
Exposure to ambient particulate air pollution
is associated with increases in morbidity and
mortality from respiratory and cardiovascular
diseases (Godleski et al. 2000). The welding
process generates high levels of metal fume
containing respirable particles. Epidemiologic
studies have shown that acute exposure to
welding fume is associated with metal-fume
fever (Mueller and Seger 1985) and increased
reversible respiratory symptoms (El-Zein et al.
2003a; Wolf et al. 1997). There was an
increased prevalence of inflammatory lung
diseases, such as asthma and chronic bronchi-
tis, among welders (El-Zein et al. 2003b).
Additionally, accumulating epidemiologic evi-
dence in the last decade has pointed to the
associations of particulate exposure with
adverse cardiovascular effects (Dockery et al.
1993; Mann et al. 2002; Peters et al. 2000,
2001a; Pope et al. 2002). Limited evidence
indicates that welding-fume exposure also may
be associated with increased cardiovascular
events (Sjogren et al. 2002).

It has been proposed that inhaled particu-
lates from air pollution may cause systemic
alterations by the release of inflammatory
cytokines subsequent to pulmonary inflamma-
tion, which plays an important role in the
pathogenesis of atherosclerosis and coronary
diseases. Indeed, elevated ambient particulate
levels have been shown to be associated with

increased levels of inflammatory markers, such
as white blood cell (WBC) counts (Schwartz
2001), C-reactive protein (CRP; Peters et al.
2001b; Seaton et al. 1999), and fibrinogen
(Pekkanen et al. 2000; Schwartz 2001) in
both cross-sectional and longitudinal epidemi-
ologic observations. In the experimental set-
ting, animal studies have revealed that
concentrated ambient particulate exposures
increase the total WBC counts and the differ-
ential count of circulating neutrophils (Clarke
et al. 2000; Gordon et al. 1998) in both
healthy animals and those with pulmonary
hypertension. Intratracheal instillation of
residual oil fly ash (ROFA) can induce a
significant elevation of plasma fibrinogen in
cardiopulmonary-compromised rats (Gardner
et al. 2000). Suwa et al. (2002) in their impor-
tant work showing progressive atherosclerosis
related to particulate exposure in hyper-
lipidemic rabbits also noted an increase in cir-
culating polymorphonuclear leukocyte counts
caused by exposures to particulate matter
(PM) with a mass median aerodynamic
diameter ≤ 10 µm (PM10).

However, most previous studies evaluated
only downstream markers for systemic inflam-
matory responses. Direct human evidence is
still lacking that shows particulates can induce
systemic inflammation, although previous
human studies and animal experiments did

generate data, suggesting the involvement of
inflammatory responses in particulate-mediated
acute cardiac events. If particulate-mediated
systemic inflammation were responsible for the
observed adverse effects on the cardiovascular
system, we would expect to see corresponding
changes in mRNA expression for particulate-
mediated systemic inflammation. The study
described in this article addresses this mecha-
nistic gap by investigating the systemic
inflammatory response to welding-fume expo-
sure using cDNA microarray technology on
whole-blood total RNA. Blood samples were
collected from welders and nonwelding con-
trols before and after the work shift. We
hypothesized that welding-fume exposure
would be associated with systemic inflamma-
tion, as indicated by the findings that genes
involved in systemic inflammation have signif-
icantly altered expressions. Furthermore, pre-
vious epidemiologic studies have shown that
cigarette smoking significantly affects CRP,
fibrinogen, and WBC levels (Frohlich et al.
2003; Smith et al. 2003). Therefore, we also
hypothesized that smoking status would
significantly affect the association between
welding fume and the various systemic inflam-
matory gene expressions.

Microarray technology provides a format
for the simultaneous measurement of the
expression of thousands of genes in a single
experimental assay and quickly becomes one
of most the powerful and versatile tools for
genomics and biomedical research (Murphy
2002). Peripheral blood is an essential tissue
type for biomedical and clinical research
because of its critical roles in immune
response and metabolism. Furthermore,
considering the simplicity and ease of collec-
tion, peripheral blood is also essential for
discovery of biomarkers of hematologic
diseases and surrogate markers of a wide
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Accumulating evidence demonstrates that particulate air pollutants can cause both pulmonary and
airway inflammation. However, few data show that particulates can induce systemic inflammatory
responses. We conducted an exploratory study using microarray techniques to analyze whole-
blood total RNA in boilermakers before and after occupational exposure to metal fumes. A self-
controlled study design was used to overcome the problems of larger between-individual variation
interferences with observations of relatively smaller changes caused by environmental exposure.
Moreover, we incorporated the dichotomous data of absolute gene expression status in the
microarray analyses. Compared with nonexposed controls, we observed that genes with altered
expression in response to particulate exposure were clustered in biologic processes related to
inflammatory response, oxidative stress, intracellular signal transduction, cell cycle, and pro-
grammed cell death. In particular, the preinflammatory cytokine interleukin 8 and one of its
receptors, chemokine receptor 4, seemed to play important roles in early-stage response to heavy
metal exposure and were down-regulated. Furthermore, most observed expression variations were
from nonsmoking exposed individuals, suggesting that smoking profoundly affects whole-blood
expression profiles. Our study is the first to demonstrate that with a paired sampling study design
of pre- and postexposed individuals, small changes in gene expression profiling can be measured in
whole-blood total RNA from a population-based study. This technique can be applied to evaluate
the host response to other forms of environmental exposures. Key words: functional pathway, gene
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range of nonhematologic disorders. Thus,
applying microarray technology on periph-
eral blood may provide new insights of varia-
tions in global gene expression specifically
associated with states of normal and disease
and has the potential of applying the tech-
nology in disease detection and diagnosis.
However, with the challenges unique to the
blood sample, including complex composi-
tion of heterogeneous cell types and ex vivo
changes of expression profiles induced by
different handling and processing methods,
it is difficult to apply microarray technology
on whole-blood total RNA, and there are
few previous publications of such research.
To this end, this study is also an exploratory
research with the purpose of developing
proper methods for applying microarray
technology on whole-blood total RNA.

