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Arsenic, considered a human carcinogen
(1–4), is present in high concentrations at
many toxic waste sites through disposal of
arsenic-containing compounds from indus-
trial and mining practices. In addition,
arsenic can accumulate in groundwater and
well water from natural sources. Certain geo-
logical formations contain high levels of
arsenic that can easily leach into groundwa-
ter and find their way into wells and other
public water supplies (5). This has been a
major problem in certain parts of the world
including areas of Taiwan, South America,
India, and Pakistan. Epidemiological studies
of these populations have demonstrated a
significant increase in the risk of lung, skin,
liver, bladder, and other cancers associated
with high levels of arsenic in drinking water
(1–4), and most of the world’s arsenic stan-
dards are based on risk assessment models of
these data from high-exposure populations.
More recently it has become apparent that
regions of the United States have similar
sources of natural arsenic that can contribute
to elevated drinking-water levels, including
areas of New Hampshire, Michigan,
Nevada, and California (6,7). For example,
in New Hampshire, where 40% of the pop-
ulation drinks from private wells, as much as
8% of the population (one-fifth of all private
well users) is exposed to arsenic levels
between the current standard of 50 ppb
(0.67 µM) and the U.S. Environmental
Protection Agency’s (EPA’s) new proposed

standard of 10 ppb (0.14 µM), and many
wells have arsenic concentrations in the
range of 100–800 ppb (6,7). Thus, under-
standing the cellular changes that occur in
this range of exposures that may contribute
to carcinogenesis is important for both theo-
retical and practical reasons.

As one way to assess its biological mecha-
nism of action, we have examined the effects
of arsenite on gene expression. Our labora-
tory has previously shown that a single, low,
nonovertly toxic dose of arsenite can signifi-
cantly and preferentially alter both the basal
and inducible mRNA expression of the
model hormone-inducible phospho-
enolpyruvate carboxykinase (PEPCK) gene,
both in whole-animal and in cell-culture
models (8). These same treatments had no
effect on expression of noninducible or con-
stitutively expressed genes in these same sys-
tems (8). An important mechanism for
altering gene expression in response to both
endogenous and exogenous signals, includ-
ing toxins, is altering nuclear transcription
factor activities either directly or via specific
cell-signaling pathways that regulate them.
These effects were examined in a rat
hepatoma cell line (H4IIE), previously
shown to be sensitive to arsenite-induced
alterations in gene expression (8). The
PEPCK gene is primarily transcriptionally
regulated, and its protein product, the cytoso-
lic PEPCK enzyme, is the rate-limiting step in
gluconeogenesis (9,10). The regulation of this

gene has been well characterized at both the
physiological and molecular levels (10), and
it is therefore an excellent model for examin-
ing mechanisms of gene regulation and their
perturbation by toxic agents. Previous work
in our laboratory demonstrated that toxin
effects on PEPCK mRNA expression were
primarily a result of changes in gene tran-
scription rates (11). Effects of arsenic on
PEPCK expression may also provide impor-
tant clues as to how these toxic metals per-
turb homeostatic mechanisms, which may
contribute to their overall toxicity.

Previous studies by Imai and co-workers
(12) have shown that the first approximately
600 base pairs (bp) of the PEPCK promoter
is sufficient to provide tissue-specific hor-
mone regulation. Examining a luciferase
construct under the transcriptional control
of a 679 bp region of the proximal rat
PEPCK promoter (positions –592 to +87),
we have shown that arsenite treatments alter
both basal and hormone-induced luciferase
expression when stably integrated into
H4IIE cells (8). This transgene responded
normally to induction by the synthetic glu-
cocorticoid, dexamethasone (Dex), and this
induction was blocked by pretreatment of
the cells with a nontoxic dose of arsenite,
similar to the effects of arsenite on native
PEPCK in this system (8). Site-directed
mutagenesis of the glucocorticoid response
unit essentially abolished both the Dex
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Chronic human exposure to nonovertly toxic doses of arsenic is associated with an increased risk of
cancer. Although its carcinogenic mechanism is still unknown, arsenic does not directly cause
DNA damage or mutations and is therefore thought to act principally as a co-mutagen, co-carcino-
gen, and/or tumor promoter. Previous studies in our laboratory demonstrated that effects of low-
dose arsenic (III) (arsenite) on expression of the hormone-regulated phosphoenolpyruvate
carboxykinase (PEPCK) gene were strongly associated with the glucocorticoid receptor (GR)-medi-
ated regulatory pathway. We therefore examined specifically the effects of arsenite on the biochem-
ical function of GR in hormone-responsive H4IIE rat hepatoma cells. Completely noncytotoxic
arsenite treatments (0.3–3.3 µM) significantly decreased dexamethasone-induced expression of
transiently transfected luciferase constructs containing either an intact hormone-responsive pro-
moter from the mammalian PEPCK gene or two tandem glucocorticoid response elements (GRE).
Western blotting and confocal microscopy of a green fluorescent protein-tagged–GR fusion pro-
tein demonstrated that arsenite pretreatment did not block the normal dexamethasone-induced
nuclear translocation of GR. These data indicate that nontoxic doses of arsenite can interact
directly with GR complexes and selectively inhibit GR-mediated transcription, which is associated
with altered nuclear function rather than a decrease in hormone-induced GR activation or nuclear
translocation. Key words: arsenic, carcinogenesis, endocrine disruptor, gene regulation, glucocorti-
coid receptor, metal, transcription factor. Environ Health Perspect 109:245–251 (2001). [Online
26 February 2001]
http://ehpnet1.niehs.nih.gov/docs/2001/109p245-251kaltreider/abstract.html



