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Research

The environmental persistence and lipophilic-
ity of polychlorinated biphenyls (PCBs) in the
Great Lakes basin and elsewhere has lead to
bioaccumulation within the aquatic food chain
and human exposure (Ayotte et al. 1995;
Bloom et al. 2005; He et al. 2001). Dietary
PCB exposure has been associated with adverse
reproductive (Buck et al. 2000; Mendola et al.
2005) and developmental outcomes (Jacobson
and Jacobson 1997), underscoring the impor-
tance of exposures during critical or sensitive
windows (Morford et al. 2004).

Although past research has focused on
in utero PCB exposure for clinically recognized
pregnancies in relation to human develop-
ment, only limited investigation of periconcep-
tion exposures has been undertaken (Chapin
et al. 2004). This impairs our ability to accu-
rately model the effects of pregnancy and/or
lactation in assessing reproductive outcomes
conditional on pregnancy. We assessed con-
centrations of PCB congeners from preconcep-
tion through pregnancy and postpartum to
better understand their dynamics over critical
windows.

Materials and Methods

Study population and sample. We used a
prospective cohort design to recruit women

from the New York State Angler Cohort Study
(NYSACS), a population-based cohort com-
prising licensed anglers 18–40 years of age who
were randomly selected from 16 contiguous
counties along Lakes Erie and Ontario (Vena
et al. 1996). The purpose of this prospective
pregnancy study with preconception enroll-
ment was twofold: to obtain longitudinally
collected biospecimens for the quantification
of PCBs over sensitive critical windows, and to
evaluate periconception data collection
methodologies appropriate for population-
based epidemiologic research. The study pro-
tocol complied with the U.S. regulations on
the protection of human subjects; all study
participants gave written informed consent
before participation in any aspect of the study.

In 1996–1997, introductory recruitment
letters were mailed to 2,637 female partici-
pants in the NYSACS who had stated interest
in possibly becoming pregnant in 1995–1996.
After repeated telephone attempts, 1,031
(39%) women were successfully screened, of
whom 244 were eligible for participation—
defined as planning pregnancy in the next
6 months, age 18–34 years, and no physician
diagnosis of infertility. The study sample com-
prised 113 women (46%) who reported plan-
ning pregnancies within 6 months; however,

14 women were already pregnant and there-
fore excluded. The final study cohort com-
prised 99 women, of whom 20 withdrew over
the course of the 12 months of attempting
pregnancy. The distribution of reproductive
outcomes among participating women com-
pleting the study included 54 (68%) women
whose pregnancies resulted in live births, 10
(13%) women whose pregnancies ended in
early losses, 4 (5%) women whose pregnancies
ended after clinical recognition, and 11 (14%)
women who were unable to conceive within
12 menstrual cycles of trying.

Data collection. Participation required a
baseline interview, completion of a daily
diary, and provision of nonfasting blood spec-
imens at baseline (preconception) and after a
positive home pregnancy test result or after
12 unsuccessful menstrual cycles without
pregnancy. For women giving birth, an addi-
tional blood specimen was obtained at approx-
imately 6 weeks after delivery (postpartum).
The research nurse instructed women in the
proper use of home pregnancy kits reported to
be capable of detecting 50 mIU of human
chorionic gonadotropin (hCG).

Approximately 25 mL of blood yielding
approximately 10 mL of serum were obtained
as follows: from all 79 participating women at
baseline or preconception; from 54 women
after a positive pregnancy test resulting in a
live birth (prenatal); from 10 women after a
positive pregnancy test approximately 2 weeks
postimplantation that resulted in an early
pregnancy loss (EPL); from 4 women after a
positive pregnancy test resulting in a clinical
pregnancy loss (CPL); from 54 women
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BACKGROUND: Few data are available on polychlorinated biphenyl (PCB) concentrations over
critical windows of human reproduction and development inclusive of the periconception window.

OBJECTIVES: Our goal was to measure changes in PCB concentrations from preconception to
pregnancy, through pregnancy, or after a year without becoming pregnant.