Materials and Methods

Study population. The study was approved by
the institutional review board of the Harvard
School of Public Health, and written informed
consent was obtained from each subject. The
study population consisted of 28 welding
apprentices, instructors, and union officers,
recruited and monitored at an apprentice weld-
ing school (Union Local 29, Quincy, MA). All
18 exposed subjects actively welded in the
workshop, whereas 10 nonexposed controls
stayed in the office or classroom of the same
building during the work period. Blood sam-
ples were collected from each subject before
and after the welding workshop. A self-
administered questionnaire was used to obtain
relevant information, including respiratory
symptoms and diseases, smoking history, and
occupational history. Exposure to fine particu-
late matter (particulate matter with a mass
median aerodynamic diameter ≤ 2.5 µm,
PM2.5) was assessed using KTL cyclones
(GK2.05SH; BGI Inc., Waltham, MA). The
air sample was collected on a 37-mm polytetra-
fluoroethylene membrane filter (Gelman
Laboratories, Ann Arbor, MI), and the mass
concentration was determined as previously
described (Kim et al. 2003).

Blood measurements. Complete blood
counts of all blood samples were carried out
at Path Lab Inc. (Portsmouth, NH). The
blood parameters included total WBC count
with differential, red blood cell count,
platelet count, hemoglobin, hematocrit, and
erythrocyte indices (mean corpuscular vol-
ume, mean corpuscular hemoglobin, mean
corpuscular hemoglobin concentration, and
red cell distribution width).

RNA preparation. Immediately after the
blood was drawn, we added TRI Reagent BD
(Molecular Research Center, Inc., Cincinnati,
OH) and mixed to stabilize the whole-blood
total RNA. The stabilized samples were trans-
ported to our laboratory on dry ice and stored

at –80°C until RNA extraction. Total RNA
was isolated later from 10 mL of whole blood
according to manufacturer protocols and
purified using the RNeasy mini kit (Qiagen,
Chatsworth, CA). The yield and quality of
RNA were assessed by spectrophotometry and
the Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA).

Microarray hybridization. For genomewide
expression profiling, we used Affymetrix
Human Genome U133A GeneChips
(Affymetrix, Santa Clara, CA), which allow
detection of approximately 22,215 gene expres-
sion probe sets. All RNA samples were sent to
and analyzed at the Microarray Core Facility of
the Dana-Farber Cancer Institute (Boston,
MA), according to the manufacturer’s manual.
The baseline and postexposure RNA samples
from each subject were processed together in
one batch of microarray analysis to minimize
inherent variations. The quality of microarrays
analysis was initially assessed by examination of
the 3´ to 5´ ratios of five housekeeping controls
on U133A GeneChips.

Normalization and data extraction. We
used DNA-Chip Analyzer 1.3 (dChip;
http://www.dchip.org/) software to normalize
the raw microarray signals and then calculate
the model-based expression values using a
default perfect-match–only model with outlier
detection. dChip software applied an invariant
set normalization method, which chose a sub-
set of perfect-matched probes with small
within-subset rank difference in the two
microarrays to serve as the basis for fitting a
normalization curve (Li and Wong 2001a,
2001b). The outlier detection algorithm of the
dChip software allowed further quality assess-
ment of microarray data by cross-referencing
one array with other arrays through a model-
ing approach to identify problematic arrays
(Li and Wong 2001b). To have a better fit in
the model for more precise estimations of
expression values, we included 10 additional
microarrays in data normalization and extrac-
tion. The detection of whether a gene
was expressed (present) or not expressed
(absent) in a RNA sample was carried out by
Affymetrix Microarray Suite (MAS) 5.0 soft-
ware (Affymetrix) using one-sided Wilcoxon’s
signed-ranked algorithm (Detection Calls; Liu
et al. 2002).

Microarray data analysis. Initially we
evaluated gene expression changes by compar-
ing the large fold-changes of expression values
between baseline and postexposed microarrays
in both exposed (welders) and nonexposed
(controls) subjects. Then, we focused on
using the paired t-test in the dChip software
package to flush out genes with small expres-
sion changes in response to metal particulate
exposure. The results of the paired t-test were
adjusted by standard errors associated with
each gene expression value. Because dChip

software only gave an expression value to each
gene on an array without discriminating
whether the gene was expressed, we attempted
to incorporate the Detection Calls informa-
tion generated from the Affymetrix MAS 5.0
software package in the data analyses.

Hierarchical clustering. The analyses were
carried out by dChip software using a hierar-
chical clustering algorithm (Eisen et al. 1998)
with average-linkage method. After linear
transformation to standardize the expression
values across all selected samples, the distance
between two genes was calculated as 1-absolute
standard correlation coefficient and was used
in the subsequent repeated process to build
phylogenetic tree of genes and samples.

Clustering analyses using gene ontology.
Testing for significant change in a single gene
is difficult to accomplish given the stringent
criteria for significance in the multiple-test
background of > 20,000 probe sets. Therefore,
we focused instead on assessing the biologic
functions enriched with genes identified from
the paired t-test, using the annotations defined
by the Gene Ontology Consortium (GO;
http://www.geneontology.org/; Hakak et al.
2001). The GO annotations are structured,
controlled vocabulary for describing the roles
of genes in any organism. The probability of
observing a particular number of genes in one
GO biologic process (bioprocess) was tested
using hypergeometric distribution as previ-
ously described (Tavazoie et al. 1999). Briefly,
we addressed the problem as what is the prob-
ability of observation of at least (x) genes of a
certain GO bioprocess annotation in a list of
(k ) genes from paired t-test results, given the
background that there are (n ) genes with the
same GO annotation from total (m ) genes
(total annotated genes or a subclass of GO
annotated genes on the entire Affymetrix
array). The p-values were calculated using the
following formula:

In this study, we focused only on the gene
annotations of GO biologic process and used
Affymetrix nonredundant build of human
GO annotations downloaded 18 May 2004.
The lists of genes were uploaded to
Affymetrix NetAffx Analysis Center (http://
www.affymetrix.com/analysis/index.affx) to
obtain the numbers of genes within each GO
bioprocess.

