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Benzene is a volatile organic compound that
is toxic to the hematopoietic system (1) and
has caused acute myelogenous leukemia in
populations with high-level occupational
exposures (2,3). Although there is consider-
able doubt concerning the leukemogenic
effect of benzene at lower concentrations
(4,5), the suspicion that long-term exposure
to even small amounts of benzene may be
harmful (6–8), together with the widespread
exposure of the general population (9–11),
has caused concern.

Environmental concentrations of airborne
benzene in the United States tend to range
from 2 to 19 µg/m3, with the higher levels in
urban areas (10). Because approximately 85%
of atmospheric benzene is derived from
mobile sources, higher concentrations are
often found inside motor vehicles and adja-
cent to major roadways (8,12,13). Among
nonsmokers the greatest short-term exposures
to benzene arise from inhalation of gasoline
vapors during automobile refueling. Although
current regulations limit the benzene content
of all grades of gasoline in the United States
to 1% (v/v) (10,14), concentrations as high as
5% have been reported in Europe (15,16).

Self-service gasoline customers are
exposed to benzene emitted from fuel com-
bustion as well as from underground storage
tanks, spills, and displacement of vapors from
the fuel tank (17). Of these, displacement of
fuel vapors is thought to be responsible for
most of the exposure. A number of studies
have found that exposures to benzene vary
greatly during self-service refueling from a few
parts per billion to several parts per million
(18–21). Thus, the general population is reg-
ularly exposed to a known carcinogen, some-
times at high levels, albeit for short periods.

Following inhalation, benzene vapor is
rapidly absorbed into the blood and distrib-
uted throughout the body (22,23). The
kinetics of benzene uptake and distribution
have been investigated among human volun-
teers under experimental conditions (24–30)
and among occupationally exposed workers
(31–41). These studies have relied on unme-
tabolized benzene in exhaled air (breath),
blood, and urine, as well as benzene metabo-
lites in urine. Of these, unmetabolized ben-
zene in breath is an attractive measure of
uptake because it is easily obtained by non-
invasive means (42,43).

A few investigators have reported ben-
zene uptake associated with gasoline refuel-
ing (44,45) and other ambient sources
(46–49). In this study we report benzene
exposures during self-service gasoline refuel-
ing and evaluate the relationship between
benzene in ambient air and in breath. In
doing so we will apply mixed-effects statisti-
cal models to evaluate effects related to the
environment and to the individual person.
Because such models require rather large
sample sizes, we developed a self-adminis-
tered test kit to assist subjects in obtaining
measurements of benzene in ambient air and
breath during refueling.

Materials and Methods

Sample collection. A test kit (Figure 1) was
developed to facilitate measurements of ben-
zene in air and breath without professional
assistance. The kit contains a passive moni-
tor for measuring personal exposure, two
glass bulbs of 75-mL volume for obtaining
breath (end-exhaled air), and simple illus-
trated instructions for their use. Both types
of monitors are reusable.

The passive monitors consist of alu-
minum tubes (90 mm × 6.3 mm o.d. × 5.0
mm i.d.) fabricated to the dimensions of
commercial stainless steel devices designed for
this purpose. Each monitor contains 0.1 g of
20/35 mesh Tenax TA (SKC Inc., Eighty
Four, PA). The adsorbent is maintained in
place by stainless steel screens to create an
open diffusion channel of 1.5 cm × 5.0 mm
i.d. An additional screen, recessed 1 mm from
the surface, serves as a turbulence barrier to
maintain the stable concentration gradient
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Although automobile refueling represents the major source of benzene exposure among the non-
smoking public, few data are available regarding such exposures and the associated uptake of ben-
zene. We repeatedly measured benzene exposure and uptake (via benzene in exhaled breath) among
39 self-service customers using self-administered monitoring, a technique rarely used to obtain mea-
surements from the general public (130 sets of measurements were obtained). Benzene exposures
averaged 2.9 mg/m3 (SD = 5.8 mg/m3; median duration = 3 min) with a range of 
< 0.076–36 mg/m3, and postexposure breath levels averaged 160 µg/m3 (SD = 260 µg/m3) with a
range of < 3.2–1,400 µg/m3. Log-transformed exposures and breath levels were significantly corre-
lated (r = 0.77, p < 0.0001). We used mixed-effects statistical models to gauge the relative influences
of environmental and subject-specific factors on benzene exposure and breath levels and to investi-
gate the importance of various covariates obtained by questionnaire. Model fitting yielded three sig-
nificant predictors of benzene exposure, namely, fuel octane grade (p = 0.0011), duration of expo-
sure (p = 0.0054), and season of the year (p = 0.032). Likewise, another model yielded three signifi-
cant predictors of benzene concentration in breath, specifically, benzene exposure (p = 0.0001), pre-
exposure breath concentration (p = 0.0008), and duration of exposure (p = 0.038). Variability in
benzene concentrations was remarkable, with 95% of the estimated values falling within a 274-fold
range, and was comprised entirely of the within-person component of variance (representing expo-
sures of the same subject at different times of refueling). The corresponding range for benzene con-
centrations in breath was 41-fold and was comprised primarily of the within-person variance com-
ponent (74% of the total variance). Our results indicate that environmental rather than interindi-
vidual differences are primarily responsible for benzene exposure and uptake during automobile
refueling. The study also demonstrates that self-administered monitoring can be efficiently used to
measure environmental exposures and biomarkers among the general public. Key words: benzene,
biological monitoring, exhaled air, exposure, exposure variability, gasoline, mixed models, self-moni-
toring. Environ Health Perspect 108:1195–1202 (2000). [Online 15 November 2000]
http://ehpnet1.niehs.nih.gov/docs/2000/108p1195-1202egeghy/abstract.html
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necessary for constant diffusive uptake. Air
sampling is initiated by simply removing one
end cap from the monitor. This type of sam-
pler has been used effectively for monitoring
volatile organic compounds under various
environmental conditions (50).