METHODS: Seventy-nine women planning pregnancies were prospectively enrolled and followed for
up to 12 menstrual cycles of attempting pregnancy. Blood specimens were obtained from partici-
pating women preconceptionally (n = 79), after a positive pregnancy test leading to a live birth (n =
54) or pregnancy loss (n = 10), at approximately 6 weeks postpartum (n = 53), and after 12 unsuc-
cessful cycles (n = 9) for toxicologic analysis of 76 PCB congeners. We estimated overall and daily
rate of change in PCB concentration (nanograms per gram serum) adjusting for relevant covariates,
serum lipids, and baseline PCB concentration.

RESULTS: Significant (p < 0.0001) decreases in the mean overall and daily rate of change in PCB
concentrations were observed between the preconception and first pregnancy samples for total
(–1.012 and –0.034, respectively), estrogenic (–0.444 and –0.016, respectively), and antiestrogenic
(–0.106 and –0.004, respectively) PCBs among women with live births. Similar significant
decreases in total (–1.452 and –0.085), estrogenic (–0.647 and –0.040), and antiestrogenic (–0.093
and –0.004) PCB concentrations were seen for women with pregnancy losses. No significant
changes were observed for PCB congener 153.

CONCLUSIONS: These data suggest that PCB concentrations may change during the periconception
interval, questioning the stability of persistent compounds during this critical window.
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approximately 6 weeks after a live delivery
(postnatal); and from 10 women after 12
unsuccessful menstrual cycles without preg-
nancy (infertile). Thus, we have a blood speci-
men reflecting the varying critical windows
(preconception, postimplantation, and postna-
tal) and reproductive outcomes (pregnancy
loss, live birth, infertility). The blood samples
were transported on ice to the toxicology lab-
oratory; these included 73 (92%) baseline or
preconception, 53 (98%) prenatal, 10 (100%)
EPL, 3 (75%) CPL, 52 (96%) postnatal, and
9 (90%) infertility blood samples.

Toxicologic analysis. Serum samples were
mixed with solutions of International Union
of Pure and Applied Chemistry PCB isomers
no. 46 and 142 (surrogate standards) and left
overnight to equilibrate (Greizerstein et al.
1997). Methanol was added to precipitate the
proteins, and the resulting mixture was
extracted with hexane in a rotating extraction
device at 50 rpm for 20 hr. Samples were
then centrifuged and the extract was concen-
trated under a slow stream of nitrogen at
50° C to 2 mL. The extract was placed on a
deactivated Florisil column and eluted with
hexane. The eluate was evaporated to a small
volume under a slow stream on nitrogen using
200 µL iso-octane as a keep solvent. Isomers
no. 30 and 204 were added as internal stan-
dards to each extract. An aliquot of the mix-
ture was injected into the gas chromatograph
equipped with an electron capture detector
(Agilent Technologies, Santa Clara, CA).

A quality control (QC) sample was made
from a matrix blank consisting of sheep
serum, which was spiked with 0.6 ng/g PCB
congeners 6, 44, and 52; 0.3 ng congeners
101, 138, 153, 180, 185, and 205; and 0.3 ng
pesticides dichlorodiphenyldichloroethylene,
hexachlorobenzene, and mirex. The QC sam-
ple was run with each batch of 10 samples and
appropriate reagent and matrix blanks.
Quality control charts were kept throughout
the study and any batch of samples in which
the QC values exceeded acceptance criteria
were rerun. Surrogate congener standards 46
and 142 were added to each sample to assess
recoveries. The surrogate standard recoveries
for one set of 500 serum samples was 85.5 ±
18.6% for PCB-46 and 83.1 ± 16.4% for
PCB-142. Serum specimens were run in
batches of 10 plus four quality control sam-
ples: reagent blank, matrix blank, matrix blank
containing a mixed standard of 15 specific
congeners and pesticide components at known
values, and a duplicate participant sample.
The laboratory is in compliance in the AMAP
Ring Test Proficiency Program for Persistent
Organic Pollutants in Human Serum (Centre
de toxicologie Institut national de santé
publique du Québec, Québec, Canada).

