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INTRODUCTION

Cocaine induces a wide range of emotions in humans, from an initial
high (euphoric state) to severe anxiety, paranoia, depression, and
anhedonia. As apsychomotor stimulant, cocaine has a potent effect
on motor behavior, increasing locomotion and causing stereotyped
repetitious behavior, tics, and uncontrollable tremors. Despite the fact
that the psychological and behavioral effects of cocaine usein
humans have been well documented for over 100 years, the current
knowledge of the neurobiological events underlying the abuse of
cocaine in humansis still limited.

Much of the information obtained thus far about cocaine's effects on
brain function have derived from alarge number of animal studies
carried out within the past 20 years. Such studies have clearly
demonstrated that activation of the neurotransmitter dopamine (DA) is
necessary for initiation of many of the behavioral properties
associated with cocaine, including reinforcement and motor activation.
However, a one-neurotransmitter hypothesis to account for the
complexity of drug abuse isimprobable. Many investigations into the
neurobiological actions of cocaine abuse have thus begun to focus
attention on neural systems linked with that of DA. Of these DA-
related neural systems, a strong case can be made for arole of the
endogenous opioid neuropeptides dynorphin and enkephalin in
cocaine abuse. These endogenous endorphins are not only involved
in the regula-tion of emotion and emotional expression but also
tightly integrated in basal ganglia motor circuits.

This chapter outlines some of the neuroanatomical and
pharmacological data generated from both human and animal studies
that together lend support for a DA/opioid peptide hypothesis for the
psychological and behavioral properties of cocaine abuse. This
neuroanatomical and neurochemical background is the foundation
for understanding results obtained from recent postmortem studies of
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human cocaine users which reveal an imbalance in the gene
expression of specific opioid pepties.

DOPAMINE INVOLVEMENT IN HUMAN COCAINE ABUSE

Not surprisingly, the data to support a central role for DA in cocaine
abuse is abundant. Pharmacologically, cocaine, an indirect DA agonist, is
a potent inhibitor of the DA transport carrier, effectively potentiating in
vivo extracellular DA concentrations (Church et al. 1987; Hurd and
Ungerstedt 1989; Pettit and Justice 1989). Cocaine has arelatively short
plasma and brain half-life—intravenous (1V) in humans, 16 to 87 minutes
(Inaba 1989; Javaid et al. 1978); in rats, 18 to 30 minutes (Hurd et al.
1988; Nayak et al. 1976)—with in vivo brain cocaine levels linearly
correlated to extracellular levels of DA (Hurd et al. 1988; Nicolaysen et
al. 1988; figure 1). Therefore, an acute |V administration of cocaine
typically produces afast "hit-and-run" effect on the potentiation of
extracellular levels of DA, with the peak DA elevation observed within 10
minutes and a return to baseline levels by 20 to 30 minutesin rats (Hurd
and Ungerstedt 1989; figure 1).

Such findings lend support to the belief that it is the short half-life of
cocaine that accounts for the rapid euphorogenic properties of the drug.
In fact, thein vivo DA overflow induced by an acute IV injection of
cocaineinratsis not only temporally correlated to in vivo cocaine
binding (presum-ably binding to DA transport carriers) measured in
human brains by posi-tron emission tomography (PET) (Fowler et al.
1989), but also temporally correlated to the subjective high and rush
reported by humans (Fischman et al. 1983; Fowler et al. 1989; Kumor et
al. 1989).

Unfortunately, a one-to-one correlation between the amount of cocainein
the brain and elevated extracellular levels of DA cannot solely account for
the diverse psychological and behavioral effects of the drug. While the
elevation of DA iscritical for initiation of the acute stimulatory actions of
cocaine, the actual presence of the drug in the brain and the subsequent
potentiation of synaptic DA levels do not always appear to be correlated
with all the psychological aspects of cocaine abuse, especially those
associated with aversive emotions. Fifteen minutes after an 1V injection of
cocaine, craving is experienced although a high concentration of cocaine
should still be present in the brain (Jaffe et al. 1989). Moreover, the rush
feelings in response to 1V cocaine still return rapidly (within 10 minutes)
to baseline even during the active infusion of the drug (Kumor et al.
1989)
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when extracellular levels of DA would be expected to remain elevated
(Hurd and Ungerstedt 1989). It is also apparent that after the self-
reported rush has diminished, continuous IV infusion of cocaine can
induce negative feelings such as dysphoria, anxiety, and paranoia;
these can be intermixed with positive feelings of well being (Kumor et
al. 1989; Sherer 1988).