A potential problem of significance testing
using GO annotations is that the hypergeo-
metric distribution p-values are biased and
sensitive to the total genes (m) used in the
tests, which are not truly representing the
entire genome because of the selection biases
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in array design and incomplete process of GO
annotation. Furthermore, the problem of
multiple testing is difficult to adjust because
the GO bioprocesses are highly interrelated
and genes are often assigned into multiple
GO bioprocesses. Because GO has a multiple-
level structure of directed acyclic graphs with
each level of bioprocess linked through multi-
ple parent–child relationships, there are one
or more pathways that could be identified by
tracing back from any GO bioprocess to the
top using true-path–rule logic relationships.
Thus, we adopted a conservative approach of
testing the hypergeometric distributions.
First, we used three numbers of the total
genes (m) corresponding to the top three lev-
els of GO bioprocess. A GO bioprocess was
regarded as significant when it had a
p < 0.005 at the lowest testing level and a
p < 0.05 at the immediate upper level. A
functional pathway was regarded as signifi-
cant when it had three consecutive GO bio-
processes tested significantly or had two
consecutive significant bioprocesses but also
tested significantly in other pathway(s). The
results were visualized using GoSurfer Soft
Mining Tool (https://www.affymetrix.com/
analysis/query/go_analysis.affx).

Statistical analysis. Statistical analyses
were performed using SAS version 6.12 (SAS
Institute Inc., Cary, NC). Exposure status
was dichotomized as nonexposed controls
and welders. Study population characteris-
tics between controls and welders were com-
pared using two-sample t-tests, Wilcoxon
rank-sum tests with exact p-values, and
Fisher’s exact test. The mean (SD) values of
the PM2.5 concentrations were determined
for controls and welders. Wilcoxon
rank-sum tests with exact p-values were per-
formed to compare the PM2.5 concentra-
tions in controls and welders and also in
smokers and nonsmokers. To account for
the repeated measurements, linear mixed
models with an interaction term for expo-
sure status and smoking status were used for
analysis. A generalized autoregressive covari-
ance structure was used to account for the
exponential decay of the correlation function
as the interval between the measurements
increases (Verbeke and Molenberghs 1997).
Restricted maximum likelihood was used to
estimate the covariance parameters. Baseline
mean (SEM) levels of systematic inflamma-
tory markers in peripheral blood were calcu-
lated in controls and welders according to
smoking status. Linear mixed models were
used to compare the baseline levels of the
systemic inflammatory markers in controls
and welders and in smokers and nonsmok-
ers. The effect of age on the baseline levels of
the systemic inflammatory markers also was
investigated. The level of significance for all
analyses was set at 0.05.

Results
Study population characteristics. A combined
approach of using intraindividual (self-pairing
samples) and interindividual controls was
implemented in the study to a) minimize the
biologic variability among individuals and
b) compare more precisely the gene expres-
sion profiles of different exposure states.
Eighteen welders and 10 nonexposed controls
at an apprentice welding school were
recruited, and blood samples were collected at
two time points: baseline and after 5.8 ±
0.6 hr of exposure to welding fume. After
microarray hybridization, we had complete
data sets on 44 arrays from 15 welders and
7 controls available for subsequent analysis.
Among the 6 excluded study subjects, 1 with-
drew during the study, 4 had low yield or
poor quality of RNA extraction, and 1 had a
poor quality of microarray hybridization.
Population demographic data are summarized
in Table 1. All study subjects were male,
including 18 Caucasians, 3 Hispanics, and
1 African American. The age and smoking
status were comparable between exposed and
control groups.

During the welding workshop, the welders
were exposed to metal fume and airborne PM
from shielded metal arc welding, gas tungsten
arc welding, plasma arc cutting, and grinding,
with carbon steel being the most commonly
used base metal. The controls were exposed
primarily to ambient levels of PM while per-
forming bookwork and office tasks at the weld-
ing school. In this study, particulate samples
were collected from all controls and welders.
With comparable mean sampling times
between controls and welders, the median
PM2.5 concentrations of welders were signifi-
cantly higher than those of nonexposed con-
trols (p < 0.01). However, there were no
significant differences in PM2.5 concentrations
according to smoking status in welders
(p = 0.9). Previous occupational exposures, as
measured by years of boilermaking, were not
significantly different between controls and
welders (Table 1). Moreover, before the day of
sample collection, all controls and 12 of
15 welders had at least a 5-day period of non-
welding or nonboilermaking to wash out the
effects of previous metal-fume exposure.
Among three welders with shorter than 5-day

washout periods, two performed welding 1 day
before the welding workshop and one per-
formed welding 2 days before the workshop.

Systemic inflammatory marker levels in
peripheral blood. All study subjects, including
both controls and welders, had their blood
cell counts within the normal ranges and had
similar baseline profiles of major systematic
inflammatory markers. Controls and welders
were not found to have significantly different
mean baseline CRP (p = 0.4), fibrinogen (p =
0.8), absolute neutrophil count (p = 0.1), and
absolute WBC counts (p = 0.1). However,
smokers were found to have significantly
higher mean baseline WBC (p < 0.01) and
neutrophil (p < 0.001) levels than nonsmok-
ers, among welders as well as in the entire
studied population.

The changes of the systemic inflammatory
markers across two time points were not signif-
icant in controls except for a significant
increase of fibrinogen [25 mg/dL; 95% confi-
dence interval (95% CI), 4–45] in the post-
exposure measurements. In contrast, there was
a significant increase in total WBC counts
(mean change, +1.2 × 103/µL; 95% CI,
0.6–1.8) in nonsmoking welders but not in
smoking welders (mean change, +0.3 ×
103/µL; 95% CI, –1.3 to 1.8). Relative and
absolute neutrophil counts were also increased
significantly in nonsmoking welders (p < 0.02)
but not in smoking welders (p > 0.7). The
change profiles of CRP levels were opposite
those of WBC and neutrophil counts, with a
significant increase in smokers (p = 0.02) and a
nonsignificant change in nonsmoking welders
(p = 0.4). Fibrinogen levels did not change sig-
nificantly between postexposure and baseline
in both smoking and nonsmoking welders
(p ≥ 0.6). Overall, our observations of acute
metal-fume exposure were consistent with pre-
vious epidemiologic findings that increased lev-
els of inflammatory markers were associated
with elevated ambient particulate levels
(Pekkanen et al. 2000; Peters et al. 2001b;
Schwartz 2001; Seaton et al. 1999)

Finding genes with large expression varia-
tions by fold-change analysis. Initially, we
tried to find genes with large alterations of
expressions between baseline and postexposed
microarrays by comparing the large n-fold-
changes of expression values in both exposed
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Table 1. Demographics of study population.

