
Halogenated aromatic (HA) industrial
by-products such as the polychlorinated
dibenzo-p-dioxins (PCDDs), polychlorinated
dibenzofurans (PCDFs), and polychlorinated
biphenyls (PCBs) have been identified as mix-
tures in the environment, in foods, and in fish,
wildlife, and human tissues (Safe 1990).
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)
is the most toxic HA compound and has been
used as a reference standard for hazard and risk
assessment of these environmental and dietary
contaminants (Ahlborg et al. 1992, 1994;
Birnbaum and DeVito 1995; Safe 1990, 1994;
Van den Berg et al. 1998). The toxic equiva-
lency factor (TEF) approach is being used for
risk assessment of HA mixtures where the
overall TCDD or toxic equivalents (TEQs) for
the mixture is the sum of the concentrations of
the individual congeners times their TEF
value. The TEF approach for risk assessment
of HA compounds is mechanism based
because the compounds of concern all act
through a common aryl hydrocarbon (Ah)
receptor (AhR) and induce a common set of
AhR-mediated responses. The TEF/TEQ con-
cept is based on several assumptions that
include persistence of the HA compounds,
common mechanism of action, and response
additivity for congeners in a mixture (Ahlborg
et al. 1992, 1994; Birnbaum and DeVito

1995; Safe 1990, 1994; Van den Berg et al.
1998). There is good support for the validity
of TEFs/TEQs for hazard and risk assessment
of PCDDs and PCDFs. However, in mixtures
containing PCBs, there is also evidence that for
some AhR-mediated responses, nonadditive
antagonist interactions can be observed (Safe
1998a, 1998b). For example, the antagonistic
interactions between many environmentally
significant PCBs, including 2,2´,4,4´,5,5´-
hexachlorobiphenyl (PCB congener 153)
interactions with TCDD or 3,3´,4,4´,5-penta-
chlorobiphenyl (PCB 126), for several AhR-
mediated responses in several in vivo and in
vitro models have been reported (Biegel et al.
1989; Davis and Safe 1988, 1989; Morrissey
et al. 1992; Tysklind et al. 1995; Zhao et al.
1997a, 1997b). These results are consistent
with a receptor-mediated pathway where both
agonist and antagonist ligands are routinely
identified. However, these results indicate
that, among environmentally important HAs,
additivity may not be observed for some
responses, and this contradicts one of the key
assumptions of the TEF/TEQ approach.

TEFs/TEQs have been extensively used
for assessing potential dietary TEQ intakes
from various foods, and regulatory agencies
have used these data to develop guidelines for
TEF/TEQ intake. For example, the World

Health Organization recently revised their
tolerable daily intake value for TEQs from
10 pg/kg/day to 1–4 pg/kg/day (van Leeuwen
et al. 2000). These guidelines also assume
that TEQs are additive but do not address the
increasing evidence that the AhR binds a host
of endogenous chemicals, such as bilirubin,
biliverdin, 7-ketocholesterol, and structurally
diverse phytochemicals (Ashida et al. 2000;
Bjeldanes et al. 1991; Casper et al. 1999;
Chen et al. 1996; Chun et al. 2001; Ciolino
et al. 1998a, 1998b, 1999; Ciolino and Yeh
1999; Denison et al. 1998; Gasiewicz et al.
1996; Gradelet et al. 1997; Phelan et al.
1998; Quadri et al. 2000; Savouret et al.
2001; Shertzer et al. 1999; Sinal and Bend
1997; Wang et al. 2001). Many of these
phytochemicals, such as flavonoids, resveratrol,
carotenoids, indole-3-carbinol, and related
compounds, are weak AhR agonists/partial
antagonists and are considered to be chemo-
protective. This study further investigates a
series of phytochemicals and their AhR ago-
nist/antagonist activities; the compounds
include the flavonoids chrysin, phloretin,
kaempferol, galangin, naringenin, genistein,
quercetin, myricetin, luteolin, baicalein,
daidzein, apigenin, and diosmin, as well as
cantharidin and emodin (in herbal extracts).
Some of these compounds exhibit weak AhR
agonist and antagonist activities in different
cancer cell lines, and the results are inter-
preted in terms of their potential influence on
the validity of the TEF/TEQ approach for
risk assessment of HA compounds.