Clinically, there are a number of studies showing the development of
tolerance to the positive subjective high with repeated cocaine use
(Fischman and Schuster 1982; Fischman et al. 1985) and during the
continuous infusion of the drug (Ambre et al. 1988). The cocaine
abuse disorder is therefore characterized as a state in which negative
dysphoric events become alarger part of the drug abuse phenomena,
while the positive euphorogenic properties that initiated cocaine abuse
attenuated, even with cocaine present in the body.

Although the literature is in agreement about potentiated DAergic
function during acute administration of cocaine, there are debates
about the responsivity of DAergic transmission during chronic
cocaine abuse. Recent PET experiments carried out by Volkow and
coworkers (this volume) have revealed that indices of in vivo DA
overflow are attenuated in cocaine-dependent human patients
compared with control subjects following a challenge administration
of the stimulant drug methyl-phenidate. These clinical findings are
complemented by animal data showing attenuation of extracellular
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levels of DA in the nucleus accumbens of previously exposed rats
directly self-administering cocaine as compared with cocaine-naive
rats receiving the drug for the first time (Hurd et al. 1989).
Furthermore, a number of animal studies have reported reduced basal
extracellular levels of DA as a consequence of repeated cocaine
administration (Imperato et al. 1992; Parsons et al. 1991) and a
functional tolerance of the DAergic responsiveness to cocaine despite
elevated concentrations of the transmitter (Weiss et al. 1992).
Altogether these findings would be consistent with the DA depletion
theory of cocaine addiction proposed to account in part for the
underlying dysphoric effects associated with chronic cocaine abuse
(Dackis and Gold 1985). However, in addition to tolerance (Hurd et
al. 1989; Imperato et al. 1992; Inada et al. 1992; Maisonneuve and
Kreek 1994; Robinson et al. 1990; Segal and Kuczenski 1992), in
vivo animal studies have also reported sensitization (Akimoto et al.
1989; Kalivas and Duffy 1990; Pettit et al. 1990; Robinson et al.
1988) of striatal DA overflow as a consequence of the repeated
administration of psychomotor stimulants.

The contradictions reported in the animal literature about DA
responsivity to repeated cocaine administration may be resolved if the
experimental factors within these studies that shed some light on the
dynamic nature of cocaine-induced DA effects are considered. These
factors include differences in the dose, route of administration,
duration of drug use, timing of drug administration, drug withdrawal
time period, and the environment associated with cocaine use. Each
of these factors can significantly contribute to differencesin DAergic
sensitivity to repeated cocaine administration (Johanson and Fischman
1989). In fact, a second challenge administration of cocaine
following just one previous injection of the stimulant can cause
different effects on cocaine-induced elevation of striatal DA levelsin
rats depending on the time between testing: 1 day, sensitization; 10
days, attenuation; and 20 days, no change in cocaine-induced DA
overflow compared with the first cocaine exposure (Guix, Hurd, and
Ungerstedt, unpublished data). Consistent with time-dependent
alterationsin DAergic sensitivities to cocaine implied by the animal
literature, clinical hypoprolactinemia (considered an index of
increased DA tone) has been found after acute cocaine use (Gawin
and Kleber 1985), whereas hyperprolactinemia (an index of decreased
DA tone) has been documented during intermittent periods of cocaine
withdrawal (Dackis and Gold 1985; Mendelson et al. 1988).
Nevertheless, based on the complexity of the behaviors associated with
cocaine (some show tolerance while others show sensitization)
(Johanson and Fischman 1989), it is necessary to explore other
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affected neuro-chemicals in an attempt to explain the myriad cocaine
abuse behaviors, especially those associated with craving, dysphoria,
paranoia, and anxiety, which dominate chronic cocaine abuse
compared with euphoria.

OPIOID NEUROPEPTIDES INVOLVEMENT IN HUMAN
COCAINE ABUSE

Although relatively few studies have directly investigated the
involvement of opioid peptides in cocaine abuse, the neurobiological
and behavioral actions of opioid compounds have been extensively
studied. Similar to cocaine, opiate drugs are highly addictive, and
endogenous opioid peptides have a physiological role in awide
variety of behaviors, including mood, motivation, and extrapyramidal
motor function (Herz 1993).