Nonexposure
Welders controls p-Value

No. of subjects 15 7
No. of smokers (%) 6 (40) 1 (14) 0.35*

Age, years 32 (22–46) 40 (19–57) 0.69**

Years of boilermaking 3 (2–20) 3 (1.5–33) 0.61**

Number with hypertension (%) 1 (7) 2 (29) 0.23*

Welding fume exposure (PM2.5 concentration, mg/m3) 2.44 (1.30–3.42) 0.04 (0.02–0.17) < 0.001**

Unless specified, values are expressed as median (range) and were tested by the median test.
*Fisher’s exact test. **Wilcoxon rank-sum test with exact p-value.



(welders) and nonexposed (controls) subjects.
In both the welder and control groups, there
was no gene with a 2-fold greater difference of
the mean expression levels between baseline
and postexposure arrays and an absolute dif-
ference > 50. Moreover, for each pair of base-
line and postexposed arrays from the same
subject, we found that few genes had large
fold-changes (median number of genes, 20;
range, 1–123) regardless of exposure status. In
addition, the correlation coefficients of the
raw expression values across entire probe sets
were high between baseline and postexposed
arrays from the same subject (median, 0.971;
range, 0.949–0.988). These observations sug-
gested that the real signals of changes in gene
expression profiling in response to occupa-
tional metal exposure were very small, which
could be the compound results of mixed cell
types and large amounts of hemoglobin RNA
in the whole-blood samples.

Identifying genes with altered expressions
by paired t-test. When all 22,215 probes on
the U133A GeneChip were included in the
paired t-test, we found more genes (p < 0.05)
in welders (533 genes from 546 probes) than
in controls (86 genes from 88 probes)
(Table 2). Considering the absolute gene
expression status, we further found that probes
identified by the paired t-test in controls had a
larger proportion of noninformative probes
(60.5%) that had absent calls assigned by the
Detection Calls algorithm in every tested array
compared with those in welders (47.3%).
Regarding the entire set of probes on
GeneChip, our data set had an overall 49.0%
of noninformative probes among all baseline
arrays. The initial observations suggested there
were only random variations and no statisti-
cally significant changes in whole-blood expres-
sion between postexposed and baseline samples
in individuals without metal particulate expo-
sure. We then conducted a series of paired
t-tests in several subsets of genes, which had
Present calls in at least one, 10%, 25%, and
50% arrays. With the increase of Present calls,
the number of genes identified by paired t-tests
dropped, but the difference in the numbers of
identified genes between welders and controls
increased (Table 2). Taken together, consistent
findings of more genes identified by paired
t-tests in welders than in controls suggested
there were alterations of global gene expression
profiling in the whole-blood total RNA in
response to acute metal-fume exposure. In
addition, only one gene, RIO kinase 3
(RIOK3), was identified and down-regulated in
both welders and controls.

Sample clustering using genes identified in
paired t-tests. Genes identified by paired
t-tests were used to classify RNA samples in
hierarchical clustering analyses to further eval-
uate the expression patterns in samples cate-
gorized by different collection time points,

smoking status, and metal-fume exposure
status. We tested various lists of genes
obtained from paired t-tests in controls,
welders, nonsmoking welders, and smoking
welders on the original expression data of
baseline and postexposure arrays, as well as
the data of log2-transformed expression ratios
of postexposure over baseline. The clustering
results neither revealed any distinct pattern of
gene expressions with any kind of combina-
tion of selected genes and RNA samples nor
showed any subgroup of samples or genes

with similar expression patterns. However, in
general, we found that > 70% of samples had
the baseline and postexposure arrays of the
same individual always clustered next to each
other, regardless their exposure status
(Figure 1). When RNA samples of non-
smoking controls and welders were clustered
with genes identified from paired t-tests of
nonsmoking welders, all study participants
had their baseline and postexposure arrays
grouped together in the phylogenetic tree of
sample clustering. Furthermore, samples of
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Table 2. Genes identified by paired t-test: postexposure versus baseline microarrays.

Welders Nonexposed controls Gene ratio
Gene with Present calls in (28 arrays/14 pairs) (16 arrays/8 pairs) (welders:controls)

All arrays 533 86 6.20
At least one array 281 34 8.26
At least 10% arrays 236 28 8.43
At least 25% arrays 186 23 8.09
At least 50% arrays 139 17 8.18

Figure 1. Cluster analysis 44 RNA samples using 139 genes identified by paired t-test in welders. The clus-
tering display was generated by dChip software with two-way data clustering. Each row represents an
individual gene, and each column corresponds to an individual array. Gene expression values were stan-
dardized and color coded relative to the mean: blue, values less than the mean; red, values greater than
the mean. RNA samples from the same individual were labeled with the same sample ID with different suf-
fixes, representing different collection time points. Smoking status: N, nonsmoking; S, smoking. Exposure
status: N, controls; Y, welders. Time point: B, baseline; P, postexposure. Experiment: the number indicates
the hybridization batch in which a sample was analyzed.

Smoking status
Exposure status
Time point
Experiment

Sample ID

–3.0 –2.6 –2.1 –1.7 –1.3 –0.9 –0.4 0 0.4 0.9 1.3 1.7 2.1 2.6 3.0



controls and welders seemed to be randomly
mixed in any sample clustering analyses,
including those using the data of log2-trans-
formed expression ratios (data not shown).
These observations further demonstrate that
the real signals of gene expression changes
caused by occupational metal exposure were
smaller than the interindividual variations.