We corrected laboratory observed values
only for recovery to minimize measurement

error and potential biases associated with sub-
stitution patterns below the limits of detec-
tion (LOD) (Richardson and Ciampi 2003;
Schisterman et al. 2006). A priori, 64 single-
eluting and 12 di-eluting congeners were
quantified and summed into three groupings
(Cooke et al. 2001): a) total PCB congeners;
b) estrogenic congeners (4 + 10, 8 + 5, 15 +
17, 18, 31, 44, 47, 48, 52, 70, 77 + 110, 99,
101, 126, 136, 153, and 188); and c) anti-
estrogenic congeners (77 + 110, 105, 114,
118, 126, 156 + 171, and 169). We assessed
PCB congener 153 individually for compari-
son with other work focusing on female
fecundity (Axmon et al. 2001). We also
assessed PCB-118 individually given that
most concentrations were above the LOD,
similar to PCB-153, and to aid in the inter-
pretation of results by PCB grouping. We
quantified total serum lipids (TL) using enzy-
matic methods as the function of total choles-
terol (TC) and triglycerides (TG) expressed in
milligrams per deciliter. We assumed free
cholesterol to be 27% of the total, and pre-
dicted phospholipids from regression on total
cholesterol where TL = 2.27 TC + TG +
0.623 (Phillips et al. 1989). For analysis pur-
poses, PCB concentrations are reported as
nanograms per gram wet weight with serum
lipids entered as a covariate in the analytic
model to minimize bias arising from auto-
matic lipid adjustment of PCB concentrations
(Schisterman et al. 2005).

Statistical analysis. With descriptive statis-
tics, many PCB congener distributions were
not normally distributed even after Box-Cox
transformations; therefore, no further transfor-
mations were undertaken. We used bivariate
analysis to explore associations between the
changes in concentrations from the baseline or
preconception to the next serum measurement
in relation to serum lipids (milligrams per
deciliter) and relevant study covariates—i.e.,
body mass index (weight in kilograms/height
in square meters), gravidity (number of preg-
nancies), parity (number of births), and life-
time duration of lactation in months (Glynn
et al. 2003; Grimvall et al. 1997; Kostyniak
et al. 1999; Sweeney et al. 2001).

We estimated Spearman rank correlation
coefficients to describe correlations between
baseline PCB groupings, and between the
measurements across critical windows. For
each correlation, we used the chi-square test to
obtain the level of significance against the null
(zero correlation), using Fisher’s z-transforma-
tion [z = 0.5 log(1 + r)/(1 – r)] with the
appropriate variance correction.

We estimated the overall amount of
change between measurements and the daily
rate of change in serum PCB concentrations
and total serum lipids for 48 paired pre-
conception-prenatal specimens, 47 paired
prenatal–postnatal specimens, 10 paired

preconception–EPL specimens, and 9 paired
preconception–infertility specimens, using the
following algorithm:

[1]

where Yijk represents measures for the ith
(1,……,n) participant; for the jth PCB group-
ing (where 1 = total PCBs, 2 = estrogenic
PCBs, 3 = antiestrogenic PCBs, 4 = PCB-118,
5 = PCB-153, and 6 = total serum lipids vari-
able, respectively); demonstrating the kth (1,
2, 3, 4) reproductive outcome (where 1 = pre-
natal or a pregnancy resulting in a live birth, 2
= EPL or a pregnancy resulting in an early
loss, 3 = infertile or 12 menstrual cycles with-
out conception, and 4 = postnatal after a live
birth; and Yíjk represents the baseline or pre-
conception measurement for k = 1, 2, or 3,
and the prenatal measurement from a preg-
nancy resulting in a live birth where k = 4.