response and the arsenite effect, suggesting a
direct role for the glucocorticoid receptor
(GR) and transcription in the arsenite
response. Sutherland et al. (13) showed that
arsenite treatments reduced the responsive-
ness of both the native PEPCK gene and a
stably integrated, full-length PEPCK-chlo-
ramphenicol-acetyl transferase (CAT) con-
struct to a combination treatment of Dex
and cAMP. These effects were primarily a
result of changes in mRNA expression (13).
These data suggest a possible role of GR in
arsenite-induced alterations in gene expres-
sion. We were therefore interested in deter-
mining whether nontoxic levels of arsenite
altered the function/activity of GR. We
report that arsenite treatments can reduce
GR transcriptional function significantly,
while not interfering with the normal hor-
mone-induced nuclear translocation of this
receptor.

Methods

Plasmid constructs. The PEPCK-luciferase
(Luc) construct contains the region from
–592 (NheI restriction site) to +87 (BglII
restriction site) of the rat proximal PEPCK
promoter ligated into the pGL3-basic vector
(Promega, Madison, WI), as previously
described (8). The GRE2-Luc construct was
generated by removing two tyrosine amino-
transferase (TAT) glucocorticoid response
elements (GRE) from a pXP2 GRE(2)-Luc
construct (14) (a generous gift from J.
Bodwell, Dartmouth Medical School) with
BamHI and KpnI restriction enzyme diges-
tion. This region was then ligated into the
KpnI and BglII sites of a pGL3-promoter
vector (Promega). All plasmids were grown
in Escherichia coli JM109 strain. Plasmid
DNA was purified using Qiagen columns
(Qiagen, Valencia, CA), as per the manufac-
turer’s protocol. Plasmids containing inserts
were sequenced with an ABI PRISM
DyeDeoxy Terminator Cycle Sequencing
Kit (PE-BioSystems, Foster City, CA) using
RVPrimer3 (upstream) and GLPrimer2
(downstream) (Promega). We checked all
sequences against GenBank sequences using
the Blast sequence analysis program to
ensure specificity. We used a pGL3-control
luciferase vector, which contains SV40
enhancer and promoter regions, to deter-
mine the effect of our treatments on the par-
ent backbone (Promega).

Cell culture treatments and transfections.
H4IIE rat hepatoma cells were cultured as
previously described (8,15). All chemicals
were purchased from Sigma Chemical
Company (St. Louis, MO). Arsenic(III) was
administered as sodium arsenite (NaAsO2)
at the indicated doses in water. Stock solu-
tions of Dex and RU-486 were generated at
0.1 mM in water or ethanol, respectively,

and stored at –20°C. Before cell treatments,
stocks were diluted in water and added to
the cells at the indicated concentrations. For
transfection assays, cells were plated into
Falcon six-well culture dishes (Becton
Dickenson, Lincoln Park, NJ) at 5 × 105

cells per well. The following day, we per-
formed transfections using LipofectAMINE-
PLUS reagent (Gibco-BRL, Grand Island,
NY), as per the manufacturer’s protocol.
Briefly, 2 µg of vector DNA were added to
cells in 10 µL lipofectamine and 8 µL Plus
reagent diluted in 200 µL incomplete culture
media. After a 3-hr incubation, we adjusted
serum levels to 3% by adding completed
media, and the cells were allowed to recover
overnight. Chemical treatments were per-
formed the following day in a 1% serum-
containing media and incubated overnight
(except in experiments represented in Figure
5, in which cells were treated and incubated
for 4–10 hr before protein isolation). Cell
lysates were generated after two cold washes
in phosphate-buffered saline (PBS) by addi-
tion of 400 µL of a 1× lysis buffer (Promega)
and scraping. Lysates were cleared of debris
by a 4°C centrifugation at 12,500 × gavg for
2 min. Supernatants were saved and stored
at –70°C for at least 30 min before analysis.
We performed luciferase assays using 45 µL
of the lysates and 100 µL of the luciferin
reagent (Promega) with an integration over 5
sec on an EG&G Berthold luminometer
(Oak Ridge, TN).

