ADVANCED REACTOR, FUEL CYCLE, AND ENERGY PRODUCTS WORKSHOP FOR UNIVERSITIES

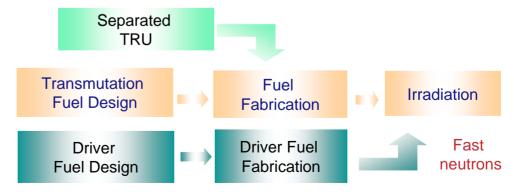
Mitch Meyer, Madeline Feltus

(mitchell.meyer@inl.gov)

AFCR&D, AGR

Fuel Development

Idaho National Laboratory


Workshop for Universities Hilton Hotel, Gaithersburg, MD March 20, 2007

Fuel Development and Qualification is a critical element of the GNEP program

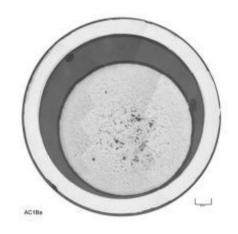
- Fuel development will be on the critical path for deployment of TRU-burning systems (5 year R&D cycle)
- It is not possible to totally decouple the various elements of the demonstration program
 - Fuel testing requires close coordination with separations for supply of TRU materials

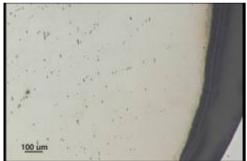
Metal and oxide TRU fuels are candidates for the first generation transmutation fuel

Metal Fuel

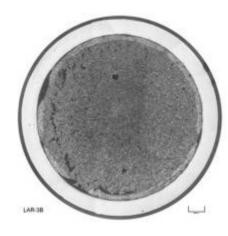
- Successful small-scale fabrication and irradiation on limited amount of TRU samples
- Large-scale fabrication without loss of Am must be demonstrated
- Fuel-clad interactions at high burnup must be investigated
- Effect of lanthanides on FCCI must be addressed

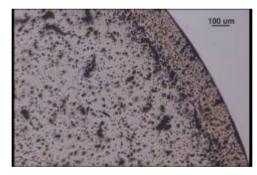
Oxide Fuels (powder processing)

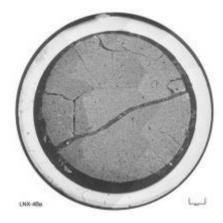

- Successful small-scale fabrication and irradiation on limited amount of TRU samples (France, Japan)
- Effect of group TRU on fabrication process unknown
- Effect of lanthanides on fabrication
- Large-scale fabrication amenable to hot-cell operations must be developed
- Limitations on linear power

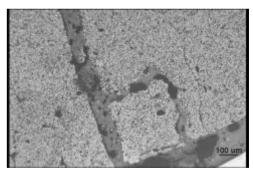

- Am recovery and use in moderated targets
- Fabrication using powder metallurgy
- Development of advanced clad materials (possibility of using liners)
- Vibro-pac fuel technology
 Risk trade-off: fabrication versus
 performance

Long-Term Fuel Technologies (> 20 years)


- Nitride candidate for 2nd or 3rd generation
 - -High TRU loading potential
 - -Fabrication process requires further work
 - -N-15 enrichment.
- Dispersion candidate for 2nd or 3rd generation
 - -High burnup potential
 - -Fabrication process requires further work
 - -Separations process must be developed


FY06 ACCOMPLISHMENTS (AFCI)




Pu-40Zr 6.8 at.% , 6.4x10²⁰ f/cm³

U-29Pu-4Am-2Np-30Zr 6.0 at.% , 8.9x10²⁰ f/cm³

 $\begin{array}{l}(U_{0.5} Pu_{0.25} Am_{0.15} Np_{0.1}) N\\ \textbf{4.6 at.\%} \text{ , } \textbf{5.8x10}^{20} \text{ f/cm}^{3}\end{array}$