Functional clustering using gene ontology.
Next, the genes identified by paired t-tests
were evaluated by hypergeometric distribu-
tion testing based on GO annotations to
define any bioprocesses enriched with the
identified genes. To minimize the noise of the
false-positive genes on the paired t-test, we
applied a set of highly stringent criteria to

define the significant GO bioprocesses and
functional pathways and further observed the
trends and distribution of the significant bio-
processes in four subsets of genes, with
increasing percentage of Present calls among
all arrays (at least one, 10%, 25%, and 50%
arrays). The results are shown in Figure 2.
With a decrease in the available numbers of
genes and an increase in the percentages of
Present calls, the main structures of GO
bioprocesses were preserved in both welders and
controls except for a few low-level bioprocesses
that disappeared. In the nonexposed group, we
did not find that genes were significantly
enriched in any functional pathways except for
two statistically significant bioprocesses:

response to DNA damage stimulus (GO ID
6974) and nucleotide-excision repair (GO ID
6289). These two bioprocesses also existed in
the welders but were not statistically signifi-
cant. However, in contrast to the controls, in
the welder group many GO bioprocesses were
found to be significantly enriched with genes
having significant alterations of expression
after exposure to metal fume. Some of the
GO bioprocesses tested significantly across all
subsets with different Present calls. In subsets
including genes with lower Present calls, the
significant bioprocesses were distributed more
discretely, with fewer functional pathways
identified. With the increase of Present calls,
more significant functional pathways showed
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Figure 2. GoSurfer graphic view of hypergeometric distribution testing of gene clustering. Each node represents a GO biologic process, and a line connecting
nodes represents parent–child relationship in the top-down direction. Because GO allows multiple parent–child relationships toward one biologic process but
GoSurfer only plots one upstream and one downstream relationship for each node, one biologic process may appear several times in the GoSurfer plot. Red
nodes represent significant GO bioprocesses tested by hypergeometric distribution as described in “Materials and Methods.” Numbered GO bioprocesses were
used in calculation in hypergeometric distribution testing: 1, biologic process; 2.1, cellular process; 2.2, development; 2.3, physiologic processes; 3.1, cell commu-
nication; 3.2, cell growth and/or maintenance; 3.3, metabolism; 3.4, response to external stimulus; 3.5; response to stress; and 3.6, death.
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3.1 3.2 3.3 3.5 3.6

8 annotated genes of 17 genes
2.1 2.2

3.1 3.2



up in welders by connecting discrete bio-
processes with newly appeared ones. In the
subset of at least 50% Present calls, most
significant bioprocesses were in the intercon-
nected functional pathways. In the metal-
exposed welders, functional pathways related
to nucleic acid metabolism (including RNA
metabolism and DNA metabolism), and cel-
lular morphogenesis disappeared with the
increase of Present calls.

We identified eight functional pathways
with significant enrichment of genes having
altered expressions in response to metal-fume
exposure in the subset of genes having Present
calls in > 50% arrays (Table 3). These func-
tional pathways contained many GO bio-
processes related to proinflammatory and
immune responses, oxidative stress, phosphate
metabolism, cell proliferation, and pro-
grammed cell death. Moreover, we identified
35 genes from these significant pathways that
had altered expression levels in welding
fume–exposed individuals in comparison with
their own baseline samples (Table 4). Among
the identified genes, we found several genes
involved in every aspect of the inflammatory
response, including proinflammatory media-
tors, cytokine receptors, downstream signal
transduction genes, and cytotoxic granulysin.

Smoking effects on gene expression
profiling. We assessed further the effects of
smoking on acute particulate exposure expres-
sion profiles. Of 15 welders and 7 nonex-
posed controls, there were 6 smoking welders
and 1 smoking control. It appeared that most
observed expression alterations were from
nonsmokers exposed to welding fume because
the number of genes identified from the
paired t-test and the cluster of genes in GO
bioprocesses were comparable between this
subgroup of welders and the entire welding
group (Table 5). In contrast to nonsmoking
welders, fewer genes were identified from the
paired t-test in welding smokers, and they had
different patterns of gene clustering. A similar
finding was observed in the analysis of the
peripheral WBC count as described in the
preceding section, and our results suggest that
smoking may alter expression profiles in
whole-blood total RNA and is a confounding
factor in the study of particulate exposure-
induced gene expression profiling changes.

Discussion

In the present study, small expression alera-
tions in several genes, caused by short-term
occupational exposure to metal particulates,
could be detected in whole-blood total RNA
by paired t-tests. Based on GO annotations,
the significant genes were clustered in func-
tional pathways related to proinflammatory
and immune responses, oxidative stress,
phosphate metabolism, cell proliferation, and
programmed cell death, suggesting systemic

reactions in peripheral blood in response to
environmental particulate exposure. Moreover,
the observations were confounded by smoking
because most variations were observed in non-
smoking welders exposed to welding fume.

Accumulating evidence proved that
microarray technology for the investigation of
global gene expression profiling is a powerful
tool for basic biologic research and laboratory
investigations of patient materials, especially in
the field of cancer research and toxicology.
Although this technology had been success-
fully applied on fractionated blood samples
(Klein et al. 2001; Locati et al. 2002) such as
peripheral blood mononuclear cells (PBMCs),
successful studies of gene expression profiles in
whole-blood total RNA have been limited
because of the difficult challenges of hetero-
geneous cell types and potential ex vivo
changes from blood handling and processing.