Protein isolation. We isolated cytoplas-
mic and nuclear protein as described previ-
ously (15,16). Briefly, after chemical
treatments, cells were washed with ice-cold
PBS, and then a modified Garrison’s buffer
[20 mM Tris-HCl, 2 mM EDTA, 1 mM
EGTA, 0.1% digitonin with 0.01 mM pro-
tease inhibitor combination dithiothreitol
(DTT), L-1-p-tosylamino-2-phenylethyl
chloromethyl ketone (TPCK), leupeptin,
soybean trypsin inhibitor, and benzamidine]
was added. The cells were shaken gently at
room temperature for 5 min and then
scraped and spun at 4°C for 13,600 × gavg
for 5 min, and supernatant was isolated as
cytosolic protein fraction. The remaining
pellet was then processed for nuclear extracts
by the procedure of Dignam (17) as modi-
fied by Janssen et al. (18). Briefly, the pellet
was washed with 1.0 mL of buffer A (10
mM HEPES, 0.1 mM EDTA, 0.1 mM
EGTA, 10 mM KCl, and 0.01 mM of the
protease inhibitor combination) and then
spun at 13,600 × gavg for 2 min at 4°C.
Nuclei were resuspended in 40 µL of buffer
C (20 mM HEPES, 0.42 M NaCl, 1 mM
EDTA, 0.1 mM EGTA, and 0.01 mM of
the protease inhibitor combination) by shak-
ing 15 min in a cold room. Samples were
spun at 13,600 × gavg for 5 min at 4°C to

pellet the nucleic acids. The supernatant was
removed and combined with 60 µL of
Buffer D [20 mM HEPES, 20% (v/v) glyc-
erol, 1 mM EDTA, 0.1 mM EGTA, 1%
Nonidet-P40, and 0.01 mM of the protease
inhibitor combination] for the nuclear pro-
tein extracts. Protein concentrations were
determined by a standard absorbance assay
[bicinchoninic acid (BCA) assay; Pierce
Chemical Co., Rockford, IL] (8,16).

Total cellular lysates. After chemical
treatments, cells were washed with ice-cold
PBS/EDTA. Whole-cell lysates were gener-
ated in 800 µL of an SDS lysis buffer (2%
SDS, 62.5 mM Tris, pH 6.8, 10% glycerol,
0.01 mM DTT, and protease inhibitors).
Flasks were gently rocked for 5 min in the
cold room, and lysates were collected by
scraping cells into 2-mL tubes followed by
sonication (12 times with 1-sec pulses in the
cold room). We calculated the final volume
and added an appropriate amount of 1×
Laemmli sample buffer (Bio-Rad, Hercules,
CA) containing 5% 2-mercaptoethanol to
each tube and boiled samples for 2 min.
Samples were stored at –20°C until protein
analysis was performed.

GR immunoprecipitation. After chemi-
cal treatments, cells were washed with ice-
cold PBS/EDTA, and then 1 mL of ice-cold
lysis buffer (50 mM HEPES, pH 7.2, 150
mM NaCl, 0.2% NP-40, 2 mM EGTA, 2
mM EDTA, and protease inhibitors) was
added to each flask. The flasks were shaken
gently at 4°C for 30 min by slow rocking in
the cold room and then scraped and cen-
trifuged at 4°C for 13,600 × gavg for 10 min
to clear debris. The supernatant was incu-
bated with 10 µL (20 µg) of an agarose-con-
jugated polyclonal GR antibody or a control
IgG antibody (Santa Cruz Bioreagents,
Santa Cruz, CA). The samples were then
gently shaken for 2 hr at 4°C by rocking in
the cold room. The immunoprecipitated
fraction was purified from the remaining
proteins through centrifugation at 3,000 ×
gavg for 2 min. The pellets were then resus-
pended and washed three times in lysis
buffer to obtain a clean fraction of purified
GR. Proteins were solubilized by the addi-
tion of 60 µL of a 1× Laemmli sample buffer
containing 5% 2-mercaptoethanol and
boiled for 90 sec.

Western blot analysis. We determined
cytoplasmic and nuclear GR protein levels
using a GR-specific monoclonal antibody,
FIGR (a generous gift from J. Bodwell,
Dartmouth Medical School). Briefly, protein
samples (20 µg) were diluted 2:1 in Laemmli
sample buffer (Bio-Rad) containing 2-mer-
captoethanol and boiled for 90 sec. Samples
were loaded and electrophoresed on a 4–15%
gradient SDS–polyacrylamide gel (Bio-Rad)
for 1.5 hr (45 mA) and electroblotted to

Articles • Kaltreider et al.