Materials and Methods

Chemicals, biochemicals, and cells. The com-
pounds used in this study were purchased from
Sigma-Aldrich (Milwaukee, WI) and include
chrysin (purity > 97%), phloretin (> 95%),
kaempferol (> 95%), galangin (95%), narin-
genin (95%), genistein (98%), quercetin
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Chemoprotective phytochemicals exhibit multiple activities and interact with several cellular
receptors, including the aryl hydrocarbon (Ah) receptor (AhR). In this study we investigated the
AhR agonist/antagonist activities of the following flavonoids: chrysin, phloretin, kaempferol,
galangin, naringenin, genistein, quercetin, myricetin, luteolin, baicalein, daidzein, apigenin, and
diosmin. We also investigated the AhR-dependent activities of cantharidin and emodin (in herbal
extracts) in Ah-responsive MCF-7 human breast cells, HepG2 human liver cancer cells, and mouse
Hepa-1 cells transiently or stably transfected with plasmids expressing a luciferase reporter gene
linked to multiple copies of a consensus dioxin-responsive element. The AhR agonist activities of
the compounds (1 and 10 µM) were as high as 25% of the maximal response induced by 5 nM
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and their potencies were dependent on cell context.
Galangin, genistein, daidzein, and diosmin were active only in Hepa-1 cells, and cantharidin
induced activity only in human HepG2 and MCF-7 cells. Western blot analysis confirmed that
baicalein and emodin also induced CYP1A1 protein in the human cancer cell lines. The AhR
antagonist activities of four compounds inactive as agonists in MCF-7 and HepG2 cells
(kaempferol, quercetin, myricetin, and luteolin) were also investigated. Luteolin was an AhR
antagonist in both cell lines, and the inhibitory effects of the other compound were dependent on
cell context. These data suggest that dietary phytochemicals exhibit substantial cell
context–dependent AhR agonist as well as antagonist activities. Moreover, because phytochemicals
and other AhR-active compounds in food are present in the diet at relatively high concentrations,
risk assessment of dietary toxic equivalents of TCDD and related compounds should also take into
account AhR agonist/antagonist activities of phytochemicals. Key words: agonists, Ah receptor,
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(99%), myricetin (95%), cantharidin (98%),
luteolin (> 90%), baicalein (98%), daidzein
(> 95%), emodin (> 90%), apigenin (> 90%),
and diosmin (95%). These compounds were
used without further purification. All com-
pounds were dissolved in dimethyl sulfoxide
(DMSO; 10–2 M). Human MCF-7 breast
cancer cells and HepG2 liver cancer cells were
purchased from the American Type Culture
Collection (Manassas, VA). M. Denison
(University of California, Davis, CA) kindly
provided the mouse Hepa-1 cells stably trans-
fected with a dioxin-responsive element (DRE)
promoter derived from the CYP1A1 gene
(Garrison et al. 1996). The transient transfec-
tion studies used a pDRE3 construct, which
contained three tandem consensus DREs
(TCT TCT CAC GCA ACT CCG A—a 
single DRE sequence). The modified pGL2
vector contains a minimal TATA sequence
between BglII and HindIII. We synthesized
TCDD (purity > 98%) in this laboratory.

