATIONS AND DISCUSSION

1. In the section titled Incomplete Data, random variables U and V are
assumed to have independent Beta priors. Similar empirical Bayes
inferences can be derived if U and V are assumed to have dependent joint
distributions.

2. An alternative method to incorporate missing values in a Markov model is
to consider the missing value as a third state in the process. Thus, one can
transform the problem into a three-state Markov model with complete data.
In this case independent Dirichlet priors should be used, instead of
independent Beta priors, for entries in the one-step transition probabilities
matrix. It is necessary, however, to justify the randomness of the missing
state.

3. For a better application of the Markov chain model for urine testings, a
systematic sampling scheme with an equal number of days in between
tests should be planned. This can be done by taking urine samples on
Monday, Wednesday, and Friday for one week and then on Tuesday and
Thursday the next week. Continuing to take samples in this 2-week
alternating pattern will best use the proposed Markov model, which can
handle missing observations for Sunday and Saturday in alternating weeks.
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Summary of Discussion: “A Markov
Model for NIDA Data on Treatment of
Opiate Dependence” by Mei-Ling Ting
Lee*

Alan J. Gross

In her chapter, Dr. Mei-Ling Ting Lee considers a two-state Markov chain to
model urine sample test results in which the outcome Is either positive or
negative for the presence of a particular opiate. At times, study subjects do
not appear for these tests, and as a result, missing values are present in the
data. These missing values are taken into account by adjusting the likelihood
function using Markov properties.

The vector of observations on a given subject is assumed to form a sequence
of Markov-dependent Bernoulli trials with time-independent transition
probabilities, The Markov property allows formation of the likelihood function
based on a sample sequence of test results of a given subject. Maximum
likelihood estimates are obtained for the one-step transition probabilities,

and then, assuming stationarity, an estimate of the stationary drug abuse
probability of each subject is obtained. Since these transition probabilities
vary among subjects, their variability is modeled by assuming that 3 prior-
density functions govern their behavior. However, this aspect of the research
has not been totally developed. Finally, an estimate for the stationary drug
abuse probability is obtained over each of the three treatment groups.

Some generalizations that may be considered include (1) development of a
three-state model in which the third state is for the missed visits by subjects
(this may be preferable to the present model since missing observations
currently are treated by multiplying the transition matrix to the power
corresponding to the number of consecutive missing observations) and

* The chapter by Dr. Lee was reviewed by Dr. Jewell prior to the technical review.
Dr. Gross reviewed the revised chapter submitted by Dr. Lee and wrote this summary
of the discussion that took place at the meeting.
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(2) relaxation of time homogeneity and equally spaced observations currently
required in the model.

Some difficulties that exist in applying this model are:

« The Markov assumption-that is, the probability an individual tests drug-free
on the current test depends only on whether he or she tested drug-free on
his or her immediate past test-is questionable. One testing drug-free is
likely to have tested drug-free on more than just one previous test, that is,
several tests back.

¢« Much information is likely to lie within the missing data. This aspect of the
model development process is where future efforts should be placed.

« If, indeed, the transition probabilities are time homogeneous, then times
between transitions should be roughly exponential. Thus, a test for
exponentiality should be considered to check this assumption.

¢« Concern exists as to whether the data have been sampled for a sufficiently
long period to assume stationarity. At this point, the assumption may be
somewhat optimistic.

Dr. Mei-Ling Lee’s chapter describes an interesting and potentially useful
method for analyzing clinical trial data with this structure. Modifications of
the procedure presented herein, once they are implemented, will lead to an
improved model.
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Open/Panel Discussion: Analysis
Issues

Ram B. Jain

Panel Members: Carol K. Redmond (chair), Lloyd D. Fisher, Dean
Follmann, Joel B. Greenhouse, Alan J. Gross, and A.S. Hedayat

The primary issues discussed during this discussion session were:
+ Statistical approaches to analyze urine data

* Validity and importance of craving scores, physician/staff/patient global
scores, and withdrawal symptoms and signs data

* Treatment of missing/censored observations
STATISTICAL APPROACHES TO ANALYZE URINE DATA
The following statistical approaches to analyze urine data were discussed:

1. Parametric and nonparametric methods to calculate summary statistics,
for example, estimate of p across clinic visits

2. Model-based, nonsurvival type methods, including those based on
Markovian theory

3. Single- and multiple-failure survival methods
It was mentioned that the statistical approach to analyze urine data would

depend on the nature of the primary outcome variable in the study. A fair
number of participants were in favor of analyzing these data by parametric

model-based approaches (e.g., one proposed by Follmann et al., this volume),

including those using Markovian theory because these models can provide
for (1) explicit consideration of missing/censored observations, (2) inclusion
of covariates representing design and population characteristics, and

(3) consideration of other, for example, sociological variables, which may
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help to better understand the total phenomenon of drug dependence.

Dr. Hedayat was of the view that if we are interested in implications of our
actions in the future, the model-based approach should be the approach of
choice.

There were others (e.g., Dr. Follmann) who thought that calculation of
summary statistics, such as across-clinic visits, is simple and straightforward
and is sufficient to go through the Food and Drug Administration (FDA)
approval process. According to Dr. Follmann, if a model must be used,

it should be restricted to modeling missing/censored observations.
Correlations and/or interactions between other variables, for example,
correlations between day (Monday vs. Wednesday) of visit and urine

sample results, are not important enough to get the drugs approved by

FDA. Modeling is more suitable to describe patterns of behavior. Dr. Gross
preferred some combination of summary statistics such as p and a model
allowing for covariates where a model would be superimposed on, for example,
p. Dr. Greenhouse was interested in a problem-driven approach. According
to him, heterogeneity is a serious and most important issue in these ftrials,

and an approach that deals with these kind of issues, for example, one that

is based on Empirical Bayes’ methods (Lee, this volume), would be preferable.

Dr. Jack C. Lee reminded that drug addiction is a chronic condition. He thought
summary statistics and modeling that analyze response are more appropriate
for analyzing data generated by studies in acute conditions. In an area such as
drug dependence, application of survival-type methods should not be summarily
dismissed and should be considered as in other chronic diseases (e.g., cancer)
where it is more important to study survival than response. For Dr. Follmann, it
was more a matter of taste. If survival-type methods are to be considered for
these trials, there would be many remissions and relapses.

There was a fair amount of discussion about the pros and cons of a hypothesis-
testing vs. a model-based approach for analyzing these trials. Dr. Follmann
and others were in favor of formulating one or more (very) specific primary
hypotheses that will help get the drug approved by FDA. Modeling is more
suitable for describing the pattern of behavior. When reminded that these ftrials
result in possible multiple endpoints, it was said that as long as hypotheses are
prespecified, be it a (linear) combination of several things and/or variables, it
would be in the best interest of getting a drug approved by FDA. However, if
several endpoints have to be integrated, it should be described in advance
how they would be integrated and the rationale for doing so. Dr. Hedayat
thought that hypothesis testing generates binary (e.g., yes vs. no) results that
are too restricted. He thought that scientifically it is more important to know,
understand, and learn from the process/phenomenon and that this can be done
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by modeling the process. It was said that FDA has to make a decision and
that a physician, when treating an individual patient, must know whether the
drug works. However, the information that hypothesis testing may provide to
the physician may be too little. He or she not only wants to know whether

or not the drug works but also how, for example, to titrate the drug for different
patients (e.g., a child vs. an adult). Dr. Greenhouse noted that there is a
place for Bayesian and decision theory in designing and analyzing these

trials because these approaches result in meaningful measures such as the
probability of clinically effective response. “These sorts of methods give us

a formalism for doing sensitivity analysis to assess the robustness of our
analyses,” he said. Understanding and learning from the process is important
and necessary for future benefits, but a decision also must be made within the
confines of what is known and knowable now.