The locally fabricated breath samplers
consist of glass bulbs (75-mL volume, 13-cm
length) that are slightly larger than those used
elsewhere for this purpose (43,51). The bulbs
are sealed with threaded, plastic end caps
containing PTFE-lined septa (Chemglass,
Vineland, NJ). The subject is instructed to
remove the end caps and then to completely
exhale through the bulb. Because the bulb
volume is small compared to the vital capaci-
ty, only end-exhaled air is collected. The sub-
ject can obtain the sample while located in a
contaminated environment because any
unabsorbed benzene from the anatomical
dead space should be flushed from the bulb
during the initial stage of exhalation.
Significant losses are prevented by capping
the free end of the device while it is still in
the subject’s mouth and then quickly replac-
ing the remaining cap.

Subjects and conditions of measurement.
The study was conducted between July 1998
and March 1999, with samples collected

during three different seasons (no measure-
ments were taken during winter 1998/1999).
Stage II vapor recovery controls were not
used on gasoline pumps in the local area, but
pump nozzles were outfitted with rubber
splash collars. Pump nozzle latches were gen-
erally absent. 

Although no qualifications were placed
on participation, 27 of the 39 subjects were
affiliated with the University of North
Carolina. Thirty-four subjects were non-
smokers, three were smokers, and two did
not indicate smoking status. Each subject
was provided with two test kits at the time of
recruitment and encouraged to obtain at
least two independent measurements of
exposure and breath levels; more kits were
provided to subjects as needed. A total of
130 usable sets of measurements were
obtained from 39 different participants, with
70% of the samples from males. Repeated
measurements were obtained from 31 of the
39 participants. Subjects were instructed to
obtain a preexposure breath sample while
seated in their vehicle before refueling and
then to immediately begin personal sam-
pling by uncapping the passive monitor and
clipping it to clothing in the breathing zone.
After refueling, the cap was reattached to the
passive monitor to terminate sampling, the
postexposure breath sample was collected,
and all times were recorded. No instructions
were provided concerning the refueling
process itself; participants were encouraged
to refuel their vehicles as customary. 

We provided a simple data sheet to assist
subjects in recording the start and stop times
for the environmental sampling as well as his
or her height, weight, and sex. A variety of
body types was represented in the study as
summarized in Table 1. The questionnaire
also requested information regarding several

covariates related to the refueling process (i.e.,
duration, octane grade, time lag between refu-
eling and postexposure breath sample, and
general weather conditions).

About 5% of the kits were returned with
poorly sealed breath monitors, and other types
of user error invalidated three samples. These
observations were excluded from the statistical
analysis. Additionally, the process of concen-
trating the breath sample onto a thermal des-
orption cartridge failed in a few instances, and
some measurements were lost due to instru-
ment malfunction during analysis. 

Preparation of monitors. Passive moni-
tors were initially conditioned at 250°C for
30 min with a continuous flow of ultra high
purity helium gas at a rate of 45 mL/min
using an automatic thermal desorption sys-
tem (Model ATD 400; Perkin-Elmer Corp.,
Norwalk, CT). Just before use, the monitors
were also conditioned for 3 min at 250°C
followed by 3 min at 225°C to remove trace
levels of benzene. (Preliminary experiments
determined that this two-step conditioning
regimen produced lower levels of residual
benzene than conditioning at a single tem-
perature.) Breath sampling bulbs were thor-
oughly cleaned in an industrial glassware
washer and the cap liners were replaced
before each use.

Analysis of monitors. Before analysis,
breath samples were transferred from the
bulbs to air monitors using apparatus illustrat-
ed in Figure 2. Each septum was punctured
with a 16-gauge needle, and the bulb was
flushed with 400 mL zero-grade air at 100
mL/min through an air monitor (of the same
type used for passive sampling) to capture the
volatile constituents. To minimize surface and
condensation losses, the bulb was heated to
90°C before this transfer.