246 VOLUME 109 | NUMBER 3 | March 2001 • Environmental Health Perspectives



Immobilon-P membranes (Millipore,
Bedford, MA) for 17–19 hr at 70 mA in a
cold room. Membranes were blocked for
6–8 hr in 5% Carnation Instant Nonfat Dry
Milk in PBS containing 0.3% Tween
(CIMPT). Primary antibody, FIGR (5
µg/mL) or vinculin (1:400; Sigma), was
added to blots and incubated overnight at
4°C. Following washes, the secondary,
horseradish peroxidase-conjugated, anti-
mouse antibody [1:5,000 (cytosolic) or
1:100,000 (nuclear); Sigma] was added for
30–45 min at room temperature in 2%
CIMPT. Bands were visualized using the
ECL system (Amersham, Buckinghamshire,
England) for cytoplasmic proteins and
Supersignal West Femto Maximal Sensitivity
Substrate (Pierce Chemical Company) for
nuclear proteins. To control for loading and
transfer differences between the lanes, we
standardized protein levels to the constitu-
tively expressed protein vinculin by re-prob-
ing the membranes and visualization with
the ECL system.

Confocal microscopy. Cells were plated
onto glass cover slips in six-well plates at 5 ×
105 cells per well. Transfections were per-
formed as described above using 2 µg of a
full-length human GR-green fluorescent
protein (GFP) fusion protein expression vec-
tor (19) (a generous gift of I. Macara). After
chemical treatments, cover slips were washed
twice with cold PBS and fixed using 4%
formaldehyde solution for 30 min at room
temperature. After washing, DNA was
stained with propidium iodide, and RNA
was digested with RNase A for 30 min at
37°C. Cover slips were inversely mounted
on slides using Valap (1:1:1 vasoline, lano-
lin, and paraffin wax). Slides were kept dark
until imaging on a Bio-Rad MRC 1024
krypton/argon laser system using the 488 nm
and 568 nm lines for excitation of GFP. We
used Adobe Photoshop v. 4.0 for image con-
version (Adobe Systems, Inc., San Jose, CA).

Statistical analysis. We analyzed data for
statistical significance by analysis of variance,
Student’s t-test, and linear regression, where
appropriate, using Instat v. 2.0 software and
Prism v. 2.0b software programs (Graphpad
Software Inc., San Diego, CA).

Results

Arsenite inhibits basal and Dex-stimulated
luciferase expression of a PEPCK promoter-
driven construct. We conducted initial
experiments to characterize the hormone
responsiveness of the transiently transfected
PEPCK-Luc construct in this system. After
transfection, the cells were treated with
increasing doses (2.5–100 nM) of the syn-
thetic glucocorticoid Dex. As shown in
Figure 1, Dex produced a dose-dependent
increase in luciferase expression with a 

maximal expression of about 8-fold at 100
nM. Subsequent experiments with this con-
struct used 50 nM Dex, which induced
70–80% of the maximal stimulation (Figure
1). We then examined the effect of arsenite
on basal and inducible expression of this con-
struct. After transfection, cells were treated
with 3.3 mM arsenite alone or followed 2 hr
later by 50 nM Dex. Previous studies using
H4IIE cells had shown that this dose of
arsenite causes little or no cytotoxicity [≤ 5%
decrease in survival as measured by a colony
forming assay (8)]. Dex treatment alone
induced the expression of this construct to
about 6.5-fold above control (Figure 2).
Arsenite treatment (18 hr) reduced basal
luciferase expression by 50%, and a 2-hr
arsenite pretreatment almost completely
abolished Dex-inducible expression (Figure
2). These results suggested that arsenite may
alter PEPCK gene expression by suppressing
GR-dependent regulation of this promoter.

Arsenite inhibits Dex-stimulated
luciferase expression of a GRE promoter-dri-
ven construct. To examine directly the possi-
ble role of GR in the effects described above,
we used a luciferase construct under the con-
trol of two tandem GRE elements from the
rat TAT gene. We chose the TAT GRE
sequences because the PEPCK GREs have a
noncanonical sequence and can drive tran-
scription only weakly in the absence of their
adjacent accessory factor sites (20). The TAT
GREs, which differ from the consensus GRE
sequence by only one base, can act as inde-
pendent transcriptional enhancers (21). This
construct responded to Dex induction in a
dose-dependent manner that was similar to
that of the PEPCK-Luc construct (Figure 1).
We used a dose of 50 nM Dex in subsequent

experiments, which produced a 70–80% (11-
fold) of maximal hormone response (Figure
1). A 2-hr arsenite pretreatment significantly
suppressed Dex induction of this construct in
a dose-dependent manner (r 2 = 0.90)
between 0.3 and 3.3 µM (Figure 3A). The
highest arsenite dose (3.3 µM) caused > 50%
suppression in hormone inducible expression
(Figure 3A). This effect appears to be medi-
ated exclusively by GR, because the GR-spe-
cific competitive antagonist, RU-486,
completely blocked the hormone responsive-
ness of this construct (Figure 3A). To deter-
mine the time dependence of this
suppression, cells were either pretreated with
arsenite for 2, 4, or 6 hr before treatment
with Dex or treated simultaneously with
arsenite and Dex. As shown in Figure 3B, all
of these treatments led to similar levels of
suppression in Dex-inducible expression,
suggesting that the effects of arsenite on GR
function are both rapid and sustained.
Arsenite and Dex treatments had no effect
on expression of the pGL3-control luciferase
construct containing the same promoter
region with no GREs (Figure 4). This indi-
cated that the effects of arsenite on Dex-
inducible luciferase expression derived not
from a general decrease in transcription or
translation of luciferase in these cells, but
rather from a GRE-mediated transcriptional
effect.