There are three major classes of endogenous opioid peptides in the
brain—dynorphins, enkephalins, and endorphins—derived from three
distinct precursor genes. prodynorphin, proenkephalin, and pro-
opiomelanocortin. Of these, dynorphin and enkephalin peptides are
the most abundant in the brain (Khachaturian et al. 1985). Several
lines of preclinical and clinical evidence suggest a significant
involvement of opioid peptides in cocaine abuse. In human cocaine
abusers, the street combination of heroin and cocaine (speedball)
potentiates the subjective reinforcing effects of cocaine alone.
Moreover, it appears that cocaine abusers self-medicate opiate agonists
(e.g., heroin) to attenuate some of the negative dysphoric and anxious
feelings induced by cocaine (Kreek 1988). Animal studies also show
a strong involvement of the opioid system in the reinforcing actions
of cocaine. Administration of the opiate antagonist naloxone reduces
the rewarding effects of cocaine on self-stimulation behavior (Bain
and Kornestsky 1987) and, within a critical cocaine dose range, also
reduces the rewarding effects associated with cocaine self-
administration (Carroll et al. 1986; De Vry et al. 1989).

Opioid neuropeptides produce their effects through interactions at the
specific opiate receptors , d, and k. Enkephalin peptides have a high
affinity for L and d opiate receptors (Lord et al. 1977), whereas
dynorphin peptides have a high affinity for k opiate receptors
(Chavkin et al. 1982). Administration of enkephalins and/or
stimulation of yand d opiate recep-tors are rewarding (Shippenberg
et al. 1987), whereas stimulation of k receptors are aversive (Bals-
Kubik et al. 1992; Shippenberg et al. 1987) and experienced as
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dysphoric in humans (Pfeiffer et al. 1986). Thus, there appears to be
afunctional balance within the opioid system such that dynorphin
mediates opposite behaviors to enkephalin in regard to mood and
motivation. Thereis also a growing body of evidence showing a
functional dichotomy of opioidsin the behavioral effects of cocaine.

Animal studies have demonstrated that k agonists can block both the
acute and chronic effects of cocaine on locomotor activity and
stereotypy in rats (Heidbreder et al. 1993). Moreover, k agonists or
antagonists effectively block cocaine reward in place preference
paradigm in rats (Suzuki et al. 1992). Likewise, k agonistsimpair,
whereas 1 agonists potentiate, the reward stimulus properties of
cocaine in monkeys (Spealman and Bergman 1993). These data
validate the attempts to manipulate the opposing proper-ties of the
opioid system as a new approach to the treatment of cocaine abuse.
The effectiveness of buprenorphine, a partial L agonist and k antag-
onist, to reduce cocaine self-administration in monkeys (Mello et al.
1989) has recently brought such pharmacological manipulations to
the clinic. Although buprenorphine has proven effective in treating
opiate abuse (Mello and Mendelson 1980; Schottenfeld et al. 1993),
the duration of buprenorphine treatment may be a critical factor for
its reduced effective-ness in suppressing cocaine use in cocaine-
dependent subjects (Mendelson et al. 1992; Schottenfeld et al. 1993).

NEUROANATOMICAL INTERACTIONS OF DOPAMINE AND
OPIOID SYSTEMS

M esolimbic and mesostriatal brain regions have been shown to be
neuroanatomical substrates for the drug reward and motor stimulatory
effects of drugs of abuse (Koob 1992). The limbic system comprises
acollection of brain structures believed to be involved in the
experience and expression of emotion, and as such are central to drug
reward and the wide spectrum of emotional pathology induced by
cocaine. The basal ganglia, in contrast, are a group of structures
involved in motor coor-dination; a central component of this system,
the neostriatum (caudate, putamen, and nucleus accumbens (ventral
striatum)), integrates informa-tion related to sensorimotor functions,
emotion, and motivation. Identifi-cation of the basal gangliaas a
critical anatomical site of action for cocaine is substantiated not only
by increased motor activation after administration of the drug but also
by the development of movement dis-orders in human cocaine users
that are similar to neurological manifesta-tions associated with
abnormal basal ganglia DA function (e.g.,tremors, involuntary
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movements, shakes, crack dancing, and tics) (Attig et al. 1994; Bauer
1993; Daras et al. 1994). The fact that the striatum is richly
innervated by DA neurons, is organized into distinct motor- and
limbic-related subregions, and is abundant in the opioid
neuropeptides dynor-phin and enkephalin makes it an important
brain structure for examining the interaction of DA and opioid
peptides in cocaine abuse.