Passive monitors and breath samples
were initially analyzed with a Hewlett
Packard 5890 Series II gas chromatograph
equipped with a flame ionization detector
(GC/FID), which was later replaced by a
Hewlett Packard 6890 Series Plus GC/FID
(Hewlett Packard Corp., Palo Alto, CA).
Separation was achieved with a megabore
DB-1, 60-m × 0.53-mm dimethylpolysilox-
ane column (1.5 µm film thickness; J&W
Scientific, Folsom, CA). The oven tempera-
ture was held at 30°C for 13 min, increased at
50°C/min to a final temperature of 250°C,
and held for 5 min. Ultra high purity helium
was used as the carrier gas at a flow of approx-
imately 8 mL/min. Chromatograms were
manually integrated using Hewlett Packard
gas chromatography (GC) ChemStation soft-
ware. Benzene was identified by the retention
time of 10.97 min. 

Samples were desorbed with a Perkin-
Elmer ATD 400 automatic thermal desorp-
tion system (52,53) for 2 min at 225°C to
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Figure 1. Components of the self-administered
test kit. The thermally desorbable passive monitor
measured benzene exposure and the glass bulbs
captured 75 mL end-exhaled air after exposure.

Name

Date

Start time

End time

Air monitor

Glass breath sampling bulb

Table 1. Mean height, weight, and body mass index (BMI) of subjects (range in parentheses).

No. Height (cm) Weight (kg) BMI

Females 15 168 (157–175) 62.1 (54.4–83.0) 22.1 (18.8–28.7)
Males 24 179 (170–196) 63.0 (59.0–95.3) 23.9 (20.4–28.5)
Overall 39 175 (157–196) 71.2 (54.4–95.3) 23.2 (18.8–28.7)

Figure 2. Apparatus for transferring breath samples to
sample tubes. Each breath sample bulb was flushed
with 400 mL purified air at 100 mL/min, sending the
sample through a Tenax-trap to capture the volatile
constituents.

Needle valve

Sample bulb

“Zero”
air

16 ga Needles

Tenax tube



transfer analytes onto a Tenax-packed, cryo-
gen-free focusing cold trap maintained at
–30°C. (Tenax is a registered trademark of
Buchem B.V., Apeldoorn, Netherlands.) The
cold trap was then rapidly heated to 225°C
and held at that temperature for 0.1 min to
transfer the contents to the analytical column
via a fused silica transfer line, maintained at
200°C. No inlet or outlet splitting was used.

Samples were quantified against external
standards prepared by drawing precisely
metered volumes of benzene vapor through
identical adsorption tubes at 50 mL/min. All
benzene vapor standards were prepared by
serial dilution as follows: 2 µL liquid benzene
(99.9%, Fisher Scientific, Pittsburgh, PA) was
injected with a 10-µL syringe (Hamilton Co.,
Reno, NV) into a 250-mL sealed glass con-
tainer from which various volumes were
removed with a 250-µL Gastight syringe
(Hamilton Co.) and injected into a 10- or 40-
L Tedlar bag (SKC Inc.), which had been
filled with a precisely metered volume of zero-
grade air. For example, to achieve a benzene
vapor standard of 0.035 mg/m3 (11 ppb),
200 µL of vapor from the glass container was
injected into 40 L zero-grade air. These stan-
dards were analyzed in the same manner as
the samples. Calibration curves, using at least
five points, were determined by linear least-
squares regression. The limit of quantitation
(LOQ) was estimated as three times the aver-
age size of a residual benzene peak from
analysis of a conditioned air sampler. 

Determination of sampling rates for ben-
zene by passive monitors. Although sampling
rates for benzene by Tenax-based passive
monitors have been reported for periods of
hours to weeks (50), no applications have
been reported for periods of a few minutes.
Thus, we conducted chamber experiments
to estimate the sampling rate for benzene by
the passive monitors between 1 and 10 min.
The chamber (Figure 3) consisted of a glass
flask (1,120-mL) sealed with an aluminum
foil-covered rubber stopper and a rubber
septum. A Gastight syringe was used to
inject 205 µL benzene vapor (17,800 mg/m3

at 22°C) into the flask to produce an atmos-
phere of 3.2 mg/m3 (1.0 ppm) benzene. A
magnetic stir bar with blades fashioned from
aluminum foil constantly mixed the air.
Two passive monitors, each sealed on one
end, were exposed simultaneously for each
test. After exposure, monitors were analyzed
by thermal desorption-GC/FID and sam-
pling rates were calculated.

CO2 content of breath samples. We inves-
tigated the assumption of alveolar sampling
by measuring the levels of CO2 in supple-
mentary breath samples. Five volunteers each
provided three breath samples following brief
instruction. To measure the CO2 levels we
punctured the septa that sealed the bulbs

with 16 gauge needles and used ultra high
purity N2 at a flow rate of 96.5 mL/min to
flush the samples through a Sable CA-1 CO2
Analyzer (Sable Systems, Henderson, NV).
The peak CO2 readings were normalized to
the average of the peak readings measured for
bulbs filled with a standard clinical blood gas
mixture containing 5.0% CO2 in air
(National Specialty Gases, Durham, NC).