There was some discussion about what research should be done to develop
better methods of analyzing these trials. It was felt that the process of missing/
censoring should be modeled. There was also a strong feeling to get more and
better data on those who drop out. When it was mentioned that subjects who
missed three consecutive visits in the ARC 090 study were dropped, Dr. Fisher
said if they had wanted to come back they should have been welcomed back
into the study. This would have generated more data. Dr. Rolley E. Johnson
explained the practical difficulties in putting these people back in the study,
including the problem of titrating them back to their assigned doses, the ethical
problem of putting them back on opiate treatment if they have gone through
the worst part of the withdrawal process, and the possibility of blind being
broken during the period they were out of the trial. There is also the difficulty
of analyzing data on these patients if they are reentered into the trial. Should
the postre entry data on these patients be integrated with the rest of the data?
Or should these data be analyzed separately, and if so, what conclusions can
be drawn from these data? Should the last observation be carried forward for
these patients for the purpose of analyzing the main data set? Some of the
patients who dropped out may not want to come back or should not be allowed
to come back at all because treatment was a failure for them or because
treatment cured them and they did not need the treatment any more.

A suggestion that incentives be built into the design to improve compliance
(i.e., dropout rate) resulted in an involved, informative discussion. Doubts
were raised about the appropriateness of introducing incentives to improve
dropout rates. Incentives may affect the outcome variable itself, in which
case it may not be known whether one is evaluating the effect of incentives
or the treatment. Or there might be an incentive therapy interaction. This
will depend on what the incentives are tied to. For example, if the incentives,
particularly the financial incentives, are tied to producing a negative urine,
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then it will result in informative missed visits (i.e., a clinic visit might be missed
because a positive urine may be detected), or financial incentive, rather than
treatment, might be the factor to promote absence from drug use. Dr. Fisher
recognized that there might be an interaction between therapy and incentives
and that incentive also may affect compliance, but, “nevertheless, a beneficial
differential drug effect on the top of money would probably mean some sort
of beneficial drug effect.” A concern that different treatment groups may
somehow be imbalanced in terms of incentives received by them could

be rectified if patients can be stratified “on some covariate which would

reflect their propensity or likelihood to take a financial incentive,” said

Dr. Follmann. Dr. Johnson thought that such incentives/contingencies have
the potential to dilute the treatment differences, resulting in prohibitive sample
size requirements. Dr. Peter A. Lachenbruch was concerned about using
financial incentives because this money might end up being used for buying
illegal drugs. Dr. Hedayat insisted on putting more emphasis on characterizing
patient populations to blend the concepts of sampling and design and to
come up with robust designs that minimize natural deficiencies, rather than,
for example, create contingencies to strive for “noise-free” (e.g., dropouts)
experiments. Dr. Gross mentioned that randomized response models that
have a well-developed theory might be suitable for implementing Dr. Hedayat’s
recommendations. However, Dr. Greenhouse reminded that randomized
response models would answer a very limited question in the context of
clinical trials in the drug abuse area.

VALIDITY AND IMPORTANCE OF CRAVING SCORES, PHYSICIAN/STAFF/
PATIENT GLOBAL SCORES, AND WITHDRAWAL SYMPTOMS AND SIGNS
DATA

Dr. Greenhouse suggested that some of these variables may be independent or
explanatory variables, unrelated to the pharmacological effect of the treatment;

as such, they would be time-varying covariates. If so, this presents challenging
statistical analysis problems.

Dr. Fisher expressed that physician/staff/patient global scores are very crude
measures and often do not work. Dr. Michael Murphy replied that,

the approval of Alzheimer's drugs has now basically stopped
in its tracks because no one has been able to show global
improvement rating. . . . It depends on how one does the
global . . ..

They range from bad to worse, and there is a big controversy right now in the
field as to how one might get at that very useful information.
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As Dr. Charles Gorodetzky put it, these are difficult-to-measure behavioral
endpoint variables. However, these are the variables that answer questions
such as “what have you done to help the patient?” These are difficult issues,
but they must be dealt with.

A need was felt about some sort of global summary measure that can describe
the status of patients in a global sense, for example, how he or she is doing
after the trial is over. Dr. Nancy L. Geller pointed out that an optimal linear
combination of multiple endpoints can be obtained; that is, a test of missingness
can be combined with a test for efficacy. Weights assigned to different
endpoints can be determined by experts in the field (e.g., cardiologists in
cardiovascular trials). This methodology is very powerful and can detect
relatively smaller differences. However, interpretation of these weighted
summary measures may not always be easy.