Women’s daily rate of change, defined as
the difference in the concentration between
the first (baseline) and second specimen collec-
tion divided by the number of days between
specimen collections, was derived as follows:

[2]

where ti represents the duration in days, for the
ith (1,…,n) participant, between the reported
positive hCG pregnancy test date and the out-
come specimen sample date, where k = 1, 2,
between the dates of the baseline and outcome
specimens where k = 3, and the date of the pre-
natal and postnatal specimens where k = 4. We
assumed no change in PCB concentration
between the date of baseline measure and the
date of the positive hCG test among those
women who conceived. We further estimated
the daily rates of change in concentrations
from the time of the positive pregnancy test to
the second blood specimen. Length of gesta-
tion at the time of the prenatal sample ranged
from 8 to 126 days with a mean (± SD) of
31.4 ± 17.5 days and a median of 29 days.

We estimated the mean overall and daily
rate of change in PCB concentration using
multiple linear regression, adjusting for
preconception PCB concentration and lipids,
centering each by its mean to facilitate inter-
pretation of model intercepts as the change in
PCBs at the average lipid and baseline PCB
concentrations. Estimating the difference in
PCBs’ grouping concentrations between the
two measurements simplified the variance
structure by removing part of the correlation
between observations on the same woman.
Additional covariates were not included in
models given the absence of significance, nor
were separate models run for the three clinical
pregnancy losses. Serum lipids could
not be quantified for 10 women (8 live
births, 1 pregnancy loss, and 1 infertile) given

R D tijk ijk i= ,

D Y Yijk ijk ijk= − ′ ,
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insufficient sample necessitating expectation
maximization (Yuan 2000).

We evaluated the normality assumption
for each regression model by examining resid-
uals employing Q–Q plots and by comparing
predicted values with those generated employ-
ing the LOESS nonparametric regression

procedure, because changes in PCB concentra-
tions deviated substantially from normality
even with transformation. Significance was
defined as p < 0.05 for two-tailed tests; crude
differences in overall change and daily rate of
change in PCB concentration were evaluated
using the Wilcoxon signed rank test.

Results
We observed no significant differences in the
median preconception PCB concentrations by
PCB grouping and reproductive outcome or for
any of the other study covariates (Table 1). The
median interval between the timing of the two
serum PCB measurements was 63 days
[interquartile range (IQR) = 34] for early preg-
nancy loss, 79 days (IQR = 76) for clinical
pregnancy loss, 151 days (IQR = 180.5) for live
birth, 446 days (IQR = 127) for infertility, and
240 days (IQR = 21) for the pre- and postnatal.

Baseline PCB groupings were signifi-
cantly correlated with each other (Table 2).
Significant correlations were found between
baseline and prenatal measures for all PCB
groupings except estrogenic PCBs, between
baseline and early pregnancy loss measures for
total PCBs, PCB-118 and PCB-153, and
between pre- and postnatal samples for estro-
genic PCBs and PCB-153 (Table 3).

Table 4 presents the adjusted regression
models for overall and daily rate of change in
concentrations by PCB grouping and repro-
ductive outcome. p-Values are presented in lieu
of 95% confidence intervals to avoid the use of
negative exponents, though the latter are avail-
able on request. Significant mean overall and
daily rates of change in PCB concentrations
(nanograms per gram serum) were consistently
observed for women becoming pregnant
regardless of outcome for total, estrogenic, and
antiestrogenic groupings. Results for the infer-
tile women were inconsistent (positive and
negative) and none were significant. Of partic-
ular note is the absence of any overall or daily
changes in concentrations for PCB-153 regard-
less of reproductive outcome, in contrast to an
observed significant change (–0.001) for daily
PCB-118 among women giving birth. Overall
mean PCB concentrations (nanograms per
gram serum) adjusted for duration of breast-
feeding (reported by 34 women) significantly
increased in women from prenatal to postnatal
measurement for total (1.938), estrogenic
(0.628), and antiestrogenic PCBs (0.228) as
did the daily rate of change—0.008, 0.003,
and 0.001, respectively. Median serum lipids
(expressed in milligrams per deciliter) declined
15.97 (range –282.89 to 261.29) from pre-
conception to prenatal for women whose preg-
nancies resulted in a birth, and 1.57 (range
–144.71 to 105.96) for women experiencing
losses, but increased 18.97 (range –53.78 to
137.68) for infertile women. None of these
results achieved significance (data not shown).
Overall and daily rates of change in serum
lipids were not significant predictors of changes
in PCB concentrations (data not shown),
except for the daily rate of change in anti-
estrogenic PCBs between preconception and
the prenatal blood and between the preconcep-
tion and EPL measurements (i.e., β = 0.0004
and β = 0.0009, respectively; p = 0.02).
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Table 1. Description of study cohort at baseline by reproductive outcome [median (range)].