DRE-dependent activation by 5 nM
TCDD, flavonoids, cantharidin, and emodin.
Human MCF-7 cells, HepG2 cells, and stably
transfected mouse Hepa-1 cells were main-
tained in Dulbecco modified Eagle medium
(DME) supplemented with 5% fetal bovine
serum (FBS), 2.2 g/L sodium bicarbonate, and
10 mL/L antibiotic/antimycotic solution. Cells
for transient transfection assays were seeded in
DME-F12 medium without phenol red and
supplemented with 5% dextran–charcoal-
stripped FBS, 2.2 g/L sodium bicarbonate, and
10 mL/L antibiotic/antimycotic solution. One
day after seeding in DME-F12 and 5%
stripped FBS, 1.5 µg pDRE3 was transfected
into MCF-7 or HepG2 cells by calcium phos-
phate precipitation. Cells were also cotrans-
fected with pCDNA3.1 β-galactosidase (β-gal;
250 ng) (Invitrogen, Carlsbad, CA), which
served as a control for transfection efficiency.
Sixteen hours after transfection, media were
removed, and fresh media containing the
appropriate chemicals were added. Cells were
grown for an additional 24 hr before harvest-
ing with 200 µL/well of reporter lysis buffer.
Lysates were centrifuged at 40,000 × g, and
luciferase and β-gal activities were determined
with 30 µL of the supernatant. Luciferase activ-
ity was determined using the luciferase assay
system with reporter lysis buffer from Promega
Corp. (Madison, WI). β-Gal activity was
determined using the luminescent Galaction-
Plus assay system from Tropix (Bedford,
MA). The intensity of light emission from
assays of cell extracts was determined using a
lumicount luminometer (Perkin-Elmer,
Boston, MA). Luciferase activity was normal-
ized to β-gal activity for each treatment.
Results are expressed as mean ± SE for at least
three determinations for each treatment
group, and the fold induction (over DMSO)
is shown in the figures.

Western blot analysis. We extracted whole-
cell lysates using 1× Western sampling buffer.
Protein samples were heated at 100°C for 5
min, separated on 8% SDS-PAGE, and trans-
ferred to polyvinylidene difluoride (PVDF)
membrane (Amersham, Piscataway, NJ). The
PVDF membrane was blocked for 30 min and
incubated with 1:1,000 CYP1A1 antibody
(Santa Cruz Biotechnology, Santa Cruz, CA)
for 1 hr at room temperature or with 1:1,000
AhR (Santa Cruz Biotechnology) overnight at
4°C. After vigorous washing for 20 min,
1:3,000 secondary antibody (Santa Cruz
Biotechnology) was added, and the mem-
brane was incubated with shaking for 45 min.
After washing for 20 min, the membrane was
incubated with ECL chemiluminescent sub-
strate (NEN Life Science Products, Inc.,
Boston, MA) for 1 min, and exposed to
Kodak X-Omat AR autoradiography film
(Kodak, Rochester, NY). The membrane was
reused and probed with the other antibody as
indicated.

Statistics. All quantitative data were ana-
lyzed by analysis of variance followed by
Fisher’s protected least-significant-difference
test for significance (p < 0.05). Data from the
transfection studies are expressed as mean ± SE
(n ≥ 3) for each treatment group.

Results

AhR-mediated induction of CYP1A1 is a sen-
sitive measure of Ah responsiveness. However,
many phytochemicals interact with and inhibit
CYP1A1 protein catalytic activity (Chen et al.
1996; Shertzer et al. 1999). Therefore, in this
study we used a highly sensitive AhR-
responsive assay (Denison et al. 1998) in which
ligands activate the bacterial luciferase reporter
gene activity in cells transfected with constructs
containing multiple DRE promoter elements.
Figure 1 illustrates structures of the 15 com-
pounds used in this study; these include 12
flavonoids with different hydroxyl substitution
patterns, plus the chemicals phloretin (a
dihydrochalcone), cantharidin (a lactone), and
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Figure 1. Structures of compounds used in this study.