Because these initial luciferase expression
experiments were conducted overnight, we
were concerned that these arsenite effects
may have been a result of altered GR protein
turnover rather than a specific alteration in
GR transcriptional function. Therefore, we
examined GR levels in arsenite- and Dex-
treated cells and also repeated the luciferase
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Figure 1. Effect of Dex on the expression of PEPCK-
Luc and GRE2-Luc. H4IIE cells were transfected
with either the PEPCK-Luc construct (squares) or
GRE2-Luc construct (circles) as described in
“Methods,” and then treated for 18 hr with increas-
ing doses (2.5–100 nM) of Dex. Luciferase activity
was measured in total cell lysates and data were
expressed as a percentage of the transfected, sol-
vent-treated control value. The mean relative light
units for control and background were 4,429 and 92
for the PEPCK-Luc construct and 18,227 and 84 for
the GRE2-Luc construct, respectively. Each data
point represents the mean ± SD of values from 3 to
18 individually transfected cultures from 1 to 6
independent experiments.
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Figure 2. Effect of arsenite on basal and hormone-
inducible expression of PEPCK-Luc. After trans-
fection of the H4IIE cells with the PEPCK-Luc
construct, cells were treated for 18 hr with 3.3 µM
arsenite (As), 18 hr with 50 nM Dex, or treated
with arsenite 2 hr before an 18-hr Dex treatment
(As/Dex). Luciferase activity was measured in
total cell lysates and data were expressed as a
percentage of the transfected, solvent-treated
control value. The mean relative light units for
control and background were 15,257 and 102,
respectively. Each bar represents the mean + SD
of values from 3 to 12 individually transfected cul-
tures from 1 to 4 independent experiments. 
**p < 0.01. ***p < 0.001.
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expression experiments using a much shorter
induction period. Initial experiments were
performed to determine the time course for
hormone-induced luciferase expression in
response to a 50 nM Dex. As shown in
Figure 5A, Dex treatment significantly
increased luciferase expression by as early as
4 hr, and a 6-hr treatment caused an approx-
imately 4-fold induction. We then examined
the effects of a 3.3 µM arsenite pre-, post-,
or simultaneous with treatment on a 6-hr
Dex stimulation of this construct. As shown
in Figure 5B, arsenite caused an approxi-
mately 50% suppression in Dex induction
when administrated either simultaneously
with Dex or as a 2-hr pretreatment. This is
essentially the same result as was observed in
the overnight Dex treatments (Figure 3).
Arsenite was also able to suppresses hormone
induction by approximately 50% when
given 2 hr after Dex induction had been ini-
tiated (Figure 5B), even though a 2-hr Dex
treatment alone causes maximal nuclear
translocation of GR and gene activation.
Therefore, arsenite can specifically alter GR-
dependent nuclear gene regulation in intact
cells at very low, environmentally relevant
concentrations and disrupt GR function
even after Dex-induced activation of GR.

Arsenite does not alter total cellular GR
protein levels. The protein half-life of GR is
about 8 hr in culture (22). Upon Dex stimu-
lation, the half-life of GR protein was
reduced to about 3 hr (22), and levels were
decreased by approximately 70% relative to
control (23). Therefore, we examined the
effect of arsenite treatments on total cellular
GR levels, which might lead to altered cellu-
lar function. Following treatments of 2–6 hr
with either 3.3 µM arsenite or 100 nM Dex,
whole-cell lysates were generated and GR
protein levels were determined. Arsenite
treatments did not alter the total cellular GR
protein levels, but Dex treatments rapidly

(2–4 hr) and significantly (50%) decreased
these levels (Figure 6A). This was not a gen-
eral decrease in total cellular protein levels or
discrepancy between the samples because
vinculin levels were virtually unchanged in
these samples (Figure 6). Next, we examined
the effect of a 2-hr 3.3 µM arsenite pretreat-
ment on the hormone-induced down-regula-
tion of GR. Dex treatments rapidly and
significantly decrease GR protein levels
(Figure 6B). This degradation was not
altered by the arsenite pretreatment (Figure
6B). Therefore, the mechanism by which
arsenite decreases GR function does not
appear to function through altered GR pro-
tein turnover.