Characteristic Prenatal (n = 48) Pregnancy loss (n = 10) Infertility (n = 9)

PCBs (ng/g serum)
Total PCBs 5.27 (3.66–12.68) 5.21 (3.89–9.09) 4.62 (4.10–7.19)
Estrogenic PCBs 2.29 (1.66–3.77) 2.29 (1.78–4.54) 2.09 (1.79–3.18)
Antiestrogenic PCBs 0.20 (0.03–0.65) 0.18 (0.03–0.33) 0.22 (0.12–0.29)
PCB-118 0.09 (0.01–0.31) 0.12 (0.02–0.16) 0.08 (0.05–0.21)
PCB-153 0.26 (0.10–1.24) 0.25 (0.16–0.47) 0.24 (0.15–0.55)

Total serum lipids 530.17 (357.57–915.38) 529.05 (307.91–829.94) 475.39 (414.45–723.67)
(mg/dL)

Age (years) 30.5 (26–34) 29.5 (26–33) 30.0 (26–32)
BMI (kg/m2) 22.18 (17.7–39.9) 22.39 (17.54–34.56) 21.46 (17.28–31.15)
Gravidity (no. of pregnancies) 1 (0–5) 1 (0–3) 0.5 (0–2)
Parity (no. of births) 1 (0–3) 1 (0–3) 0 (0–2)
Breast-feeding 6.0 (1–28) 10.5 (2–13) 13.0 (6–20)

(no. of months)a

BMI, body mass index. None of the above differences achieved statistical significance. Reproductive outcome refers to
the timing of the second blood collection.
aRestricted to the 39 women reporting a history of breast-feeding at baseline.

Table 2. Spearman correlation coefficients among baseline PCB groupings (n = 67).

PCB grouping Total PCBs Estrogenic PCBs Antiestrogenic PCBs PCB-118 PCB 153

Total 1.000 0.938** 0.494** 0.341* 0.600**
Estrogenic 1.000 0.343* 0.258* 0.499**
Antiestrogenic 1.000 0.799** 0.629**
PCB-118 1.000 0.418*
PCB-153 1.000

*p < 0.05; **p < 0.0001.

Table 3. Spearman correlation coefficients among paired biospecimens by PCB grouping and critical
window.

Baseline Baseline Baseline Prenatal 
measure with measure with measure with measure with

PCB grouping prenatal (n = 48) early loss (n = 10) infertility (n = 9) postnatal (n = 47)

Total PCBs 0.328* 0.745* 0.317 –0.265
Estrogenic PCBs 0.168 0.588 0.383 –0.346*
Antiestrogenic PCBs 0.558** 0.394 0.467 0.095
PCB-118 0.755** 0.770* 0.300 0.281
PCB-153 0.513* 0.770* 0.567 0.320*

*p < 0.05; **p < 0.0001.

Table 4. Mean adjusted overall and daily rates of change in serum PCB concentrations, by PCB groupings
and reproductive outcome.