Storage stability of breath samples. We
evaluated the sample integrity during storage
by measuring the benzene content of stan-
dard breath samples over a 4-week period.
Thirteen sampling bulbs were filled with
benzene in zero-grade air at a concentration
of 105 µg/m3 and then stored in the dark at
room temperature. Groups of at least 4
bulbs were analyzed after 0, 14, and 28 days
had elapsed. 

Statistical analysis. We used mixed-
effects models to investigate levels of ben-
zene in ambient air and breath using the
MIXED procedure available with SAS
Statistical Software (SAS Institute, Cary,
NC). Histograms and the Shapiro-Wilks test
for normality indicated that the distributions
of exposure and breath concentration were
positively skewed and approximately lognor-
mal. These variables were log-transformed
(base e) before analysis to provide nearly
Gaussian distributions and to stabilize the
variances. Two separate models were used:
the first with the log-transformed benzene
exposure as the response variable (Model 1),
and the second with the log-transformed
breath concentration as the response variable
(Model 2). 

The general mixed model equation is 
Yi = XiA + ZiBi + ei,

where Yi is a vector of observations of the
response variable at different times for the
i-th individual; Xi is a matrix of observed
values of fixed-effect predictor variables for
the i-th individual; A is a vector of fixed
regression coefficients describing the associa-
tion between Y and X; Zi is a matrix of
observed values of random-effect predictor
variables for the i-th individual; Bi is a vector
of individual regression coefficients for these
random effects; and ei is a vector of within-
person random errors (54).

Model 1 is presented in nonmatrix form
as follows:

for m = 1, 2, … , p covariates, 
for i = 1, 2, … , k individuals, 
for j = 1, 2, … , ni measurements of the 
i-th individual,

where Xij represents the exposure level on the
j-th day for the i-th individual, and Yij is the
natural logarithm of the individual measure-
ment Xij. The logged variate Yij represents

the sum of the effects consisting of α0 repre-
senting the intercept, αm representing the
fixed effect for the m-th variable, βi repre-
senting the random effect for the i-th indi-
vidual, and εij representing the random error
for the j-th observation on the i-th individ-
ual. Additionally, categorical variables were
represented by g-1 indicator variables for the
g levels of each variable. It is assumed that
βis and εijs are normally distributed with
means of zero and variances of σ2

B and σ2
W,

respectively (representing the between- and
within-person components of variance).
Model 2 differs from Model 1 only in its
response and explanatory variables.

For Model 1 the Yi were estimated as
ln(Exposure) and the Xi consisted of the
observed values for the following variables:
duration of exposure (minutes), height of
subject (centimeters), sex, octane grade of
gasoline (87, 89, 93, or diesel), season (fall,
spring, summer), subject’s reporting of high
humidity conditions (yes or no), subject’s
reporting of hot ambient temperature (yes or
no), and subject’s reporting of a noticeable
breeze (yes or no). (The final three variables
were gleaned from subjects’ responses to
“notable weather conditions” in the ques-
tionnaire.) Of these, all variables were cate-
gorical except for duration of exposure and
the subject’s height. For Model 2 the Yi were
estimated as ln(Breath) and the Xi consisted
of the observed values for the following vari-
ables: benzene concentration in breath
before refueling [ln(Preexposure breath,
parts per billion)], exposure [ln(Benzene
exposure, parts per million)], duration of
exposure (minutes), time lag between the
end of refueling and collection of postrefuel-
ing breath sample (minutes), height (cen-
timeters), weight (kilograms), body mass
index (BMI; kilograms per meter squared),

Y X Vij ij m m i ij
m

p

= ( ) = + + +∑
=

ln α α β ε0
1
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Figure 3. Apparatus for determining sampling rates of
benzene by passive monitors. Passive monitors were
exposed in duplicate to a well-mixed atmosphere with
a benzene concentration of 3.2 mg/m3 (1.0 ppm) for
short periods. Sampling rates (ng/ppm/min) were cal-
culated from the mass of benzene absorbed (as deter-
mined by GC analysis) and the duration of the test.

Stopper

1,120 mL glass flask

Passive monitors

Silicone septum

Magnetic stir bar



and sex. All predictor variables except sex
were continuous.

In the 130 sets of measurements, 97 pre-
exposure breath samples (75%), 128 post-
exposure breath samples (98%), and 114
external exposure samples (88%) were above
the LOQ. Measurements below the LOQ
were assigned a value of two-thirds of the
limit before statistical analysis. Restricted
maximum likelihood (REML) estimation
was chosen because of its strong finite sam-
pling properties and its advantage in treating
unbalanced data (55).