Dr. Donald R. Jasinski thought craving scores were not a valid measure of any
form of chemotherapeutic effect and probably had nothing to do with the whole
process of drug dependence. In addition, there was no agreed-on meaning of
craving. “It is probably related to the environment and to learned behavior . . . ,
Dr. Jasinski said.

»

Dr. Jasinski was also concerned about moving away from dichotomous
measures to continuous or ordinal scale measures to do some sort of
parametric analysis. He thought all these measures, such as global scores
and symptoms and signs measures, could as well be measured on a binary
scale, which probably would be as meaningful as measuring them on a
continuous or ordinal scale.

Drug dependence is a chronic relapsing disorder. As in other trials of chronic
diseases (e.g., oncology trials), a partial or complete remission (as determined
by urine data) is good enough to show that the drug is efficacious. The key
issue in these trials is to establish pharmacological efficacy. It is very difficult
to show differences in behavioral outcome measures.

TREATMENT OF MISSING/CENSORED OBSERVATIONS

| asked the panel which of the several methods of treating missing/censored
observations presented in the meeting is more acceptable than others. The
methods presented for consideration were estimate, substitute (e.g., by 1),
model, and ignore. Dr. Lee observed estimate, substitute, and ignore to be
different forms of modeling, and as such, modeling and missing at random are
the only alternatives. Dr. Lachenbruch wanted missingness to be considered
as a response by itself.
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Dr. Fisher recommended doing a sensitivity analysis where different values for
missing/censored observations on a range from zero (a negative sample) to one
(a positive sample) are assumed and different values for different treatments
are assigned. Thus, for each pair of treatment arms, a probability matrix can be
constructed. Each cell of this probability matrix would provide the significance
level, or p value, available from test of treatment differences when specific

pairs of values attached to that cell are assigned to missing/censored
observations for the two treatment groups. From this matrix, a set of pairs

of values (assigned to missing/censored observations) for which one treatment
can be inferred to be better than others can be determined. A professional
judgment then can be made as to whether, under reasonable assumptions for
missing/censored data, one treatment is better. This approach provides for
scenarios under which conclusions could be different.
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Open/Panel Discussion: General
Issues

Ram B. Jain

Panel Members: Peter A. Lachenbruch (Cochair), Jack C. Lee (Cochair),
Joseph Collins, Lloyd D. Fisher, Sudhir G. Gupta, Nicholas P. Jewell,
Michael Murphy, Vincent Shu, and Ram C. Tiwari

INTRODUCTION
The issues primarily discussed during this session were:

* Need for multiple outcome criteria to deal with various aspects of drug
addiction

* High and differential dropout rates and their influence on estimation of
treatment effect

* Alternate study designs: comparative dose trials and “enrichment” designs

NEED FOR MULTIPLE OUTCOME CRITERIA TO DEAL WITH VARIOUS
ASPECTS OF DRUG ADDICTION

Almost all the participants at the meeting agreed that there is a need for
multiple outcome criteria in these trials. However, what should be measured
should be clearly defined. Dr. Murphy would definitely incorporate urine
screens as a measure in his studies, particularly because it would be easy to
standardize this measure across the centers. However, this would not be the
key, pivotal outcome in his studies because this measure is of “questionable
clinical relevance.” He would like to study the impact of urine screens “on
the sites we select, the patients we enroll, the numbers of patients we enroll,
and how often we can retain them.” If the patients become free of opiates
but substitute opiates by using other illicit drugs like Valium, cocaine,
amphetamine, or marijuana, he would consider this a failure of (opiate)
treatment. This substitution of other drugs for opiates should be factored into
data analysis.
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Dr. Gupta warned against having too many outcome measures because
correlations between these measures must be considered in the analysis.
Too many measures make the problem multidimensional and too complicated.
Obtaining a clear, solid conclusion from the trial is important. However,
because the effect of (opiate) treatment drugs lasts for only a limited

time—24 hours or so-he was in favor of analyzing data collected on each
day separately. According to Dr. Jewell, the primary interest should be
evaluating whether the patient has improved since the treatment began,

and as such, treating multiple observations from a patient as anything more
than a single data point should not be done.