Prenatala Pregnancy lossa Infertilitya Prenatal to postnatalb
PCB grouping (n = 48) (n = 10) (n = 9) (n = 47)

Overall change Total PCBs –1.012** –1.452** –0.281 1.938*
(ng/g serum) Estrogenic PCBs –0.444** –0.647** –0.312 0.628*

Antiestrogenic PCBs –0.106** –0.093* 0.065 0.228*
PCB-118 –0.016 –0.014 0.010 0.023
PCB-153 –0.021 –0.041 –0.015 0.016

Daily rate of change Total PCBs –0.034** –0.085** –0.000 0.008*
(ng/g serum) Estrogenic PCBs –0.016** –0.040** –0.001 0.003*

Antiestrogenic PCBs –0.004** –0.004# 0.000 0.001*
PCB-118 –0.001* –0.001 0.000 0.000##

PCB-153 –0.000 –0.003 –0.000 0.000##

aAdjusted for overall change (mg/dL serum) or daily rate of change (mg/dL serum) in total serum lipids and baseline PCB
concentration (ng/g serum). bAdjusted for overall change or daily rate of change in total serum lipids (mg/dL), prenatal
PCB concentration and duration of breast-feeding between delivery and the postnatal sample. *p ≤ 0.004; **p < 0.0001;
#p = 0.03. ##Observed values were 0.000115 and 0.000053, respectively, but rounded to zero.



Figure 1 illustrates the daily rate of change
in total PCBs by reproductive outcome as a
function of women’s baseline concentrations.
The dependence of daily rate of change on
baseline concentration is illustrated under-
scoring the need to adjust for baseline con-
centration when estimating the mean daily
rate of change. This finding supports the use
of summary statistics beyond simple correla-
tions to allow simultaneous modeling of
important covariates.

Discussion

This prospective pregnancy study with pre-
conception enrollment of women is the first to
demonstrate the possible instability of PCB
concentrations over critical windows such as
conception and implantation, as measured by
hCG-detected pregnancy. Our findings sug-
gest that both the overall and daily rate of
change in serum PCB concentrations may be
associated with reproductive outcome, though
cautious interpretation is needed given the
limited cohort size and reliance on only two
measurements. Further supporting these
observations is the lack of change in concen-
trations for women who failed to achieve an
hCG-confirmed pregnancy within 12 men-
strual cycles, though admittedly with a limited
number of women. To this end, use of pre-
conception cohorts with ascertainment of all
women regardless of reproductive outcomes is
essential for understanding exposure profiles
relevant for the assessment of time-dependent
health effects. Last, our study findings
remained consistent regardless of PCB group-
ing suggesting that categorization did not
drive our results. In the absence of a univer-
sally accepted classification scheme for the
assessment of human health effects, our a pri-
ori classification allowed us to formalize our
assumptions when characterizing the cohort’s
exposure over time.

The reasons for the early changes between
preconception and hCG-detected pregnancy
are unknown and somewhat puzzling given the
alleged persistence of these chemicals in the
body. We speculate that early homeostatic
changes after human conception and early
embryonic development may affect chemical
mobilization from lipid reserves, possibly as a
result of the many physiologic changes accom-
panying pregnancy (Bernstein et al. 2001) that
may affect the absorption, distribution, metab-
olism, and excretion of exogenous compounds
(Casarett et al. 1996). Another possible inter-
pretation is laboratory noise given the observed
distribution of concentrations including values
below the LOD [Appendix 1, Supplemental
Material (online at http://www.ehponline.
org/docs/2007/10086/suppl.pdf)]. We do not
believe that this potential source of bias
accounts for our findings, given our use of
observed values as previously discussed.