Basal Ganglia

Brain regions normally included in the basal ganglia are the striatum,
globus pallidus, subthalamic nuclei, and substantia nigra. DA is pre-
dominantly synthesized in cells of the substantia nigra pars compacta,
which sends massive projections to the striatum (Bjorklund and
Lindvall 1984). DA nerve terminalsin the striatum synapse
predominantly onto medium spiny cellsrich in the opioid
neuropeptides dynorphin and enkephalin as well as the inhibitory
amino acid gamma aminobutyric acid (GABA) and the tachykinin
neuropeptide substance P (Freund et al. 1984; Kubota et al. 1986).
Medium spiny striatal neurons are the predominant cell typein this
brain structure (human, 70 to 80 percent (Graveland et al. 1985); rat,
90 to 95 percent (Somogyi et al. 1981)) and serve as the major output
pathways from the striatum.

There are two primary striatal efferent pathways that are discernible
based on their neuropeptide content. Striatal neurons innervating the
mesen-cephalic substantia nigra area predominantly contain
dynorphin and substance P (Brownstein et al. 1977; Vincent et al.
1982). In contrast, enkephalin-containing striatal neurons project
predominantly to the globus pallidus (external segment) (Del Fiacco
and Cuello 1982), which in turn sends projections to the subthalamic
nuclel and subsequently onto the substantianigra. Most striatal
neurons contain GABA (Kitaand Kitai 1988), and thus this
neurotransmitter is present in both striatonigral and striatopallidal
pathways. Of the striatal neurochemicals, opioid neuro-peptides have
become useful markers for dissociating striatal efferent pathways:
Dynorphinergic neurons serve as a central component of the direct
striatal output pathway back to the substantia nigra, whereas
enkephalinergic neurons indirectly influence nigral activity viathe
globus pallidus.

Functionally, the two striatal opioid efferent pathways differentially

modulate the activity of basal gangliatarget nuclei (substantia nigra
pars reticulata and thalamus) and consequently mediate opposing
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actions on motor control. The striatonigral pathway exerts atonic
inhibition onto basal ganglia output nuclei, whereas the striatopallidal
pathway exerts a tonic excitation in regulating movement (Alexander
and Crutcher 1990). Consequently, potentiation of the striatonigral
and/or inhibition of the striatopallidal pathway |lead to increased
behavioral activation. In contrast, inhibition of striatonigral and/or
potentiation of striatopallidal pathway |eads to reduced motor
activation. A consistent finding in both human and animal cocaine
usersis an augmentation of the dorsal striatonigral dynor-phin system
with weak or no changes of the enkephalin striatopallidal pathway
(Daunais et a. 1993; Hurd and Herkenham 1993; Hurd et al. 1992).
Such alterations in the striatal pathways would lead to hyper-activity,
compatible with the potent motor stimulatory effects of cocaine.

The functional interaction between the DA and opioid system is also
evident at the receptor level. Dynorphin striatonigral neurons prefer-
entially express the messenger ribonucleic acid (MRNA) for DA type
1 (D1) receptors, whereas enkephalin striatopallidal neurons primarily
express the MRNA for DA type 2 (D2) receptors (Gerfen et al. 1990;
LeMoine et al. 1990). Recent experiments have demonstrated that
knockout mice deficient in D1 receptors have reduced dynorphin
immu-noreactivity in the striatum, primarily in the [imbic-related
compartment (Hiroi et al. 1994), and reduced responsivity to cocaine
(White et al. 1994). However, both D1 and D2 DA antagonists have
been shown to impair cocaine self-administration behavior (Bergman
et al. 1990; Koob et al. 1987; Roberts and Vickers 1984).

