Quantcast
Environmental Health Perspectives Free Trail Issue
Author Keyword Title Full
About EHP Publications Past Issues News By Topic Authors Subscribe Press International Inside EHP Email Alerts spacer
Environmental Health Perspectives (EHP) is a monthly journal of peer-reviewed research and news on the impact of the environment on human health. EHP is published by the National Institute of Environmental Health Sciences and its content is free online. Print issues are available by paid subscription.DISCLAIMER
spacer
NIEHS
NIH
DHHS
spacer
Current Issue

EHP Science Education Website




Comparative Toxicogenomics Database (CTD)

spacer
Environmental Health Perspectives Volume 105, Number 1, January 1997 Open Access
spacer
The Effect of 60-Hz Magnetic Fields on Co-promotion of Chemically Induced Skin Tumors on SENCAR Mice: A Discussion of Three Studies

Jack R.N. McLean, Art Thansandote, David Lecuyer, and Michael Goddard

Environmental Health Directorate, Health Canada, Ottawa, Ontario, Canada

Abstract
Three independent experiments involving a total of 288 SENCAR mice were used to study the effects of 60-Hz magnetic fields on the growth and development of skin tumors. Given the constraints imposed by the experimental design, the results did not support a role for magnetic fields as a tumor co-promoter. This negative finding could also be interpreted to mean that the SENCAR mouse skin tumor model was not sensitive enough to detect the action of a weak co-promoter. The two-stage (initiation/promotion) model was used to assess the genotoxic potential of magnetic fields because it had been widely used to evaluate chemical carcinogens. This model, however, lacks the sensitivity to detect all but the most potent direct-acting carcinogens, and the tumor response to the action of low doses of promoter results in large random fluctuations in tumor incidence, yield, and multiplicity. The need to limit tumor incidence in the sham is a necessary condition to ensure that a magnetic field-induced effect on tumorigenesis would have a reasonable chance of being detected. This requirement, and the variability in tumor development between and within experiments, increases the level of uncertainty in the system and makes a weak response to the magnetic field difficult to detect and interpret. Key words: , . Environ Health Perspect 105:94-96 (1997)


Address correspondence J.R.N. McLean, Radiation Protection Bureau, 775 Brookfield Rd., Postal Locator 6303B, Ottawa, ON K1A 1C1 Canada.

Received 16 January 1996 ; accepted 16 October 1996.


The full version of this article is available for free in HTML format.
spacer
 
Open Access Resources | Call for Papers | Career Opportunities | Buy EHP Publications | Advertising Information | Subscribe to the EHP News Feeds News Feeds | Inspector General USA.gov