Arsenite does not alter Dex-induced
nuclear translocation of GR. To determine
the basis for these inhibitory effects, we
examined whether arsenite could block the
hormone-dependent activation and nuclear
translocation of GR as part of its mechanism

of action. Simons and co-workers (24–28)
reported that the hormone- and DNA-bind-
ing ability of immuno-purified GR in vitro
could be decreased by the addition of arsen-
ite. They postulated that arsenite interacts
with critical sulfhydryls on GR to mediate
this effect. This response appeared to be
highly specific for GR because a similar effect
was not observed by arsenite on the closely
related mineralocorticoid and progesterone
receptors, which lack these sulfhydryls
(24,25,29). However, the effects on GR were
observed only at concentrations of 10 µM
arsenite or higher in their in vitro system, and
it was not clear whether similar effects would
be observed in intact cells at lower, noncyto-
toxic doses. To examine this, we initially per-
formed Western blot analysis with cytosolic
and nuclear protein fractions from arsenite-
and Dex-treated cells. As shown in Figure 7,
control cells demonstrated an abundance of
GR in the cytosol and little or no detectable
GR in the nuclear fraction. Dex treatment
alone caused an almost total disappearance of
detectable GR from the cytosolic pool and
the appearance of GR in the nuclear pool.
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Figure 3. Effect of arsenite on hormone-inducible expression of GRE2-Luc. After transfection of H4IIE cells
with the GRE2-Luc construct, cells were treated with arsenite, Dex, and RU-486 at doses and times indi-
cated. (A) Dose dependence of arsenite effect, using a 2-hr pretreatment of arsenite or 100 nM RU-486
before an 18-hr Dex treatment as shown (linear regression of dose–response data, r 2 = 0.90). (B) Time
dependence of arsenite pretreatment effect, using 3.3 µM arsenite and pretreatment times shown, or 2-hr
pretreatment with 100 nM RU-486, before an 18-hr Dex treatment. Luciferase activity was measured in
total cell lysates and data were expressed as a percentage of the transfected, solvent-treated control
value. The mean relative light units for control and background were 13,713 and 102, respectively. Each
bar represents the mean + SD of values from 3 to 18 individually transfected cultures from 1 to 6 indepen-
dent experiments. 
*p < 0.05. **p < 0.01. ***p < 0.001.
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Figure 4. Effect of arsenite on expression of pGL3-
control vector. After transfection of H4IIE cells with
the pGL3-control construct, cells were treated with
3.3 µM arsenite, 50 nM Dex, and 100 nM RU-486 as
described in Figure 3. Luciferase activity was mea-
sured in total cell lysates and data were expressed
as a percentage of the transfected, solvent-treated
control value. The mean relative light units for con-
trol and background were 219,963 and 110, respec-
tively. Each bar represents the mean + SD of
values from 3 to 6 individually transfected cultures
from 1 to 2 independent experiments.
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Figure 5. Effect of short-term arsenite treatment
on hormone-inducible expression of GRE2-Luc.
After transfection of H4IIE cells with GRE2-Luc
construct, cells were treated for 6 hr with 3.3 µM
arsenite, for 6 hr with 50 nM Dex alone, or for 6 hr
with Dex in combination with arsenite at the pre-
and post-treatment times shown. (A) Time depen-
dence of luciferase expression using a 50 nM Dex
treatment for 4–10 hr as shown. (B) Effect of 3.3
µM arsenite pre-, post-, and simultaneous treat-
ments on 6-hr, 50 nM Dex stimulation. Luciferase
activity was measured in total cell lysates and
data were expressed as a percent of the trans-
fected, solvent-treated control value. The mean
relative light units for control and background
were 60,244 and 109, respectively. Each bar repre-
sents the mean + SD of values from 3 to 12 individ-
ually transfected cultures from 1 to 4 independent
experiments. 
**p < 0.01.
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However, a 2-hr arsenite pretreatment had
no discernible effect on the translocation of
GR from the cytosolic to the nuclear fraction
in this assay (Figure 7).

There is always concern in such cell frac-
tionation studies about the ability to cleanly
separate cytosolic and nuclear fractions. As
an alternative means of examining this phe-
nomenon, we used a GFP-tagged–GR fusion
protein and examined the effects of arsenite
on GR cellular localization in intact cells
using confocal microscopy. Cells were
transfected with an expression vector con-
taining the full-length human GR cDNA
fused to GFP under the control of the
cytomegalovirus promoter (19) (a generous
gift from I. Macara). This GFP-GR fusion
protein has been characterized previously
and was shown to respond to hormone treat-
ment in a similar fashion and to be regulated
in a way similar to that of the native GR
protein (19). As was observed in the Western
blots with native GR, after transient trans-
fection the GFP-GR was localized predomi-
nantly in the cytosol in control (untreated)
cells (Figures 8A, 8D, and 9), and arsenite
treatment alone had little or no effect on this
distribution (Figure 9). After Dex stimula-
tion, most GFP-GR was localized to the
nucleus (Figures 8B, 8E, and 9), and this
translocation was not altered detectably by
arsenite pretreatment (Figures 8C, 8F, and 9).
These results demonstrate that arsenite does
not appreciably alter the normal distribution
or the Dex-induced nuclear translocation of
GR in these cells. In summary, these data
demonstrate that low-dose arsenite is able to

specifically alter the nuclear function of GR
independent of cytosolic hormone binding
or nuclear translocation.