emodin (an herbal laxative). Based on results of
preliminary studies, we used 5 nM TCDD as a
standard that induced maximal luciferase activ-
ity in stably transfected Hepa-1 cells (Figure 2)
or in transiently transfected MCF-7 (Figure 3)

or HepG2 cells (Figure 4). Results from the
stably transfected Hepa-1 cells demonstrate
their sensitivity to 5 nM TCDD, with a 124-
fold inducibility, whereas lower but signifi-
cant induction was observed for chrysin,

galangin, genistein, baicalein, daidzein,
emodin, apigenin, and diosmin. Previous stud-
ies have also reported that emodin induced
AhR-dependent CYP1A1 in human lung ade-
nocarcinoma CL5 cells (Wang et al. 2001),
and diosmin was also an AhR agonist in MCF-
7 cells (Ciolino et al. 1998b). In contrast, the
reported AhR agonist activity of quercetin in
MCF-7 cells (Ciolino et al. 1999) was not
observed in stably transfected Hepa-1 cells
(Figure 2). Galangin exhibited AhR antagonist
activity in BU-11, a murine B cell line (Quadri
et al. 2000), but AhR agonist activity was
observed in stably transfected Hepa-1 cells
(Figure 2), and agonist activity of 60 µM
galangin has also been observed in Hepa-1 cells
(Wang et al. 2001).

We further investigated the role of cell
context in activation of transiently transfected
pDRE3 in human MCF-7 and HepG2 cell
lines. At concentrations of 1 or 10 µM, only
chrysin, cantharidin, baicalein, and emodin
activated luciferase activity in MCF-7 cells
(Figure 3). With the exception of cantharidin,
these compounds were also AhR agonists in
stably transfected Hepa-1 cells, and com-
pounds such as galangin, genistein, daidzein,
apigenin, and diosmin that were active in
Hepa-1 cells did not induce a response in
MCF-7 cells. The pattern of induction
responses in HepG2 cells was similar to that
observed in MCF-7 cells in that chrysin, can-
tharidin, and baicalein activated gene expres-
sion, whereas (10 µM) emodin was not active
in this cell line (Figure 4). These data demon-
strate that the AhR agonist activities of struc-
turally diverse phytochemicals and cantharidin,
which is derived from insect extract, are highly
variable among different cell lines, and that
their fold inducibility compared with TCDD
is also dependent on cell context. The stably
transfected Hepa-1 cells are more highly sensi-
tive to the induction of luciferase activity by
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Figure 2. AhR-mediated transactivation in stably transfected Hepa-1 cells. Cells were treated with DMSO
(control), 5 nM TCDD, or 1 or 10 µM of the flavonoids for 24 hr; luciferase activity was determined as
described in “Materials and Methods.” Results are expressed as mean ± SE for three replicate determina-
tions for each treatment group. Compounds #1 through #15 are defined in Figure 1. 
*Significant induction, p < 0.05. 

Figure 3. AhR-mediated transactivation in MCF-7 cells. Cells were transfected with pDRE3 and treated with
DMSO (control), 5 nM TCDD, or 1 or 10 µM of the flavonoids, and luciferase activity was determined as
described in “Materials and Methods.” Results are expressed as mean ± SE for each treatment group
(three replicate determinations). Compounds #1 through #15 are defined in Figure 1.
*Significant induction, p < 0.05.
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TCDD (5 nM) than to the other compounds.
TCDD at 5 nM induced a 124-fold increase
in luciferase activity, whereas only a 14-fold
induction response was observed for 10 µM
chrysin. In contrast, 5 nM TCDD and 10 µM
chrysin, respectively, induced a 20- and 5.5-
fold increase in luciferase activity in MCF-7
cells (Figure 3), and the potency of chrysin rel-
ative to TCDD was clearly higher in MCF-7
and HepG2 cells compared with stably trans-
fected Hepa-1 cells.

The four compounds that activated
luciferase activity in MCF-7 and HepG2 cells
(chrysin, cantharidin, baicalein, and emodin)
were also investigated as inducers of CYP1A1
protein in these cell lines (Figure 5). The high-
est nontoxic concentrations of each com-
pound were used in the CYP1A1 protein
induction assay because of the decreased sensi-
tivity of this response compared with activa-
tion of luciferase activity in the transfected
cells. With the exception of cantharidin,
higher concentrations could be used because
of the short duration (6 hr) of the experiment.
Both baicalein and emodin increased CYP1A1
protein at concentrations of 100 µM (MCF-7)
or 50 µM (HepG2), whereas chrysin was inac-
tive at the same concentrations (Figure 5). In