Regardless of the underlying mechanisms,
these findings underscore the potential for
variability arising from epidemiologic studies
that rely on a single blood measurement of
exposure, especially if captured at varying
times during pregnancy or if relying only on
women with clinically viable pregnancies. The
utility and feasibility of prospective pregnancy
studies with preconception enrollment of
women or couples has been discussed previ-
ously (Buck et al. 2004). In essence, preg-
nancy loss may be viewed as a competing risk
for birth if higher exposures or exposures dur-
ing critical windows systematically are associ-
ated with pregnancy outcome. Bias also may
arise from collider stratification (Hernan et al.
2004) that may arise when an intermediate
variable such as reproductive outcome is used
to stratify the analysis. Because reproductive
outcome could be directly affected by two or
more other unmeasured variables, stratifying
on it can generate spurious study findings.
However, it is unlikely that this type of bias
would explain the large differences observed
in our study. Still, we recognize the need for
the results to be interpreted within the con-
text of this validity threat. Our results dis-
courage continued reliance on a single PCB
congener such as PCB-153 for assessing the
reproductive or developmental toxicity of all
PCBs or other persistent compounds in the
absence of further empirical assessment.

We are unaware of any prospective preg-
nancy studies with preconception enrollment
that quantified serum PCBs concentrations
across critical windows. To this end, we believe
our longitudinal cohort study is the first to pro-
vide empirical data regarding mean changes in
serum concentrations of PCBs from the pre-
conception-to-postnatal window of human
development. A few previous investigators have
assessed the stability of select PCB congeners
across trimesters of clinically established preg-
nancies and reported them to be highly cor-
related (Longnecker et al. 1999), as do
investigators comparing maternal concentra-
tions during established clinical pregnancies
with cord or postnatal concentrations (Ayotte
et al. 2003; Jarrell et al. 2005). However, such
correlation coefficients cannot be adjusted for
time intervals or other relevant covariates. The
median prenatal total PCB concentration for
the 48 women giving birth in our study is com-
parable to that for the 67 first trimester women
in the study by Longnecker et al. (1999), sug-
gesting similarity in study cohorts with regard
to exposure status (4.5 ng/g serum and
4.4 µg/L serum, assuming nanograms per gram
≈ micrograms per liter ≈ parts per billion).

Of added note is the capture of all hCG
pregnancies in our study with the use of home
pregnancy test kits and women failing to
conceive along with clinical pregnancies.
A priori, we were interested in obtaining both
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Figure 1. Daily rate of change in total PCB concentrations as a function of baseline PCB concentrations.
Solid line, linear regression best fit line for live delivery group; dashed line, linear regression best fit line
for early loss group; dotted line, linear regression best fit line for infertile group. 
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pre- and postconception biospecimens with an
additional biospecimen after an untoward
reproductive outcome or birth for fertile
women. Thus, we had only one blood sample
obtained during pregnancy. We also recognize
that some pregnancies may have been unde-
tected by home pregnancy tests, possibly
resulting in women being misclassified as
infertile, despite the absence of significant dif-
ferences in baseline concentrations by repro-
ductive outcome. Not all women’s blood
specimens could be precisely collected on the
same day, given that women resided in 16
counties in New York State with a single
research nurse available for home blood collec-
tion. Timing of the second sample also
depended on the woman’s compliance with
home pregnancy testing and her ability to
accurately recognize and report a positive test.
Given the educational attainment of the
women coupled with instruction by the nurse
with regard to fertility awareness and the
proper use of home pregnancy test results,
pregnancy recognition bias is not likely to
have affected the timing of the test. Our
analyses do consider the interval (in days)
between our measurements. We decided
a priori not to correct for multiple compar-
isons given the exploratory nature of this work
and our intent to try to globally assess patterns
within and between PCB groupings and by
reproductive outcomes. Finally, we remain
uncertain about how best to model the chemi-
cal mixtures more representative of women’s
actual exposures. Our initial attempt to
categorize PCB congeners in an a priori man-
ner should be viewed as preliminary and need-
ing further refinement as our understanding of
the biological activity and underlying mecha-
nisms evolves for this class of compounds.

Conclusions

In sum, PCB concentrations declined signifi-
cantly during the periconception window of
human development among women achiev-
ing pregnancy. PCB concentrations increased

among women with postnatal measurement.
These findings suggest a relatively dynamic
nature of serum PCB concentrations during
the earliest windows of human development,
underscoring the need to characterize expo-
sures during the periconception window.
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