We used manual backward stepwise
regression procedures to build models for
each of the two response variables from the
available covariates and their plausible two-
way interactions. The least significant vari-
able was eliminated at each step, and the
models were refitted until only those vari-
ables with a significance level of p < 0.05
remained. Regression diagnostics were limit-
ed to the investigation of collinearity among
the potential variables using a simple Pearson
correlation matrix (neither eigenvalues nor
condition indices were calculated), and to
graphical analysis of the observed residuals.
To avoid computational inaccuracies due to
potential scaling problems, measurement
units of the variables were chosen to be simi-
lar in ranges. Extreme values identified using
the UNIVARIATE procedure available with
SAS Statistical Software were investigated for
data-input errors, but no data were excluded
from the analysis. 

Results
Sampling rate of benzene by passive moni-
tors. We estimated the rate of diffusive sam-
pling of benzene from pairs of monitors
exposed in a chamber to a concentration of
3.2 mg/m3 (1 ppm) for periods of 1–10 min.
As shown in Figure 4, the sampling rate
decreased from 2.1 ng/ppm/min (corre-
sponding to 0.66 cm3/min) for a 1-min
exposure to 1.5 ng/ppm/min (0.47 cm3/min)
for a 10-min exposure.

CO2 content of breath samples. The CO2
content of the replicate breath samples
obtained from five volunteers is shown in
Table 2. Analysis of variance found no signif-
icant differences among subjects (p = 0.28).
The weighted mean benzene concentration
was 4.56%, which compares favorably with
published measurements of 4.6–4.7% CO2
using another accepted measure of alveolar
air sampling (56). Because alveolar air is con-
sidered to be 4–5% CO2 (57), the results
indicate that the breath monitors are effective
in capturing alveolar air.

Storage stability of breath samples.
Measurements of the benzene content of
standard breath samples stored for up to 4
weeks are shown in Table 3. The results
indicate that benzene can be stored in the
glass breath samplers for at least 2 weeks
before analysis with losses of < 5% and a
coefficient of variation of < 2%. 

Exposure and breath concentrations.
Measurements of benzene exposure and ben-
zene in breath are summarized in Table 4.
Prerefueling breath concentrations of benzene
averaged 8.6 µg/m3 (SD = 11.2 µg/m3) with a
range of < 3.2–70 µg/m3, and postexposure

breath levels averaged 160 µg/m3 (SD = 260
µg/m3) with a range of < 3.2–1,400 µg/m3.
Benzene exposure averaged 2.9 mg/m3 (SD =
5.8 mg/m3) with a range of < 0.076–36
mg/m3. The median refueling time was 3 min
with a range of 1–10 min.

Within- and between-person variance
components. We used mixed-effects regres-
sion analysis to obtain REML estimates of
between-person and within-person variance
components, as summarized in Table 5 (58).
The estimated within-person variance com-
ponent contributed most of the variation in
both exposure and breath measurements,
indicating that variability among individuals
was small relative to that occurring within an
individual fueling his or her vehicle at differ-
ent times. The intraclass correlation coeffi-
cient (ratio of the between-subject variance
component to the total variance) was zero
for exposure measurements and 0.26 for
breath measurements. An intuitive measure
of the variability of log-normally distributed
variates is R̂ 0.95, defined as the estimated
fold range containing 95% of the observa-
tions (59). As shown in Table 5, the values
of R̂0.95 for these datasets were 274 for expo-
sure and 41 for benzene in breath. 

Benzene in breath versus benzene expo-
sure. The relationship between benzene in
breath and benzene exposure is illustrated
with the scatter plot shown in Figure 5.
Because of the small intraclass correlation of
exposure and breath measurements noted in
Table 5, repeated measurements from the
same individual can be treated as independent
observations. Overall, we observed significant
linear correlation between the 130 pairs of
log-transformed exposures and breath levels (r
= 0.77, p < 0.0001). 

Mixed-effects models. Results of fitting
Model 1 to the exposure data are summarized
in Table 6. The final model contained three
significant predictors of benzene exposure,
namely, fuel octane grade (p = 0.0011), dura-
tion of exposure (p = 0.0054), and season (p =
0.032). Among the types of fuels, mid-grade
unleaded gasoline was associated with the
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Figure 4. Short-term sampling rates of benzene by
passive monitors. Each point represents the estimated
mean ± SD from duplicate measurements. The sam-
pling rate decreased markedly as length of exposure
increased.
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Table 2. CO2 levels (%) in breath monitors.

Subject Sample 1 Sample 2 Sample 3

A 4.7 4.7 5.1
B 5.0 NA 4.9
C 4.1 4.4 4.2
D 4.5 4.8 NA
E 5.1 3.4 3.6

NA, not available (lost during analysis). The weighted
mean for all subjects is 4.56%. 

Table 3. Recovery (%) of benzene from breath
monitors stored for various periods of time.

Storage Mean recovery 
period (%) No. SD CV

No storage 100 4 1.3 1.3
2 Weeks 96 4 1.5 1.6
4 Weeks 92 5 6.0 6.5

CV, coefficient of variation. 