the nontransfected cells, cantharidin exhibited
high cytotoxicity, and CYP1A1 protein was
induced only in MCF-7 cells (Figure 5B). In
MCF-7 or HepG2 cells treated with 5 nM
TCDD, there was a decrease in AhR protein
levels as previously reported (Davarinos and
Pollenz 1999; Ma and Baldwin 2000; Roberts
and Whitelaw 1999; Wormke et al. 2000). In
contrast, treatment with baicalein and can-
tharidin increased levels of the AhR protein,
whereas no effects were observed after treat-
ment with emodin or chrysin (Figure 5).

We also investigated the AhR antagonist
activities of four compounds that were inactive
in all three cell lines: kaempferol, quercetin,
myricetin, and luteolin. Previous studies
showed that quercetin was an AhR agonist and
kaempferol was an AhR antagonist for induc-
tion of AhR-mediated CYP1A1 and DRE-
dependent reporter gene activity in MCF-7
cells (Ciolino et al. 1999). However, in this
study, cotreatment of MCF-7 cells with
kaempferol or quercetin plus 5 nM TCDD
resulted in significant inhibition of TCDD-
induced luciferase activity at both concentra-
tions (1 and 10 µM) of flavone (Figure 6A).
Myricetin (10 µM) slightly decreased activity,
whereas luteolin was a potent AhR antagonist.

In contrast, 1 or 10 µM quercetin, kaempferol,
and myricetin did not affect induction of
luciferase activity by TCDD, whereas luteolin
was an AhR antagonist in HepG2 cells (Figure
6B, C). These results demonstrate that AhR
antagonist activities of these phytochemicals
are also dependent on cell context.

Discussion

Results of this study demonstrate that several
structurally diverse phytochemicals and can-
tharidin activate DRE-dependent luciferase
(reporter gene) activity in cancer cell lines
derived from mouse and human liver and
human breast tumors. There are both similari-
ties and differences in the AhR agonist activi-
ties of these compounds that are dependent on
both structure and cell context. Our results
show that TCDD, chrysin, and baicalein
induced luciferase activity in all three cell lines.
Cantharidin induced luciferase activity only in
the human cells (MCF-7 cells, HepG2 cells),
emodin was active in Hepa-1 and MCF-7
cells, and galangin, genistein, daidzein, api-
genin, and diosmin were active only in stably
transfected Hepa-1 cells. Previous studies have
demonstrated that many of these compounds
exhibit weak AhR agonist and/or partial antag-
onist activities in transactivation or receptor
transformation assays (Ashida et al. 2000;
Chun et al. 2001; Ciolino et al. 1998b, 1999;
Quadri et al. 2000). However, it is apparent
that there were some differences between this
and other studies on the AhR agonist or antag-
onist activities of individual phytochemicals.
For example, Ciolino et al. (1999) reported
that quercetin and kaempferol exhibited AhR
agonist and antagonist activities, respectively,
in MCF-7 cells, whereas these compounds
exhibited minimal AhR agonist activity in our
studies in the same cell line (Figure 3).

There could be several explanations for dif-
ferences in Ah responsiveness of phytochemicals

Article | Zhang et al.

1880 VOLUME 111 | NUMBER 16 | December 2003 • Environmental Health Perspectives

AhR

CYP1A1

Conc
(µM)

#11 #13 #1TCDDC

5 25 50 25 50 25 50

TCDD

5

#11 #13 #9 #1

25 50 75 100 25 50 75 100

A B

2.5 5.0 7.5 25 50 75 100

AhR

CYP1A1

Conc
(µM)

5

#9 C

Figure 5. CYP1A1 protein induction by chrysin (#1), cantharidin (#9), baicalein (#11), and emodin (#13) in
(A) HepG2 cells or (B) MCF-7 cells. Abbreviations: C, control; Conc, concentration. Cells were treated with
DMSO (control), 5 nM TCDD, or different concentrations of the flavonoids for 6 hr. Whole-cell lysates were
then prepared, and CYP1A1 and AhR proteins were detected by Western blot analysis as described in
“Materials and Methods.” These experiments were determined at least two times for each cell line.
Comparable results were obtained showing increased CYP1A1 protein after treatment with baicalein (#11;
MCF-7/HepG2), emodin (#13; MCF-7/HepG2), and cantharidin (#9; MCF-7). CYP1A1 protein induction was
not observed for chrysin (#1).