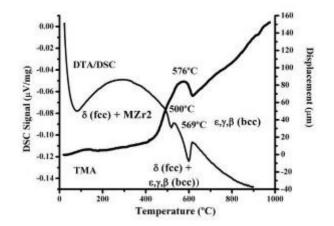
Successful fabrication and delivery of 2 Metal and 2 Nitride Fuel Pins to CEA-Phénix reactor

Pellets

Shipped to France

Packaged in **TN-BGC 1**

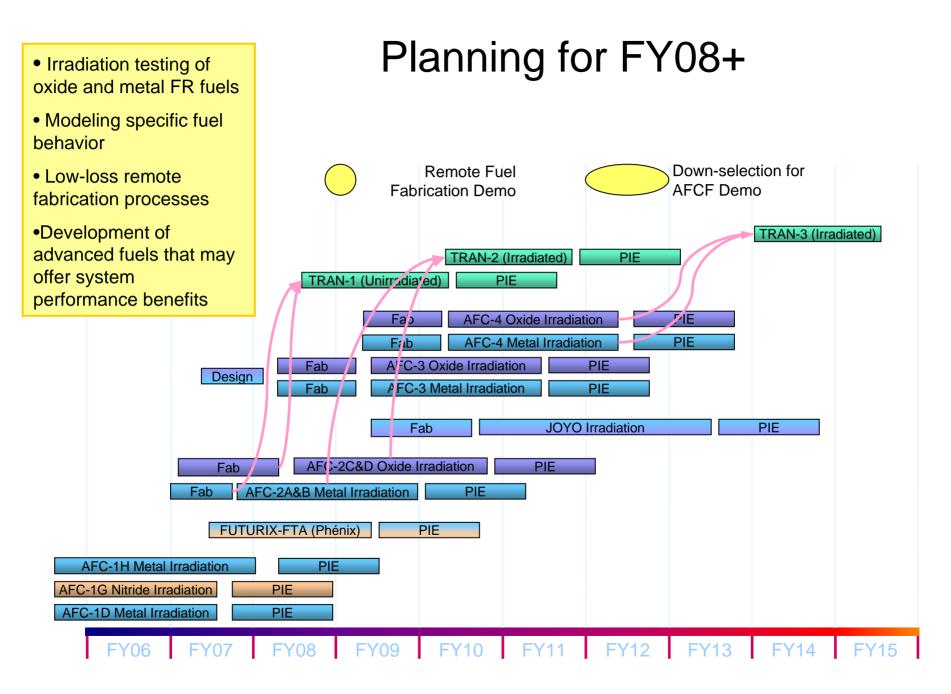
Loaded in Sea/Land Container

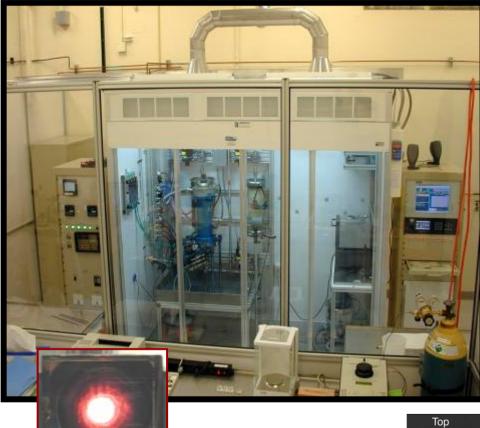


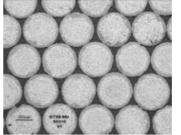
Transport to US Port

Arrival in France

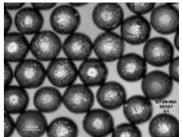
WORK IN PROGRESS FOR FY07 (GNEP)


- Fabrication of the AFC-2 irradiation experiment for insertion in ATR
- Development of low TRU loss fabrication processes for oxide and metal fuels
- Characterization of thermophysical properties of TRU fuels
- Evaluation/planning of transient test program
- Development of FRAPCON-3 based 'fuel design code'
- Continued irradiation of AFC-1 fuels to 40 at.% ²³⁹Pu depletion
- TEM examination of alloys irradiated in GFR-F1 (800H, MA-754, MA-956, T122)
- Evaluation of processes for reduction of TRU oxides to metal