Considerable data have been accumulated from lesion and pharmaco-
logical animal studies showing that DA differentially modulates the
regulation of striatal opioid peptides (Gerfen et al. 1991; Young et al.
1986), but it is also apparent that opioids, in turn, can modulate
DAergic activity. While kappaergic agents decrease dopamine rel ease,
L agonists in contrast increase DA levelsin the striatum (Di Chiara and
Imperato 1988; Spangel et al. 1990). The reduction of striatal DA
release upon application of the dynorphin peptide into the substantia
nigra (Herrera-Marschitz et al. 1986) further supports the hypothesis
that dynorphin mediates a negative striatonigral feedback modulation
of DA neurons, and as such behavior.

Limbic System
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Limbic and limbic-related brain regions include the hippocampus,
amygdala, parahippocampal gyrus (entorhinal cortex), cingulate
(medial prefrontal) cortex, insular cortex, septum, nucleus accumbens,
and ventral tegmental area (VTA). In thelimbic system, DA-
synthesizing cells are found predominantly in the VTA, which sends
terminal projections to the nucleus accumbens, amygdala, and
prefrontal cortex (Bjorklund and Lindvall 1984). It has been well
documented in animal studies that the forebrain structures innervated
by VTA DA neurons are involved in the rewarding effects of cocaine.
Lesions of the VTA (Roberts and Koob 1982), nucleus accumbens
(Zito et al. 1985), and amygdala (McGregor and Roberts 1994) all
impair cocaine self-administration. Of the forebrain structures studied
for their role in drug reward, however, most attention has been given
to the nucleus accumbens. Based on itslocalization in the ventral
striatum and its strong anatomical connection with the amygdala,
hippocampus, cingulate, and other limbic areas, the nucleus
accumbens has the capacity of integrating functions related to
emotion, motivation, and motor coordination (Heimer et al. 1982;
Mogenson et al. 1980; Nauta 1986) that are relevant to cocaine abuse.

In addition to D1 and D2 receptors, the nucleus accumbensis
characterized by preferential expression of D3 receptor mMRNA
expression in both rats (Bouthenet et al. 1991; Landwehrmeyer et al.
1993a) and humans (Hurd et al., unpublished observations;
Landwehrmeyer et al. 1993b) as compared with the dorsal striatum.
Consistent with D1 and D2 receptor antagonists, administration of 7-
hydroxy-N, N-di-n-propyl-2-aminotetralin (7-OHDPAT), aD3
antagonist, also increases cocaine self-administration behavior in rats;
thisisinterpreted as a partial blockade of the rewarding effects of
cocaine (Caine and Koob 1993). Thus, all three subtypes of DA
receptors appear to be involved to some extent in the self-
administration of cocaine. However, it remains to be determined
whether the various DA receptors subserve different aspects of cocaine
self-administration behavior that may be unrelated to reinforcement
and reward.

Aside from the dorsal and ventral dichotomy, the striatum is
heterogeneously organized into distinct neurochemical and
anatomical compartments differentially associated with limbic and
sensorimotor functions. The two striatal compartments, patch (or
striosome) and matrix, are linked respectively to limbic and
sensorimotor brain areas (Graybiel 1990). Neurochemically, cells
localized to the patch compartment in the human striatum are
characterized by high u opiate receptors (Hurd and Herkenham 1993,
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1995), high D1 mRNA expression (Rappaport et al. 1993), and low
DA transporter sites (Donnan et al. 1991; Graybiel and Moratalla
1989; Hurd and Herkenham 1993). Moreover, it has been
demonstrated that high prodynorphin mRNA expression is
predominantly restricted to the most limbic-related regions of the
human striatum, namely the patch compartment and nucleus
accumbens (Hurd and Herkenham 1993, 1995).

Of the neurosubstances localized within the limbic patch
compartment, only prodynorphin has been shown to have a striking
association to limbic regions of the human brain. As shown in figure
2, high prodynor-phin mRNA is found to be preferentially expressed
in traditionally defined limbic areas such as the hippocampal
formation (most preferably in the dentate gyrus), amygdala,
parahippocampal gyrus (entorhinal cortex), and cingulate and insular
cortices. Interestingly, limbic regions in the human brain that show a
preferential expression of prodynorphin mRNA also show enhanced
activation (e.g., glucose metabolism and blood flow) during exposure
to cocaine stimuli (London et al., this volume; Volkow et al., this
volume). The preferential association of high prodynorphin gene
expression within limbic brain structures is not matched by other
opioid neuropeptides. Instead, proenkephalin mRNA is extremely
low in the amygdala and hippocampus but widely expressed
throughout the striatum and hypothalamus (figure 2). Overall, there
is adistinct anatomical organization of the gene expression of
prodynorphin and proenkephalin systems in the human brain that
should signify distinct involvement of the opioid peptides in different
brain functions.