5

4

3

2

1

0
#3 #7

Fo
ld

 in
du

ct
io

n

Compound

Control
5 nM TCDD

1 µM compound + TCDD
10 µM compound + TCDD

Fo
ld

 in
du

ct
io

n

Compound

16

12

8

4

0

16

12

8

4

0
#3 #7 #8

*

Fo
ld

 in
du

ct
io

n

Compound

A B

#10

*

*

#10#8

*

C

Figure 6. AhR antagonist activities of phytochemicals in MCF-7 and HepG2 cells. (A) MCF-7 cells treated with kaempferol (#3), quercetin (#7), myricetin (#8), or
luteolin (#10). (B) HepG2 cells treated with kaempferol (#3) or quercetin (#7). (C) HepG2 cells treated with myricetin (#8) and luteolin (#10). Cells were transfected
with pDRE3 and treated with DMSO (control) or with 5 nM TCDD alone or in combination with 1 or 10 µM concentrations of the compounds, and luciferase activities
were determined as described in “Materials and Methods.” Results are expressed as mean ± SE for three separate determinations for each treatment group. 
*Significant inhibition, p < 0.05.



in the Hepa-1, MCF-7, and HepG2 cells. The
stably transfected mouse Hepa-1 cell line was
more sensitive than the transiently transfected
human MCF-7 and HepG2 cells to TCDD
and to most of the phytochemicals. This could
due to the stable integration of the construct
and the presence of four DREs compared with
three DREs in the transiently transfected
pDRE3 used in the HepG2 and MCF-7 cell
studies (Figures 3 and 4). In addition, the
mouse AhR expressed in Hepa-1 cells exhibits
higher binding affinity for TCDD than does
the human AhR (Ema et al. 1994), and struc-
tural differences in the mouse and human AhR
may also affect the binding and transactivation
activities of the phytochemicals. Chrysin
(10 µM) was the most consistent inducer in
the reporter gene assays in the three cell lines
(Figures 2–4). However, at concentrations as
high as 100 and 50 µM in MCF-7 and
HepG2 cells, respectively, induction of
CYP1A1 protein was not observed (Figure 5).
This illustrates the high sensitivity of the
reporter gene assays for detecting AhR agonists
and suggests that relative compound potencies
in this assay may be different for other AhR-
mediated responses (Figure 5). This has been
observed for TCDD and related compounds
that also exhibit species- and response-specific
potency differences (Safe 1990). Like the
nuclear hormone receptors, ligand-induced
activation of the AhR is dependent on interac-
tions with nuclear coregulatory proteins
(Beischlag et al. 2002; Kumar et al. 1999;
Nguyen et al. 1999). Nevertheless, results of
this and other studies clearly demonstrate that
structurally diverse phytochemicals exhibit
AhR agonist activities.

We have also investigated interactions of
kaempferol, quercetin, myricetin, and luteolin
as AhR antagonists in MCF-7 and HepG2
cells (Figure 6) because these compounds alone
at concentrations of 1 or 10 µM did not
induce luciferase activity in these cell lines
(Figures 3 and 4). The results showed that
luteolin blocked TCDD-induced luciferase
activity in both cell lines, and these results were
comparable with the inhibition of TCDD-
induced transformation of the rodent cytosolic
AhR as previously reported (Ashida et al. 2000;
Thenot et al. 1999). The AhR antagonist activ-
ities of kaempferol, quercetin, and myricetin
were dependent on the cell context (Figure 6).
Myricetin exhibited weak (but not significant)
antagonist activity only in MCF-7 cells, and
both kaempferol and quercetin were also antag-
onists in MCF-7 but not HepG2 cells. Because
many flavonoids activate the estrogen receptor
(ER), it is possible that inhibitory ER–AhR
crosstalk that has previously been reported
(Jeong and Lee 1998; Ricci et al. 1999) may
contribute to AhR antagonist activities
observed in MCF-7 cells (Figure 6). It is possi-
ble that higher concentrations of compounds