There was no consensus at the meeting about how to handle the data on
multiple outcome variables. Dr. Murphy was in favor of integrating data from
urine screens with other measures into an overall index of disease severity.
He liked the idea of collapsing across measures. Dr. Collins wanted each
measure to be analyzed separately because, in general, investigators may
be interested in knowing exactly on which measures what the direction and
magnitude of treatment differences are, if any exist. A drug may reduce the
opiate abuse but may have a problem in retaining patients on the treatment.
On the other hand, a drug may not be so effective in reducing the frequency
of drug abuse but may be very effective retaining patients on the treatment.
The investigator should be the one to make a final decision about the
usefulness of the proposed treatment.

However, as Dr. Fisher pointed out, if there are too many outcome measures,
it is more than likely that the direction and magnitude of treatment differences
on these variables will be different at different levels. This could be a potential
source of confusion and indecision for the investigator. It would only be helpful
if a composite measure is obtained from different outcome measures. The
analysis of this combined measure should be helpful in deciding if the drug
has an overall effect. Subsequently, individual measures can be analyzed
and evaluated. | suggested that an investigator be asked at the beginning

of a trial about the performance required on each outcome measure for the
proposed drug to be minimally useful and/or successful. For example, for the
proposed drug to be useful and/or successful, patients must participate in the
study for at least 4 weeks, should have at least 75 percent negative urines,
and should have a craving score of no more than 50 on at least 75 percent

of their clinic visits. The performances on different measures for each patient
can then be combined to obtain some sort of combined score without statistical
manipulations. These combined scores can then be subjected to formal
analysis.
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Dr. Fudala did not think a single composite score would be clinically meaningful.
Dr. Shu expressed the need for a more focused study and the need for defining
a primary outcome measure, for example, the reduction in incidence of drug
abuse. Other secondary measures, such as rating scales to measure patients’
physical or psychological dependence on drugs, can be developed. Craving
scores, a nonthreatening measure, can also be used. Correlations between
craving scores and incidence of drug abuse can be studied. The bias in
obtaining some of the soft measures can be reduced and/or eliminated if
blinded evaluating physicians, separated from treating physicians, take these
measures.

As Dr. Geller put it, there are likely to be situations where combining several
measures (test statistics) would be appropriate, and in some cases, it would
be more appropriate to have one primary and several secondary measures
(statistics).

HIGH AND DIFFERENTIAL DROPOUT RATES AND THEIR INFLUENCE ON
ESTIMATION OF TREATMENT EFFECT

Almost all participants were concerned about the high dropout rates in these
trials. Dr. Jewell thought, with that much missing/dropout data “one can say
anything about treatment effect.” In “a trial of this kind . . . where 80 percent

of the patients on placebo were not available with regard to any kind of outcome
or restricted . . . outcome, there is just no way one would be able to make
sense of what that meant with regard to an active drug . . . .” He advised that
pilot studies that concentrate on the ability to collect outcome data of specified
kinds be conducted so that, for instance, specific patient populations available
for specific treatments and followup can be identified.

There was an agreement that high and differential dropout rates for different
reasons in different treatment groups can compromise estimation of treatment
effects. For example, the drugs may “cure” certain patients, and as such, they
do not need treatment anymore (and they drop out). In other cases, the drug
may be a failure, and as such, the patients do not come back. Some patients
may drop out because of toxicity even if the drug was working for them. Other
times the pattern of dropouts may be related to covariates such as age, sex,
and marital status.

In the opinion of Dr. Gupta, dropout rates may contain information about the
treatment effect, and as such, dropout rates should be analyzed as a separate
outcome variable in addition to other variables related to the improvement in the
condition of patients. Dr. Jack C. Lee also said, “. . . if the missingness has any
valuable information for the relevance of the outcome variable, which | think in
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this case is, then make it a part of the analysis . . . .” According to Dr. Murphy,
only legitimate discontinuation from the study is due to toxicity. Dropouts have
“only a fraction to do with the therapeutic intervention in place. . . . it is an issue
of staff investment.” Clinical staff should prevent that from happening. Dr.
Johnson commented that an administrative dropout after three consecutive
missed visits may be one of the reasons for a large dropout rate in the ARC
090 trial, but “. . . when you don’t put a restriction on with medications that have
physical dependence-producing properties you bring in a lot of complications
that | don’t know how you deal with . . . .” Dr. Follmann suggested that efforts
could have been made to collect urine samples from the patients even after
they were out of the trial. Dr. Johnson retorted that they (patients) could have
been paid for coming back to provide urine samples but that a provision like
that would constitute payment for dropping out of the trial, which brings in an
ethical problem because these payments could be used to buy drugs of abuse.
Dr. Johnson remarked, “. . . how do you get people back when they did not
come to begin with?” Missed visits is an inherent phenomenon in these patient
populations.