Table 4. Summary of levels of benzene in environmental air and breath during automobile refueling.a

No. Mean ± SD (mg/m3) Minimum (mg/m3) Maximum (mg/m3)

Exposure 130 2.9 ± 5.8 < 0.076 36
Breath, preexposure 130 0.0086 ± 0.011 < 0.0032 0.070
Breath, postexposure 130 0.16 ± 0. 26 < 0.0032 1.4
aDuration 1–10 min (median = 3 min).

Table 5. REML estimates of covariance parameters based on mixed-effects models including important
covariates.

Measure Variance component Estimate Percent of total R̂0.95
a

ln(Exposure) Between-person 0.00 0% 274
(mg/m3) Within-person 2.05 100%

ln(Concentration in breath) Between-person 0.23 26% 41
(µg/m3) Within-person 0.67 74%

aFold range containing 95% of the lognormal distribution of levels. 



highest benzene exposures and diesel fuel with
the lowest; among seasons, fall was associated
with the highest exposures and spring with
the lowest. The magnitude of benzene expo-
sure decreased with increasing duration.
Figure 6 summarizes the effects of octane and
season upon benzene exposure with duration
held constant at the median value of 3 min.
Neither the subject’s height nor any of the
weather-related variables were found to signif-
icantly affect benzene exposure.

Fitting of Model 2 to the data yielded
three significant predictors of benzene levels
in breath, namely, benzene exposure (p =
0.0001), preexposure breath concentration (p
= 0.0008), and duration of exposure (p =
0.038). Table 7 presents the parameter esti-
mates for the model and the tests of fixed
effects. The parameter estimate for duration
of exposure was positive, in contrast to Model
1, where it was negative. None of the follow-
ing variables were found to have a significant
effect: time lag, sex, BMI, weight, or height. 

Discussion

We observed remarkable variability of ben-
zene exposures during automobile refueling,
with 95% of the concentrations covering a
274-fold range (Table 5). Faced with such
great variability in air levels, large numbers of

observations are required to adequately char-
acterize exposures. To obtain sufficient data
for this purpose, it is necessary to apply
methods that allow more measurements to be
made at a given cost (59,60). Our approach
to increasing sample size was to use passive
monitors suitable for use by the subjects
themselves and to package the devices in sim-
ple test kits that can be transported via the
mail. Although several recent studies have
used self-monitoring to obtain exposure data
from workers (61–63), we are unaware of
any other application of self-monitoring to
obtain exposure data from the general public.

Despite the simplicity of our study design
and methods, the benzene exposures we mea-
sured were not markedly different from those
reported in recent conventional studies of
automobile refueling, as summarized in
Table 8. We estimated a mean benzene
exposure of 2.9 mg/m3 (n = 130) compared
to mean values of 1.3 mg/m3 (n = 120 mea-
surements pooled from 1,013 self-service
customers in the United States) (18), 0.9
mg/m3 (n = 8 measurements pooled from
167 self-service customers in Finland, where
benzene is also limited to 1% by volume)
(21), and a median value of 1.3 mg/m3 (n =

30 self-service customers in Alaska at tem-
peratures of –3°C and below) (44). 

Because we obtained repeated exposure
measurements from the subjects, it was possi-
ble to estimate the within- and between-per-
son variance components. Such partitioning
of exposure variability allows inferences to be
made regarding the relative influences upon
exposure of both environmental factors,
indicated by within-person variation, and 
subject-specific factors, indicated by between-
person variation (64). That is, if exposure
were governed largely by random factors
related to the mix of locations, atmospheric
conditions, content of benzene in fuel, dura-
tion of refueling, movements patterns, etc.,
experienced by a typical subject on different
days, the within-person variance component
would represent most of the variability. In
contrast, if factors specific to the individual,
such as body size, behavior (e.g., always fac-
ing away from the nozzle during refueling),
or type of vehicle, were important, the
between-person variance component would
represent a sizable proportion of the total
variation. Because the estimated within-per-
son variance component (Table 5) accounted
for all of the variation in benzene exposures
estimated in our study, we conclude that
environmental rather than subject-specific
factors were primarily responsible for ben-
zene exposures during automobile refueling.
In a study of benzene exposures among gaso-
line-station attendants, Lagorio et al. (65)
similarly reported a large within-person com-
ponent of variance, comprising about 83% of
the total variance. 