Compared with fractionated blood samples,
whole-blood total RNA had lower detection
sensitivities mainly caused by a large amount
of hemoglobin RNA from reticulocytes, which
contributes up to 70% of the total RNA iso-
lated from whole blood (Affymetrix 2003a,
2003b). PBMCs have a more uniform cell
population, containing lymphocytes and
monocytes but excluding red blood cells and
granulocytes (eosinophils, basophils, neu-
trophils), and are the most transcriptionally
active cells in blood (DePrimo et al. 2003).
However, the extra fractionation procedure for
PBMCs requires a prolonged period before
RNA stabilization, which results in significant
ex vivo changes in gene expression profiling
(Affymetrix 2003a; Pahl and Brune 2002). In
this study, because all blood samples were
collected within 1 day, it was beyond the
capacity of our laboratory to fractionate all
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Table 3. Results of hypergeometric testing using annotations from the Gene Ontology Consortium (GO).a

Functional Genes annotated Genes from paired t-testb

pathway GO ID Biologic processes on array Welders Controls

1 9605 Response to external stimulus 959 18 0
42330 Taxis 88 5 0
6935 Chemotaxis 88 5 0

30595 Immune cell chemotaxis 2 1 0
30593 Neutrophil chemotaxis 1 1 0

2 9605 Response to external stimulus 959 18 0
9607 Response to biotic stimulus 653 15 0
6952 Defense response 595 12 0
6955 Immune response 548 12 0

45087 Innate immune response 147 5 0
6954 Inflammatory response 145 5 0

42119 Neutrophil activation 1 1 0
30593 Neutrophil chemotaxis 1 1 0

3 6950 Response to stress 616 16 2
9605 Response to external stimulus 959 18 0
9611 Response to wounding 213 7 0
6954 Inflammatory response 145 5 0

42119 Neutrophil activation 1 1 0
30593 Neutrophil chemotaxis 1 1 0

4 9607 Response to biotic stimulus 653 15 0
6950 Response to stress 616 16 2
9613 Response to pest/pathogen/parasite 364 11 0
6954 Inflammatory response 145 5 0

42119 Neutrophil activation 1 1 0
30593 Neutrophil chemotaxis 1 1 0
9615 Response to viruses 28 2 0

5 9605 Response to external stimulus 959 18 0
9607 Response to biotic stimulus 653 15 0
6979 Response to oxidative stress 34 3 0
6950 Response to stress 616 16 2

6 8219 Cell death 315 7 1
12501 Programmed cell death 292 7 1
6915 Apoptosis 291 7 1
6916 Anti-apoptosis 60 3 1

7 8283 Cell proliferation 762 14 1
7049 Cell cycle 491 14 1

67 DNA replication and chromosome cycle 127 6 1
84 S phase of mitotic cell cycle 100 4 0

6260 DNA replication 99 4 0
6270 DNA replication initiation 14 2 0

8 6793 Phosphorus metabolism 468 9 1
6796 Phosphate metabolism 468 9 1

16311 Dephosphorylation 78 4 0
aGenes were identified from paired t-test with Present calls in at least 50% arrays. Annotations are from Gene Ontology
Consortium (http://www.geneontology.org/). bAll listed biologic processes tested significantly in hypergeometric distribu-
tion testing in welders but nonsignificantly in nonexposed controls.



blood samples in a timely fashion. Thus, the
whole-blood total RNA was extracted and
applied in all subsequent microarray assays.

Compared with person-to-person varia-
tions of gene expressions, the exposure-
induced gene expression changes were smaller.
Regardless of exposure status, a pair of baseline
and postexposed microarrays of the same sub-
ject often had a higher correlation coefficient
of raw signals across entire probe sets than a
pair of baseline microarrays randomly selected,
and most pairs were clustered next to each
other in sample clustering analyses. In addi-
tion, excess hemoglobin RNA and mixed cell
types in the whole blood made it more diffi-
cult to observe the real changes in gene expres-
sion profiles. Under such circumstances, we
were able to control better the biologic vari-
ability among individuals and obtain more
sensitive and precise measurements on gene
expression profiles by using self-paired con-
trols. In our experiments, this test identified

more genes in the exposed group (139 genes)
than in nonexposed controls (17 genes), with
Present calls in at least 50% arrays.

Affymetrix U133A GeneChip contains
> 20,000 probes for measuring gene expres-
sions in a single hybridization experiment.
One major issue in data analysis is to deter-
mine whether changes in gene expression are
experimentally significant, with the back-
ground of thousands of individual genes tested
simultaneously. On a GeneChip, many genes
are functionally interrelated or have unknown
functions, and there are multiple probe sets
detecting the same gene. In addition, the weak
signals of exposure-induced changes made it
very difficult, or even impossible, to conduct a
valid multiple testing adjustment. With these
considerations, we did not perform any
adjustments on the results of the paired t-test
in the present study.

An alternative approach in the statistics of
multiple testing is to estimate the false discovery

rate (FDR) by random permutations within
the same data set (Tusher et al. 2001). We
estimated the FDR of paired t-test results by
permutating each pair of baseline and postex-
posed arrays 500 times using dChip 1.3 soft-
ware. There was a lower FDR (median,
30.2%) in the exposed welders than in non-
exposed controls (median, 112%), suggesting
that the paired t-test results of the exposed
group contained genes with real changes in
expressions in response to occupational expo-
sure. However, the permutation tests through
dChip software did not adjust for the prob-
lem that multiple probe sets detect the same
gene on a GeneChip, so the estimated FDRs
could be inflated. Nevertheless, knowing that
an approximately 30% FDR was associated
with a set of genes from the paired t-test lim-
its our ability to identify individual genes
with statistically significant changes in expres-
sion in response to particulate exposure.
Instead of further testing the significant
change in a single gene, we focused on identi-
fying significant pattern changes of biologic
process in the genes identified from the paired
t-test, using the annotations defined by GO.
The underlying hypothesis is that several
genes of one functional bioprocess change
their expressions in response to environmental
challenge because genes are highly networked
and coordinated and do not act alone.
Although one gene change may be small and
difficult to be detected accurately in a signifi-
cance test, the significant enrichment of genes
with small changes in a biologic process and a
functional pathway may be assessable.