It was suggested that sensitivity analysis recommended by Dr. Fisher and the
approaches proposed by Drs. Weng (this volume) and Follmann and colleagues
(this volume) are promising tools to adjust for missing/censored data.

ALTERNATE STUDY DESIGNS
Comparative Dose Trials

Most of the participants recognized the usefulness of comparative dose trials.
However, two issues must be dealt with in these kinds of designs. First, the
selection of doses should be done carefully. As Dr. Murphy said, “Early in the
development especially, it is very difficult to judge where one is on the dose
effect curve. One could be asymptotically too high or too low.” Dr. Shu
suggested the physicians should be allowed to titrate in the first studies to
select the doses they feel comfortable with, and these selected doses can be
used in dose comparison trials. The second difficulty in doing these kinds of
trials lies in that, in the neuropsychiatric area, the effect sizes are very small.
Relatively large sample sizes may be required to detect differences between
these small effects for different treatment groups.

However, Dr. Fisher was, in general, not in favor of doing forced dose
escalation studies.

179



“ENRICHMENT” DESIGNS

It would be of interest to physicians to minimize the damage to those who
cannot benefit from a proposed new therapy. Those who can benefit probably
can be identified from those who cannot in a double blind trial where everybody
receives medication. Then, in a random double blind second (e.g., dose
comparison) trial, or probably the second phase of the same trial, only the
responders can be studied. At the request of Dr. Donald F. Klein, professor of
psychiatry at the College of Physicians and Surgeons of Columbia University, |
asked the participants to comment on the usefulness of such designs in the
drug abuse area.

Dr. Jewell thought the main idea behind these kinds of designs is to identify
subgroups based on some sort of covariate information that amounts to
evaluation of interaction effects. If so, these trials could result in large sample
size requirements. Dr. Fisher said that these trials are initiated when physicians
intuitively feel that some substrata of patient population are biologically and/or
psychologically so different from the others that for some there is no hope,
whereas others can respond. This is an efficient way to show activity. As Dr.
Jack C. Lee said, these designs can be useful in determining the profiles of the
drug addicts who respond. This information can then be used to determine
eligibility for future studies. These designs can be used to demonstrate
heterogeneity between responders and nonresponders, but this heterogeneity,
if present, has to be rooted, in Dr. Murphy’s opinion, in some sort of biological
substrate. It should flow from theory into practice.

Several participants expressed reservations and struck a note of caution

about the use of “enrichment” designs. The analysis of these designs is
difficult because of, among other things, possible carryover effects. The
interpretation of results obtained by analyzing these trials presents serious
challenges. Dr. Vocci presented two examples where one can incorrectly
conclude that an alternate medication is ineffective. “If you give an agonist
and find out who responds to the agonist, and then you are testing an agonist
in an enrichment design vs. a partial agonist, what you may be doing is
undermedicating the patients with partial agonist and making ii look worse . . . .
A study was done in which anxiety patients were tested for benzodiazepine
receptor, benzodiazepine sensitivity, if they were actually helped by
benzodiazepine, and then they were randomized to the same benzodiazepine
or a nonbenzodiazepine, and what happened was the patients who were
randomized to the nonbenzodiazepine had this mild withdrawal, which was
not helped by the new agent, and many of them dropped out as a result. . . .
This withdrawal syndrome actually exacerbated their anxiety.” Dr. Greenhouse
presented a similar example from a trial done in the psychiatric area.
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Consequently, although enrichment designs do have a place in the drug
development process (particularly when a new chemical entity is being studied),
where a post hoc analysis of the data will be meaningful in identifying easily
discernible (by the average physician), clinically relevant baseline variables that
separate responders from nonresponders, prospectively, that “good” group
should be studied in a traditional clinical trial.
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