ADVANCED REACTOR, FUEL CYCLE, AND ENERGY PRODUCTS WORKSHOP FOR UNIVERSITIES

Bill Corwin National Technical Director Gen IV Materials Technology Program

Oak Ridge National Laboratory

Workshop for Universities Hilton Hotel, Gaithersburg, MD March 20, 2007

THIS RESEARCH AREA INCLUDES

- Selection, development, and qualification of structural materials needed to design and build the advanced reactors being developed within the Gen IV Reactor Program
- These activities are part of the Gen IV Reactor Program and are closely coordinated with similar structural materials research for the AFCI, NHI, and GNEP ABR Programs
- Materials needs will be addressed for the NGNP and SFR reactor systems, as well as for their energy conversion systems, through R&D on their specific issues combined with crosscutting tasks

Advanced Materials Development and Qualification Essential for All Gen IV Reactors

- Materials Will Be Exposed to High Temperatures, Neutron Exposures, and Corrosive Environments
- 60-Year Operating Lives for Gen IV Reactors Will Require Very Long-Term Materials Stability
- Process-Heat Use for Large-Scale Hydrogen Generation Will Also Require Materials Compatibility with Heat-Transfer Media and Reactants
- Research Will Build upon Extensive Previous Materials Development for Other Reactor Systems and Related Domestic and Foreign Programs

FY06 ACCOMPLISHMENTS

- Completed Assessments of Materials Needs, R&D Plans, and Technology Status for Gen IV Reactors
 - Generation IV Reactors Integrated Materials Program Plan
 - Next Generation Nuclear Plant Materials Research and Development Program Plan
 - Materials Testing Requirements and Initial Test Program for Intermediate Heat Transfer Loops
- Completed Preliminary Comparison of Reaction Rate Theory and Object Kinetic Monte Carlo Simulations of Defect Cluster Dynamics under Irradiation
- Completed Initial Development of Gen IV Materials Handbook
 - Web-accessible, hyperlinked data repository for structural data
 - Incorporated trial creep data on 617 and 230

- Initiated creep and creep-fatigue testing and development of improved constitutive models for 617 in support of ASME code case development
- Developed and evaluated controlled-chemistry variant of 617
- Completed interim development of simplified hightemperature design methods
 - Load- and deformation-controlled loading
 - Primary and secondary stresses, including cycling, relaxation, and racheting
 - Current status and needed improvements for analytical methods plus required experiment validation
- Evaluated existing rules for negligible creep evaluation for 9Cr-1Mo steel and implemented program for improvements

- Completed scoping irradiations of high-temperature structural materials
 - 1.3-1.6 dpa at 550°C to 750°C
 - 800H, 617, 14WT, 14YWT & 9Cr-1Mo
- Performed initial evaluation of alternate joining methods for advanced materials
 - Diffusion bonding, transient liquid-phase joining, frictionstir welding
 - 617 and ODS materials
- Developed environmental systems for evaluation of aging effects and creep testing of high-temperature alloys in VHTR helium and initiated aging studies
- Investigated stability of dynamic equilibrium of impurity content in VHTR helium environments

- Developed draft ASTM specification for nuclear grade graphite and ASME rules for graphite use in core and core support structures
- Developed draft ASTM standards for graphite oxidation and fracture testing
- Evaluated status, deficiencies, and improvements needed for ASME Sec III Subsec NH rules on elevated temperature design
- Developed candidate methods for standardization of ceramic composite testing
- Completed initial comparative irradiations of C-C vs SiC-SiC composites for control rod applications

- Completed scoping high-dose irradiations and PIE on NGNP candidate graphites in HFIR
 - PCEA and NBG-10 compared to H-451
- Completed initial procurement and characterization of NGNP graphite billots
 - NBG-17, NBG-18, IG-43 and PCEA
- Completed capsule design & fabrication and specimen preparation for initial graphite irradiation-creep experiment in ATR
- Completed initial design for very high-temperature graphite irradiation experiments in HFIR
- Completed initial development of irradiation performance modeling of graphite

FY07 Work in Progress

- Complete supplemental PIE on scoping irradiations of hightemperature structural materials
- Complete comparison of reaction rate theory and Monte Carlo Methods for simulating cluster-dynamics-derived point defect distributions
- Complete review and modification of *Gen IV Materials Handbook* based on beta-version evaluation
- Continue development of simplified high-temp design methods
- Continue development of ASTM standards and ASME Code for nuclear-grade graphites & composites and rules for elevated temperature design
- Complete capsule preparations and pre-irradiation characterization of graphites for creep-irradiation experiment
- Develop graphite procurement and qualification plans for NGNP
- Complete C-C & SiC-SiC comparisons for control rod materials

High-Priority Materials R&D Will Focus on NGNP Needs in FY08-FY09

- Selection and qualification of graphite
- Selection and qualification of high-temperature metallic materials and development of improved hightemperature design methodology
- Assessment of irradiation effects and fabrication methods of reactor pressure vessels
- Assessment of environmental and thermal aging effects
- Development of supporting ASME and ASTM codes and standards
- Development and population of materials database