In this study we identified 35 genes from
eight significant functional pathways that had
altered expression levels after metal-fume expo-
sure. The most interesting finding was the
identification of several genes involved in every
aspect of the inflammatory response, including
proinflammatory mediators, cytokine recep-
tors, downstream signal transduction genes,
and cytotoxic granulysin. Five genes (IL8,
IL1A, CXCR4, RALBP1, and SCYE1) have
been implicated in chemotaxis of the early
inflammatory response, especially IL8, which is
a critical mediator for neutrophil-dependent
acute inflammation (Mukaida 2000, 2003).
IL8 has a wide range of actions on different cell
types, including neutrophils, lymphocytes,
monocytes, endothelial cells, and fibroblasts.
IL8 is produced from various cell types in
response to a wide variety of stimuli, including
proinflammatory cytokines, microbes and their
products, and environmental changes such as
hypoxia, reperfusion, and hyperoxia. Previous
studies on ROFA-exposed workers found an
increase in proinflammatory cytokines and
polymorphonuclear cells in the nasal lavage
fluid, indicating that the particulate exposure
resulted in acute upper airway inflammation
(Hauser et al. 1995; Woodin et al. 1998). In
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Table 4. Genes with altered expressions in response welding-fume exposure.

Welders Controls
Accession Gene Fold Paired Fold Paired
numbera Gene namea symbola change p-value change p-value

NM_00584 Interleukin 8 IL8 –1.22 0.004 1.02 0.923
NM_000575 Interleukin 1, alpha IL1A –1.12 0.035 –1.04 0.673
NM_003467 Chemokine (C-X-C motif) receptor 4 CXCR4 –1.26 0.038 1.02 0.900
NM_004757 Small inducible cytokine subfamily E, member 1 SCYE1 –1.12 0.017 1.03 0.769

(endothelial monocyte-activating)
NM_006788 ralA binding protein 1 RALBP1 –1.16 0.036 –1.09 0.629
NM_004111 Flap structure-specific endonuclease 1 FEN1 –1.13 0.038 1.02 0.864
NM_000416 Interferon gamma receptor 1 IFNGR1 –1.39 0.014 –1.10 0.483
NM_078481 CD97 antigen CD97 1.21 0.049 –1.00 0.930
NM_002339 Lymphocyte-specific protein 1 LSP1 1.21 0.040 1.14 0.225
NM_012483 Granulysin GNLY –1.18 0.034 1.05 0.577
NM_001766 CD1D antigen, d polypeptide CD1D –1.22 0.002 –1.09 0.394
NM_001828 Charot-Leyden crystal protein CLC –1.21 0.033 –1.18 0.540
NM_000633 B-cell CLL/lymphoma 2 BCL2 –1.12 0.010 1.08 0.198
NM_006144 Granzyme A (granzyme 1, cytotoxic GZMA –1.27 0.045 1.00 0.985

T-lymphocyte-associated serine esterase 3)
NM_080549 Protein tyrosine phosphatase, non-receptor PTPN6 1.10 0.032 –1.05 0.612

type 6
NM_000345 Synuclein, alpha (non A4 component of SNCA –1.28 0.030 1.02 0.907

amyloid precursor)
NM_002656 Pleiomorphic adenoma gene-like 1 PLAGL1 –1.20 0.039 –1.11 0.318
NM_201397 Glutathione peroxidase 1 GPX1 1.14 0.035 –1.01 0.897
NM_004417 Dual specificity phosphatase 1 DUSP1 –1.21 0.035 –1.09 0.331
NM_001752 Catalase CAT –1.22 0.044 –1.07 0.521
NM_004383 c-src tyrosine kinase CSK 1.18 0.013 –1.02 0.736
NM_006999 Polymerase (DNA directed) sigma POLS –1.08 0.046 1.03 0.689
NM_002835 Protein tyrosine phosphatase, non-receptor PTPN12 –1.23 0.042 –1.02 0.810

type 12
NM_145906 RIO kinase 3 (yeast) RIOK3 –1.25 0.008 –1.05 0.737
NM_181742 Origin recognition complex, subunit 4-like (yeast) ORC4L –1.13 0.032 –1.06 0.596
NM_052811 ret finger protein 2 RFP2 –1.13 0.037 1.03 0.750
NM_002577 p21 (CDKN1A)-activated kinase 2 PAK2 –1.20 0.020 1.03 0.751
NM_002848 Protein tyrosine phosphatase, receptor type, O PTPRO –1.14 0.041 –1.12 0.209
NM_015374 unc-84 homolog B (C. elegans) UNC84B 1.12 0.044 –1.03 0.462
NM_004359 Cell division cycle 34 CDC34 1.17 0.013 –1.06 0.426
NM-002958 RYK receptor-like tyrosine kinase RYK –1.19 0.033 1.01 0.976
NM_014826 CDC42 binding protein kinase alpha (DMPK-like) CDC42BPA –1.21 0.020 1.04 0.843
NM_016839 RNA binding motif, single stranded RBMS1 –1.18 0.023 –1.09 0.535

interacting protein 1
NM_016113 Transient receptor potential cation channel, TRPV2 1.08 0.041 –1.07 0.208

subfamily V, member 2
NM_032454 Serine/threonine kinase 19 STK19 –1.11 0.044 1.07 0.456
aFrom Affymetrix NetAffx Analysis Center (http://www.affymetrix.com/analysis/index.affx).



our study, IL8 and other cytokines and recep-
tor genes were transcriptionally down-
regulated in whole-blood total RNA in
response to metal particulate exposure.

Our findings that genes with altered
expressions in whole-blood total RNA in
response to metal particulate exposure were
clustered in the functional pathways related to
inflammatory and immune responses support
the hypothesis that particulates induce systemic
inflammation. It has been well documented
that particulate air pollutants can cause both
pulmonary parenchymal (Nel et al. 2001; Pope
2000) and airway inflammation (Peden 2001).
These particulate-mediated local inflammatory
responses conform to those epidemiologic

observations that exposure to particulate air
pollutants can lead to asthma exacerbation,
increased pulmonary infections, decreased pul-
monary functions, increased hospitalizations
due to pulmonary and/or airway diseases, and
increased mortality. Recent studies using high-
throughput technology for gene expression
profiling have added to our understanding of
particulate-mediated local inflammation
underlying those adverse effects on lungs and
airway in response to air pollution. Increased
RNA expression for stress response, inflamma-
tory, and repair-related genes were observed in
Sprague-Dawley rats after intratracheal instilla-
tion of ROFA (Nadadur and Kodavanti 2002).
In co-cultures of alveolar macrophages and

primary human bronchial epithelial cells,
mRNA levels of tumor necrosis factor
(TNF)-α, granulocyte macrophage colony
stimulating factor (GM-CSF), interleukin
IL1β, IL6, and IL8 were increased within 2 hr
(p < 0.05) after exposure to 100 µg/mL of
PM10 (Fujii et al. 2002), and mRNA levels of
leukemia inhibitory factor (LIF), GM-CSF,
IL1α, and IL8 in primary human bronchial
epithelial cells were increased after exposure to
PM10 (Fujii et al. 2001).