Our analysis yielded three significant
predictors of benzene exposure, namely, fuel
octane grade (p = 0.0011), season (p =
0.0322), and duration of refueling (0.0054).
Regarding octane grade, benzene exposures
were lowest when diesel fuel was dispensed
and highest when mid-grade (89-octane)
gasoline was dispensed. The finding that
diesel fuel led to smaller exposures was
expected because diesel fuel is known to have
a very low benzene content, generally below
0.02% (66). However, the elevated expo-
sures associated with mid-grade gasoline are
more difficult to interpret. Octane grade
does not refer to the hydrocarbon content
but rather to the knock resistance of gasoline
that can be achieved through a variety of

Articles • Benzene monitoring during self-service refueling

Environmental Health Perspectives • VOLUME 108 | NUMBER 12 | December 2000 1199

Figure 5. Correlation between benzene exposure and
concentration in breath. post – pre, postexposure –
preexposure. Repeated measurements from the same
individual were treated as independent observations,
and a significant linear correlation was observed
between the log-transformed exposures and breath
levels (n = 130, r = 0.77, p < 0.0001). 
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Figure 6. Estimated exposures for a typical refueling
time of 3 min. Mixed-effects analysis found octane
grade, season, and refueling duration to be significant
determinants of benzene exposure. Here duration is
held constant to illustrate the effects of octane grade
and season. 
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Table 6. Fixed effects for benzene exposure.

Effect Estimate SE p-Value

Intercept –0.25 0.39 –
Duration (min) –0.24 0.084 0.0054
Octane – – 0.0011

Diesel –2.22 0.88 0.0131
87 Grade –0.04 0.30 0.8935
89 Grade 1.21 0.45 0.0081
93 Grade 0 – –

Season – – 0.0322
Fall 0.27 0.35 0.4400
Spring –0.53 0.30 0.0844
Summer 0 – –

Table 7. Fixed effects for benzene in breath after
refueling.

Effect Estimate SE p-Value

Intercept 3.05 0.217
ln(Exposure) 0.70 0.051 0.0001
ln(Preexposure) 0.32 0.091 0.0008
Duration (min) 0.11 0.055 0.0384

Table 8. Recent short-term measurements of benzene concentration during gasoline refueling. 

Avg duration Mean Maximum % Benzene
Year Reference Country (minutes) No. (mg/m3) (mg/m3) in fuel

1993 Clayton (18) United States 1.72 120a 1.3 8.4 1.6b

1997 Backer et al. (44) United States NR 30c 1.3d 2.7 0.87
1999 Vainiotalo et al. (21) Finland 1.13 8a 0.9 NR 0.64

Abbreviations: Avg, average; NR, not reported. 
aEach sample was comprised of 8–10 (18) or 20–21 (21) different refuelings. bRange: 0.35–4.1. cRegular (non-ethanol)
unleaded gasoline group only. dMedian. 



hydrocarbon blends (67), and no apparent
association between octane grade and ben-
zene exposure has been established. Only
two recent studies provide data regarding the
benzene content of different grades of gaso-
line. In the first of these, regular unleaded
gasoline (87-octane) was reported to have
the highest benzene content at four of six
locations (18), whereas in the second, octane
grade was reported to be inversely related to
benzene content in two of three cities (68). 

Regarding the seasonal effect on benzene
exposure during refueling (p = 0.032), proper-
ties of the fuel (e.g., vapor pressure and ben-
zene content) could be involved as well as
meteorologic differences (17,19,37,65,69–73).
Gasoline is often designated as either “winter
blend” or “summer blend” because its volatil-
ity reaches a maximum during winter and a
minimum during summer to ensure good
“driveability” and to comply with regulations
restricting evaporative hydrocarbon emissions
(16,74). Previous studies have reported high-
er exposures in winter than in summer
(20,75) and also have identified body orien-
tation as an important contributor (in cold
weather people tend to lean over the pump
nozzle thereby placing their heads directly
into the rising vapor stream) (20). Our find-
ing that benzene exposures were higher in
summer than in spring cannot readily be
explained by known seasonal volatility differ-
ences in gasoline. Furthermore, our study
included no winter measurements and thus
did not permit the full range of seasonal fac-
tors to be investigated.

Duration of refueling was inversely related
to benzene exposure in our investigation (p =
0.0054). Because Lagorio et al. (65) and
Backer et al. (44) reported that the volume of
fuel dispensed was an important predictor of
benzene exposure among service-station
attendants and self-service customers, respec-
tively, our finding of lower exposures at
longer durations of refueling might appear
contradictory. However, given generally rapid
gasoline dispensing rates (30–40 L/min) and
the rather long refueling times in our study
(ranging up to 10 min, with a median of 3
min), it seems unlikely that longer durations
corresponded to larger dispensed volumes.
Rather, we suspect that longer durations of
refueling reflected ancillary tasks associated
with payment, checking oil levels, cleaning
windshields, etc., where benzene concentra-
tions would be very low. Because individuals
continued to wear the personal monitors dur-
ing such periods of very low exposure, the
time-weighted average air concentration
recorded with a long duration (many ancillary
tasks) would therefore be smaller than one
with short duration (few ancillary tasks). 

The mean concentration of benzene in
breath before refueling was 8.6 µg/m3 (Table

4). Because benzene concentrations have
been found to be 3–8 times higher inside a
passenger vehicle than in ambient air
(10,13,46), this level is probably higher than
the background value in the ambient area.
Background levels of benzene in the breath
of nonsmokers have been reported to be
between 0.8 and 5.3 µg/m3 in the United
States (76) and to average 6.2 µg/m3 in an
urban population in Sweden (77).