POSTMORTEM DA AND OPIOIDSALTERATIONSIN HUMAN
COCAINE USERS

Direct examination of cocaine's effects on the human brain through
both postmortem and in vivo imaging analyses is hecessary to extend
the advances being made in knowledge of the neurobiology of human
cocaine abuse. Neuroadaptations in both DA and opioid peptides
neural systems have been reported in the few postmortem human
studies carried out thus far. At the DAergic level, the most profound
alterations present in post-mortem brains of human subjects with a
positive toxicology of cocaine use are with the DA transporter.
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Similar to the animal literature (Pilotte and Sharpe, this volume), there
are contradictions in the reported direction of change. While some
postmortem human studies have observed a decreased number of DA
transporter sites in the caudate, putamen (Hurd and Herkenham
1993), and prefrontal cortex (Hitri et al. 1994), others have reported
an increase in the striatum (Little et al. 1993; Staley et al. 1994).
Decreased DA transporter sites have also been observed in vivo with
PET studies of human cocaine users (Volkow et al. 1992, this
volume).

Moreover, at the MRNA level, only reductions of the DA transporter
have been found thus far in animals repeatedly administered cocaine
(Cerruti et al. 1994; Xiaet a. 1992). Interestingly, mesencephalic
brain specimens obtained from some of the subjects who showed
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reduced DA transporter binding sites in the striatum (Hurd and
Herkenham 1993) had a 10 to 25percent reduction of DA transporter
MRNA expression, though no significance was achieved (probably
due to small sample size) (Hurd et al., unpublished observations).

Some of the contradictions reported about the alterations of DA
transporter binding following cocaine administration may be
attributed to the drug withdrawal time period and/or duration of
treatment (Pilotte and Sharpe, this volume). However, determining the
adaptive responses of the DA transporter protein to the effects of
repeated cocaine use may be more complex since it has recently been
discovered that the human DA transporter has multiple functional sites
as revealed by different ligands for labeling the transporter sites
(Pristupaet al. 1994). Inthat sudy, it was demonstrated that some
ligands (e.g., WIN 35 428) bind to two sites of the human DA
transporter, only one of which seems to represent the func-tional state
of the protein. Moreover, different ligands (e.g., WIN 35 428
(cocaine-like) and GBR 12935 (noncocaine-like)) appear to bind to
dif-ferent conformational states/forms of the human transporter. The
con-flicting postmortem human studies described above used
different ligands (cocaine-like versus noncocaine-like transport
inhibitors) for assessing DA transporter alterations in the brain tissue
of human cocaine users, and as such may have revealed different
conformational states of the DA transporter. These issues need to be
resolved.

In contrast to the postmortem evidence implying presynaptic
alterations of cocaine binding sites, no changesin D2 receptors, either
at the level of mMRNA expression (Hurd and Herkenham 1993;

M eador-Woodruff et al. 1993) or binding site densities (Meador-
Woodruff et al. 1993), have been found thus far in the postmortem
striatal tissue of human cocaine users. However, atemporary decrease
of presumably postsynaptic D2 receptors has been observed in human
cocaine abusers using PET analysis (Volkow et al. 1990). In the one
primate study investigating the effects of cocaine on DAergic markers
relevant to the human studies, DA transporter sites were shown to be
decreased and D2 receptor densities were unchanged (Farfel et al.
1992). However, in that study D1 binding sites were reduced only in
the caudate, a finding not matched in postmortem striatal tissue of
human cocaine users (Meador-Woodruff et al. 1993).