Discussion

In this study, we demonstrated that noncy-
totoxic doses of arsenite significantly reduced
the expression of PEPCK promoter- and
GRE-driven luciferase constructs. This
appeared to involve alterations in the nuclear
function of GR as a transcription factor,
because there were no effects on hormone-
stimulated translocation of GR from the
cytosol to the nucleus, yet arsenite was able
to block GR-dependent induction of gene
expression even when administered 2 hr after
Dex stimulation. We used the H4IIE rat
hepatoma cell model system for these studies
because it maintains an intact GR-mediated
PEPCK induction pathway and exhibits a
robust Dex response (10,30,31). In addition,
the liver represents a relevant biological tar-
get of arsenic exposure, because it is a first-
pass organ and is directly associated with
various arsenic-related human disease states
such as diabetes (4,32) and cancer (1–4).

Glucocorticoids induce numerous cellular
and physiological effects that are mediated
predominantly through their interaction with
the cytosolic steroid hormone receptor GR.
GR, a member of the nuclear receptor super-
family, mediates glucose homeostasis,
immune modulation, cellular growth and dif-
ferentiation, and numerous other physiologi-
cal responses in a wide variety of tissues
(33–36). Unlike many other sex steroid recep-
tors that are localized predominantly to the

nucleus, GR is normally sequestered in a pre-
active state in the cytosol, bound in a complex
that includes multiple heat shock proteins
(HSP56, 70, and 90) (33–35,37–40). Upon
steroid binding, GR conformation is altered,
unmasking a nuclear localization signaling
motif and a DNA-binding domain. This
leads to the translocation of the ligand-bound
GR to the nucleus in a form that can interact
with DNA (37,38,41). Once in the nucleus,
GR binds as a homodimer in a head-to-head
manner to its cis-acting DNA recognition ele-
ment, the GRE (consensus GRE half-site,
TGTTCT). GR also has been shown to par-
ticipate through protein–protein interactions
with other cofactors (co-activators/co-repres-
sors), leading to either positive or negative
effects on transcription of specific glucocorti-
coid-responsive genes (37,39–45).

Arsenic-induced alterations in GR func-
tion may play an important role in the mech-
anism of arsenic carcinogenesis. Lung and
skin are two of the primary targets in humans
for arsenic-induced increases in cancer risk
after systemic environmental exposure. GR
has been suggested to play a fundamental role
in carcinogenesis in both lung and skin in
experimental animal models. Glucocorticoids
have long been known to suppress tumor
promotion in the mouse two-stage skin can-
cer model (46). This appears to be primarily
a result of glucocorticoid-mediated effects on
both cell differentiation and suppression of
cell proliferation (46). Glucocorticoid co-
treatment with a phorbol ester tumor pro-
moter can suppress the early but not the later
stages of tumor promotion and progression
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Figure 6. Effect of arsenite on total cellular GR protein. Abbreviations: A/D,
Arsenite/Dex. As, Arsenite. C, Control. D, Dex. Vinc, vinculin. Cells were treated for 2–6 hr
with 3.3 µM arsenite or 100 nM Dex alone or arsenite given 2 hr before treatment
with 100 nM Dex. Total cellular protein extracts were isolated and Western blot
analysis performed with an antiGR antibody using 20 µg of protein as described in
“Methods.” (A) Effect of 3.3 µM arsenite treatment on total cellular GR levels. (B)
Effect of a 2-hr, 3.3 µM arsenite pretreatment on 100 nM Dex induced GR down-reg-
ulation. Digitized scans of representative gels are shown for each treatment condi-
tion. Each experiment was repeated twice with similar results. GR protein levels
were compared in each sample with an internal control, vinculin, as indicated. 
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Figure 7. Effect of arsenite on hormone-induced nuclear localization of GR.
Cells were pretreated for 2 hr with 3.3 µM arsenite before a 2-hr treatment with
100 nM Dex. Nuclear and cytosolic protein fractions were isolated from three
independently treated cultures per treatment and Western blot analysis per-
formed with an anti-GR antibody using 20 µg of protein, as described in
“Methods.” GR protein levels were compared in each sample with an internal
control, vinculin (Vinc), as indicated. 
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in this system (47,48). A progressive loss of
hormone responsiveness was observed in later
stages of skin cancer in this model, which was
associated with both a decreased GR expres-
sion and altered GR function. In the earlier
stages, decreased response was associated with
a decrease in expression of GR mRNA. In
contrast, the later-stage tumors had normal
levels of GR mRNA and protein, but the
receptor was defective in signaling a hormone
response even though the GR gene appeared
to be intact (47,48).