Immediately after refueling, benzene lev-
els in the breath of our subjects ranged from
< 0.0032 to 36 mg/m3

, with a mean value of
0.16 mg/m3. This range is consistent with a
pair of measurements by Lindstrom and Pleil
(45), who reported a benzene concentration
of 0.025 mg/m3 for a single subject immedi-
ately after dispensing fuel and 0.007 mg/m3

for an observer. In a study of self-service
gasoline refueling in Alaska, Backer et al. (44)
reported benzene levels between 0.13 and
4.20 ppb in venous blood among 60 sub-
jects. Assuming a blood/breath partition
coefficient of 7.4 (38), these blood concen-
trations correspond to a range of benzene
concentrations in alveolar air between 0.019
and 0.60 mg/m3, which also seems reason-
able in light of our findings. 

The range containing 95% of the postex-
posure breath concentrations was 41-fold
compared to the 274-fold range for the cor-
responding distribution of exposures during
refueling (Table 5). This reduction in vari-
ability of a biomarker (i.e., benzene in
breath) relative to the corresponding expo-
sure distribution arises from accumulation of
the contaminant in the body and has been
observed over both long and short time
scales [reviewed by Rappaport (59)]. Such
physiologic damping of exposure variability
provides an impetus for using benzene in
breath as a biomarker of exposure in future
studies of automobile refueling.

Because three-fourths of the variability of
benzene measurements in breath was associ-
ated with the within-subject variance com-
ponent (Table 5), we conclude that breath
levels were affected primarily by environ-
mental factors operating at different times of
refueling rather than by interindividual dif-
ferences among the subjects. This conclusion
is consistent with results shown in Table 7,
which indicate that although benzene in
breath (after refueling) was highly associated
with both benzene exposure [ln(Exposure):
estimated coefficient = 0.70, p = 0.0001] and
the preexposure breath concentration
[ln(Preexposure): estimated coefficient =
0.32, p = 0.0008], subject-specific differences
in sex, height, weight, and BMI were not sig-
nificantly associated with breath levels. The
duration of exposure was also positively asso-
ciated with benzene in breath (estimated
coefficient = 0.11, p = 0.038) suggesting that

over the few minutes our subjects were
exposed, the benzene concentrations in blood
and breath increased as the contaminant was
distributed to the highly perfused tissues
(43,78). 

The ratio of the alveolar benzene con-
centration to inspired benzene concentration
has typically been in the range of 0.4–0.6 at
steady state [111–223 µg/m3 for 0.5–2 hr,
Yu and Weisel (79); 80–100 µg/m3 for 3–4
hr, Hunter and Blair (25)], whereas a medi-
an value of 0.17 has been reported for mixed
exhaled air among subjects exposed to ben-
zene in residential settings (76). These ratios
represent the fractions of the inhaled ben-
zene dose that are exhaled unchanged at
steady state (80). The median ratio of alveo-
lar air to inspired air among our subjects was
considerably lower at 0.06, again reflecting
non–steady-state conditions associated with
the short duration of exposure (43,78,81,82)
and also reflecting the rapid elimination of
benzene following exposure (82,83).
Likewise, we suspect that this brief duration
of exposure reduced any potential effects of
BMI and sex upon benzene in breath, which
might have been anticipated due to variation
in body fat among subjects (23,25). For
example, previous chamber studies [80
mg/m3 for 2 hr, Sato et al. (29)] showed that
women, who have more body fat than men,
had decreased respiratory excretion of ben-
zene compared to men, and physiologically
based pharmacokinetic (PBPK) modeling
[simulation of 32 mg/m3 for 8 hr, Brown et
al., (84)] predicted that women would have
greater metabolism of benzene than men.

Conclusions

This study documents exposure to benzene
during self-service refueling. Using mixed-
effects regression models and repeated mea-
surements, we showed that the within-person
component of variability was quite large for
both exposures during refueling and the
resulting concentrations in breath. This sug-
gests that environmental rather than individ-
ual factors were primarily responsible for the
magnitude of benzene exposure during
refueling. Of the possible environmental fac-
tors affecting benzene exposure, we found
significant effects due to fuel-octane grade
(mid-grade gasoline produced the highest
exposures), season (exposures were greatest in
the fall), and duration of refueling (longer
times led to lower air concentrations). We
also found that levels of benzene in breath
were greatly affected by the exposure concen-
tration and the preexposure breath level of
benzene, and that the duration of refueling
increased breath levels slightly. Finally, this
study demonstrated the utility of self-collec-
tion of samples of both environmental air
and breath among subjects from the general
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population. Although not yet in common
practice, self-administered monitoring offers
an efficient alternative to traditional methods
for collecting the large numbers of measure-
ments necessary to accurately characterize
exposures and the relationships between
exposure and biomarker levels.
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