1–15 (Figure 1) may exhibit AhR agonist/
antagonist activities. However, higher con-
centrations were not investigated because of
cytotoxicity.

Several studies show that phytochemicals
weakly activate the AhR in one or more assays
and also act as AhR antagonists. These com-
pounds include kaempferol (Ciolino et al.
1999), resveratrol (Casper et al. 1999; Ciolino
and Yeh 1999), galangin (Quadri et al. 2000),
rhapontigenin (Chun et al. 2001), indole-3-
carbinol (Chen et al. 1996), and diindolyl-
methane (Chen et al. 1996). Ashida et al.
(2000) also showed that ≤ 25 µM concentra-
tions of various phytochemicals block
TCDD-induced transformation of rat liver
cytosolic AhR, and these include chrysin,
baicalein, apigenin, luteolin, tangeretin,
galangin, kaempferol, fisetin, morin, querce-
tin, myricetin, tamarixetin, isorhamnetin,
naringenin, eriodictyol, and hesperitin. Total
daily intakes of dietary flavonoids may be as
high as 1 g (Verdeal and Ryan 1979), and
serum levels of some flavonoids such as
quercetin and genistein can be in the nanomo-
lar to low micromolar range. The overall
serum concentrations of most phytochemicals
in humans is unknown. However, levels are
probably in the nanomolar to micromolar
range and are dependent on the food product
and clearance times for individual com-
pounds. 7-Ketocholesterol is also an AhR
antagonist with a competitive binding IC50

value (concentration that inhibits 50%) of
500 nM (Savouret et al. 2001), and plasma
concentrations of this compound range from
20 to 200 nM in healthy humans (Dzeletovic
et al. 1995). This would suggest that many
phytochemicals and endogenous compounds
with AhR agonist/antagonist activities are
present in human serum.

Risk assessment of HA compounds uses
the TEF/TEQ approach. For example, daily
TEQ intakes of TCDD and related com-
pounds are 50–200 pg in most countries, and
these values have substantially decreased over
the past 10 years (van Leeuwen et al. 2000).
Serum TEQ values are < 5 ppt (lipid weight)
or approximately 0.1 pM for TCDD and
related compounds, whereas serum levels of
some “natural” AhR agonists are in the
nanomolar to low micromolar range. Thus, the
serum ratios of flavonoids/TCDD TEQs are
104 to 106, and these ratios are similar to those
required for inhibition of TCDD-induced
responses by some phytochemicals (Ashida et
al. 2000; Chun et al. 2001; Ciolino et al.
1998b, 1999; Quadri et al. 2000). Results
shown in Figure 5 demonstrate that 1 µM
luteolin inhibited (> 90%) TCDD-induced
transactivation in MCF-7 cells at flavonoid/
TCDD ratios as low as 200/1. Moreover,
ratios of PCB 153/TCDD TEQs in human
tissues are also > 104, which is comparable

with ratios required for PCB 153–mediated
inhibition of several TCDD-induced bio-
chemical and toxic responses (Safe 1998a,
1998b). It is likely that dietary intakes of most
phytochemicals would be below levels
required for an AhR agonist response based on
results from cell culture studies. The potential
chemoprotective effects of the expanding list
of AhR-active phytochemicals and related
compounds on TCDD-TEQ–mediated
adverse responses should be further investigated
in in vivo models. These results can then be
used for development of recommended dietary
TCDD-TEQ values that reflect the combined
intake of HA compounds plus high levels of
“natural/phytochemical” AhR antagonists/
agonists.
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