In similar work examining a glucocorti-
coid-refractory lung tumor cell line, Parks et
al. (49) found that the GR mRNA transcript
in these cells was improperly spliced, leading
to a GR protein that specifically lacked the
hormone-binding domain. Several groups
have shown that mouse lung tumor develop-
ment can also be blocked by glucocorticoids
(50–52). The synthetic glucocorticoid
budesonide almost completely blocked
benzo(a)pyrene-induced lung tumors in
female A/J mice when administered in the
diet (52) or as an aerosol to the lung (51).
Others have demonstrated that the growth
of various human and mouse lung tumor

cell lines can be inhibited by glucocorticoids
(53–56), and this effect can be blocked by
the GR antagonist RU-486 (57), whereas
cell lines lacking GR do not respond to glu-
cocorticoid-mediated growth suppression
(53–56). Dex has also been shown to induce
differentiation and surfactant production in
type 2 alveolar cells (58).

Collectively, these results suggest that GR
mediates suppression of tumor promotion in
skin and lung by suppressing cell growth and
inducing differentiation and, conversely, that
down-regulation of GR or loss of function of
GR is permissive to tumor growth. Similarly,
arsenic exposure is associated with increased
risk of liver cancer (2,3) and can also lead to a
diabetes-like condition (4,32) that may
involve disruption of GR-mediated glucose
homeostasis in the liver and other organs.
Thus, if environmentally relevant doses of
arsenic are able to suppress the normal func-
tion of GR as a mediator of gene regulation,
as suggested by our results, we hypothesize
that this may contribute to its ability to
promote tumorigenesis and contribute to
other pathophysiological states in these tis-
sues. This unique mechanism would suggest

further that arsenic may be able to act syner-
gistically with other toxic and carcinogenic
agents to increase disease risk, which is sup-
ported by epidemiological data that indicate
a synergistic increase from cigarette smoking
and exposure to arsenic (2,3). Because arsenic
contamination of drinking water is wide-
spread in the United States and elsewhere,
and it is usually found in combination with
many other toxic chemicals at most
Superfund and other toxic waste sites, these
combined exposures may represent a signifi-
cant human health risk.

The mechanism by which arsenite
inhibits GR-dependent transcription appears
to involve nuclear events rather than alter-
ations in steroid-induced nuclear transloca-
tion. Thus, arsenic may represent a new class
of endocrine disruptors that may act by
altering downstream receptor function rather
than by direct competition of hormone
binding. The arsenite effects appear to be
highly specific for GR-mediated gene expres-
sion because arsenite blocked Dex-inducible
expression of PEPCK but had no effect on
the cAMP-stimulated expression of PEPCK
or PEPCK-Luc or of a purely CRE-driven
luciferase construct (59). We hypothesize
that arsenite binds to and causes allosteric
alterations in GR or GR-containing com-
plexes. This in turn perturbs GR complex
interactions with other proteins, such as
other transcription factors and/or members
of the initiation complex, that are critical for
GR-regulated induced gene transcription
(37,40–45,60). We are currently investigat-
ing whether this is directly mediated by
arsenite binding to GR and/or GR complex
partners. However, the arsenite binding data
strongly suggest that direct binding to GR
plays a role in these effects. Whether arsen-
ite has similar effects on other members of
the steroid receptor family, such as the
estrogen and progesterone receptors, at
these low doses in intact cells remains to be
determined and will provide important
information in assessing the overall role of
arsenic-induced health effects.
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Figure 8. Effect of arsenite on hormone-induced nuclear translocation of a GFP-GR. After transfection of
H4IIE cells with the GFP-GR construct, cells were pretreated for 2 hr with 3.3 µM arsenite before a 2-hr
treatment with 100 nM Dex. Cells were then stained and analyzed by confocal microscopy as described in
“Methods.” This figure shows representative images of control cells: transfected, solvent treated, which
demonstrated a predominantly cytosolic localization of GR (A,D); cells treated with 100 nM Dex alone for 2
hr, which demonstrated essentially complete nuclear localization of GR (B,E); and cells pretreated with
3.3 µM arsenite for 2 hr followed by 100 nM Dex for 2 hr, which also demonstrated essentially complete
nuclear localization of GR similar to Dex alone (C,F). The upper panels (A–C) demonstrate GFP fluores-
cence (green channel); the lower panels (D–F) combine both the GFP and propidium iodide (DNA) fluores-
cence (green and red channels). 

Figure 9. Graphical summary of the percentage of
cells with nuclear staining for each treatment.
Bars represent the mean + SD of the nuclear per-
cent GFP staining of 50 cells using two slides per
treatment in two independent experiments.
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