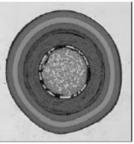

	Linear Heat Rate (W/cm)		²³⁹ Pu Depletion (atom%)	Heavy Metal Depletion (atom%)	²⁴¹ Am Depletion (atom%)
Rodlet 1	137.29	119.30	19.80%	13.51%	38.07%
Rodlet 2	166.67	146.14	25.13%	15.21%	47.49%
Rodlet 3	242.54	219.55	27.52%	18.16%	24.03%
Rodlet 4	214.49	193.73	27.82%	19.55%	52.55%
Rodlet 5	163.35	173.71	31.76%	20.96%	
Dummy					

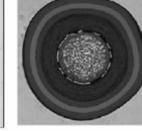


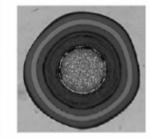
ACRR w/ FREC-II



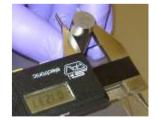
FY06: AGR-1 Fabrication

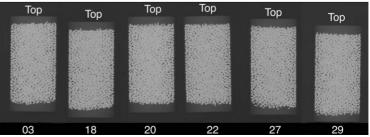




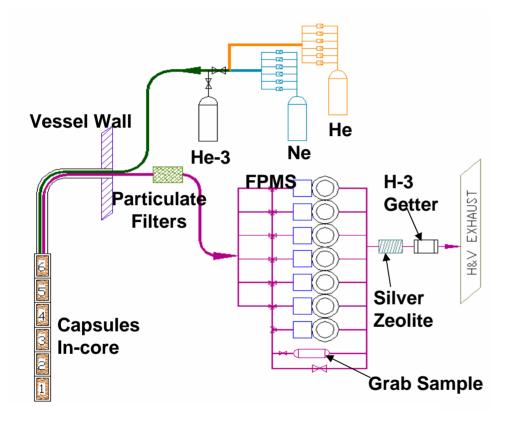

Sintered kernels

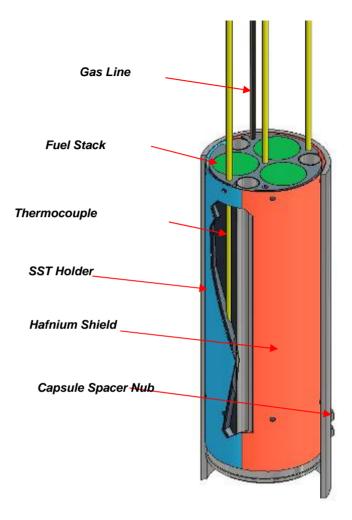
Loose kernels

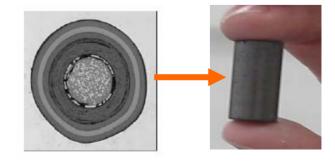




LEUCO coated particles




Fuel Compact



FY07: AGR-1 Irradiation Test Insertion

- AGR-1 is a shakedown irradiation to test the complexities of the multi-capsule concept
- 2.25 year irradiation duration
 - goal burnup ~ 15% FIMA _
 - $T_{max} < 1250^{\circ}C, T_{avg} \sim 1150^{\circ}C$ fast fluence < 5 x 10²⁵ n/m²
 - _

PLANS FOR FY08-09 (TRISO)

- UCO particle fabrication process scale up (20 kg)
- Validate fabrication processes for 425 µm UCO kernels
- Develop processes for improved packing of particles during compacting
- *UO*₂ coated particle development
- UCO particle and compact fabrication for the AGR-2 experiment
- Design and fabrication of AGR-2 experiment
- Complete irradiation of the AGR-1 experiment
- AGR-3 and AGR-4 experiment design