In this study, we also demonstrated that it
was critical to apply a dichotomous definition
of absolute gene expression status, that is,
expressed versus nonexpressed, in the data min-
ing of the microarray data. Many algorithms
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Table 5. Effects of smoking on acute metal exposure expression profiles.

Welders Nonexposed controls
All welders Nonsmokers Smokers All controls Nonsmokers

Number of arrays 30 18 12 14 12
Paired t-test

No. of genes with Present calls in all arrays 533 419 251 86 104
No. of genes with Present calls in at least 50% arrays 139 154 85 17 16

Hypergeometric distribution test in gene with Present call in at least 50% arraysa

1b 9605c Response to external stimulusd (959)e 18f 18f 8f 0f 0f

42330 Taxis (88) 5 3 1 0 0
6935 Chemotaxis (88) 5 3 1 0 0

30595 Immune cell chemotaxis (2) 1 1 0 0 0
30593 Neutrophil chemotaxis (1) 1 1 0 0 0

2 9605 Response to external stimulus (959) 18 18 8 0 0
9607 Response to biotic stimulus (653) 15 16 6 0 0

6952 Defense response (595) 12 13 6 0 0
6955 Immune response (548) 12 13 5 0 0

45087 Innate immune response (147) 5 3 0 0 0
6954 Inflammatory response (145) 5 3 0 0 0

42119 Neutrophil activation (1) 1 1 0 0 0
30593 Neutrophil chemotaxis (1) 1 1 0 0 0

3 6950 Response to stress (616) 16 17 4 2 2
9605 Response to external stimulus (959) 18 18 8 0 0

9611 Response to wounding (213) 7 4 1 0 0
6954 Inflammatory response (145) 5 3 0 0 0

42119 Neutrophil activation (1) 1 1 0 0 0
30593 Neutrophil chemotaxis (1) 1 1 0 0 0

4 9607 Response to biotic stimulus (653) 15 16 6 0 0
6950 Response to stress (616) 16 17 4 2 2

9613 Response to pest/pathogen/parasite (364) 11 10 3 0 0
6954op Inflammatory response (145) 5 3 0 0 0

42119 Neutrophil activation (1) 1 1 0 0 0
30593 Neutrophil chemotaxis (1) 1 1 0 0 0

9615 Response to viruses (28) 2 1 0 0 0
5 9605 Response to external stimulus (959) 18 18 8 0 0

9607 Response to biotic stimulus (653) 15 16 6 0 0
6979 Response to oxidative stress (34) 3 2 0 0 0

6950 Response to stress (616) 16 17 4 2 2
6 8219 Cell death (315) 7 8 5 1 1

12501 Programmed cell death (292) 7 8 5 1 1
6915 Aptosis (291) 7 8 5 1 1

6916 Anti-apoptosis (60) 3 5 2 0 0
7 8283 Cell proliferation (762) 14 17 5 1 1

7049 Cell cycle (491) 14 14 4 1 1
67 DNA replication and chromosome cycle (127) 6 5 1 1 1
84 S phase of mitotic cell cycle (100) 4 5 0 0 0

6260 DNA replication (99) 4 5 0 0 0
6270 DNA replication initiation (14) 2 1 0 0 0

8 6793 Phosphorus metabolism (468) 9 5 3 1 0
6796 Phosphate metabolism (468) 9 5 3 1 0

16311 Dephosphorylation (78) 4 2 0 0 0
aItalic numbers indicate that the functional pathway was tested significantly in hypergeometric distribution testing. bFunctional pathway. cGO identification number (from GO
Consortium: http://www.geneontology.org/) dBiologic process. eThe number of genes on U133A array belonging to the functional pathway. f The number of genes identified by paired
t-test belonging to the functional pathway.



currently used for microarray analysis retrieve
the expression data from raw signals as continu-
ous data and do not distinguish the distinct
dichotomous biologic status of a gene. If one
gene was not expressed in a RNA sample, there
was always a meaningless expression value being
generated that could not be distinguished accu-
rately from other samples that expressed the
same gene. In reality there should be no mRNA
in a sample when a gene is not expressed. If the
expression values generated by an algorithm
truly represented reality, the data for expressed
and nonexpressed genes should have different
distributions. Therefore, without distinguishing
expression status, a large number of meaning-
less data from nonexpressed genes would have
deteriorating effects on a statistical analysis that
assumed a normal distribution of data. Our
observations that more functional pathways
were associated with high content of Present
calls in welders support this hypothesis.
Furthermore, based on the absolute expression
status, microarray data may be divided into
three categories: consistently not expressed,
turned on or off, and continuously expressed in
different experimental conditions. The first cat-
egory of genes was noninformative, and the
analyses of the second category of genes were
very complicated and difficult. Only the last
category of genes, those with a high percentage
of Present calls across all arrays, was suitable
for parametric statistical analysis. At present,
the Detection call algorithm of Affymetrix
MAS 5.0 is the only one available for determin-
ing the absolute gene expression status, with
limitations on both sensitivity and specificity
to distinguish low-level expressed genes from
nonexpressed genes (Liu et al. 2002).

In conclusion, using a repeated measure
design, peripheral blood gene expression pro-
files revealed that environmental exposures to
metal fume in healthy individuals produced
observable changes in gene expression clustered
in biologic processes related to inflammatory,
oxidative stress, phosphate metabolism, cell
proliferation, and programmed cell death.
Smoking modified the observed responses.
Finally, our study demonstrates the utility of
paired sampling pre- and postexposure in an
at-risk population.
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