Only one postmortem human study to date has directly investigated

the opioid peptide system in relation to cocaine use. In the striatum
of human cocaine users, prodynorphin mRNA expression was found
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to be elevated in the patch compartment, whereas proenkephalin
MRNA expression was decreased (Hurd and Herkenham 1993). The
elevation of prodynorphin mRNA expression in human cocaine users
is consistent with results obtained in rats that had been allowed to self-
administer cocaine (Daunais et al. 1993; Hurd et al. 1992). In fact,
elevated dynorphin mRNA expression (Daunais et al. 1993; Hurd et
al. 1992; Hurd and Herkenham 1992; Spangler et al. 1993) and
peptide levels (Sivam 1989; Smiley et al. 1990) are thus far the most
consistent reproducible results obtained after the administration of
cocaine, afinding that emphasizes the strong role of the dynorphin
opioid peptide in cocaine abuse. In contrast to these results in human
cocaine users, the animal literature reports very weak or no changesin
striatal enkephalin mMRNA expression following cocaine
administration (Branch et al. 1992; Hurd et al. 1992; Spangler et al.
1993). Such differences could be due to the chronicity of cocaine
use, since in general no animal study has mimicked the long-term use
of cocaine found in the average human cocaine abuser. In addition,
most human cocaine users have also administered other psychoactive
drugs that could have long-term effects and influence enkephalin
MRNA expression.

The differential changes observed in opioid gene expression in
postmortem brains of human cocaine users were also complemented
by consistent direction of change in their selective receptors. k
receptors were increased (primarily in the caudate nucleus), while pu
receptors were found to be reduced in the striatum (primarily in the
patch compartment) (Hurd and Herkenham 1993). A hypothesis of
neurochemical craving and dysphoriain the brains of human cocaine
users (Hurd and Herkenham 1993) has been put forth based on the
fact that neural systems associated with euphoria (pand enkephalin)
are reduced, whereas neural systems associated with dysphoria (k and
dynorphin) are elevated. Interestingly, neurochemical alterations were
more pronounced in the caudate and putamen than in the nucleus
accumbens in both human (Hurd and Herkenham 1993) and rat
(Daunais et al. 1993; Hurd et al. 1992; Hurd and Herkenham 1992)
studies, which might reflect the strong motor-activating actions of
cocaine. However, the limbic-related component of cocaine's action is
perhaps reflected in the finding that the changes observed with
prodynorphin mRNA expression in the human study were restricted
to the limbic patch compartment.

In considering the possible interpretations about the role of opioid

peptides in cocaine abuse based on the postmortem findings, it cannot
be over-looked that these changes might also reflect to some extent
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neurotoxicity induced by repeated cocaine use. Endogenous opioids
appear to be markers of injury within the central nervous system
(CNS). A significant number of studies have provided evidence that
tissue damage (e.g.,follow-ing spinal cord or brain injury) is
associated with the increased presence of dynorphin in the area at the
level of peptide production, mMRNA expres-sion, and k receptor
binding sites (Faden 1989; Faden et al. 1990; Vink et al. 1991).
These findings have led to the conclusion that increased dynorphinis
neurotoxic, whereas decreased dynorphin and increased enkephalin
may be neuroprotective (Faden, this volume). In fact, dynorphin
accumulation in local tissue after traumatic brain injury is correlated
with aregional declinein cerebral blood flow (Mclntosh et al. 1987),
a consistent phenomena observed in humans following admini-
stration of cocaine (London et al., this volume; Volkow et al. 1988).
If indeed the opioid changes theorized following injury hold true for
other CNS function, then perhaps the increased dynorphin mRNA
expression and k receptor binding sites (with a concomitant decreased
enkephalin mMRNA expression and [ binding sites) found in the
postmortem tissue of human cocaine users indicate heightened
neurotoxic opioid substances and a reduction in neuroprotective
substances. Altogether, this would imply greater toxicity in the brains
of human cocaine users. However, animal studies have failed to find
any evidence of neurotoxicity following chronic cocaine
administration when estimating toxicity based on the degeneration of
DA terminals (Ryan et al. 1988). Nevertheless, the absence of degen-
erated DA terminals does not exclude the fact that toxicity could have
occurred due to repeated cocaine use.

In summary, although acute activation of DAergic systems might
initiate reinforcement neural circuits, differential alteration of opioid
neuro-peptides, elevated dynorphin, and reduced enkephalin might
underlie the negative aversive properties of cocaine abuse. Whileitis
clear that additional studies are necessary to fully elucidate the role of
dynorphin and enkephalin peptides during the different stages of the
drug abuse cycle, it is feasible, based on the evidence accumulated
thus far, that treatments targeted at correcting the imbal ance of the
opioid peptide system might prove beneficial for treatment of cocaine
abuse.
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