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Research

Inorganic arsenic compounds have been
shown to enhance the mutagenicity induced
by ultraviolet (UV) light, benzo[a]pyrene
(B[a]P), X rays, alkylating agents, and DNA
cross-linking compounds in cultured mam-
malian cells (Pott et al. 2001; Rossman 2003;
Styblo et al. 2002). Arsenic may modulate the
efficiency of carcinogen–adduct formation,
the repair efficiency of carcinogen adducts, or
the fidelity of translesion synthesis. Currently,
the data are scant regarding the effects of
arsenic on the formation of carcinogen–DNA
adducts. Only a few studies investigated the
effects of arsenic on the formation of DNA
adducts induced by B[a]P or its reactive
metabolite B[a]P diol epoxide (BPDE) with
conflicting results (Evans et al. 2004; Fischer
et al. 2005; Maier et al. 2002; Schwerdtle
et al. 2003; Tran et al. 2002). Different
methylation patterns of inorganic arsenic in
the cell or tissue systems used in those previ-
ous studies may partly lead to this variability.

Maier et al. (2002) showed that exposure
of mouse hepatoma Hepa-1 cells to low con-
centrations of arsenite (iAsIII) increased B[a]P-
induced BPDE–DNA adduct levels by as
much as 18-fold, whereas iAsIII treatment did
not alter the adduct removal kinetics. An
in vivo study from the same research group
reported that iAsIII co-treatment increased the
average BPDE–DNA adduct levels in both
mouse lungs and skin, with the increase
(~ 2-fold) in the lungs being statistically signifi-
cant (p = 0.038) (Evans et al. 2004). Fischer

et al. (2005), in another in vivo study using
mice, found no additional stable BPDE–
DNA adducts in the group exposed to iAsIII

plus B[a]P compared with the group exposed
to B[a]P alone. However, in a study with
Sprague-Dawley rats, Tran et al. (2002)
observed that iAsIII decreased B[a]P-induced
BPDE–DNA adduct formation. The 32P-post-
labeling assay was used to detect the DNA
adducts in these four studies. Recently,
Schwerdtle et al. (2003) examined five arsenic
species—iAsIII, monomethylarsonous acid
(MMAIII), dimethylarsinous acid (DMAIII),
monomethylarsonic acid (MMA), and
dimethylarsinic acid (DMAV)—for their effects
on the formation and repair of BPDE–DNA
adducts in A549 human lung cancer cells. By
using a high-performance liquid chromatog-
raphy (HPLC)/fluorescence assay, they
observed that iAsIII and MMAIII increased the
BPDE–DNA adduct formation in the concen-
tration range being investigated. In this study
iAsIII was found to start to enhance adduct for-
mation at 25 μM and achieved 40% more
adducts at 75 μM. Unfortunately, no explana-
tions were offered for the increased formation
of BPDE–DNA adducts. 

One limitation of the previous studies is
that DNA repair-proficient systems were used.
Therefore, the effects of arsenic on adduct
repair could not be differentiated from its
effects on adduct formation. In other words,
the apparent formation enhancement might
simply result from repair inhibition within the

co-incubation period included in the treat-
ment protocols of the previous studies. To
clarify these issues, we use a nucleotide excision
repair (NER)-deficient SV40-transformed
Xeroderma pigementosum complementation
group A (XPA) fibroblast (GM04312C) cell
line so that changes in adduct levels can be
unambiguously attributed to the effects of
arsenic on adduct formation. NER is respon-
sible for removing bulky lesions such as
BPDE–DNA adducts from the genome.
Abrogation of the p53 function by SV40
transformation could further diminish DNA
repair (Bowman et al. 2000). In the present
study BPDE was used to generate BPDE–
DNA adducts. Thus, problems associated with
the metabolic pathways—for example, the
phase I bioactivation of B[a]P—were avoided.
We also examined the influence of iAsIII on the
glutathione (GSH) system and on chromatin
structure, both of which have the potential to
modulate BPDE–DNA adduct levels.

Materials and Methods

Chemicals. Racemic anti-BPDE and [3H]-
anti-BPDE were supplied by the NCI
Chemical Carcinogen Repository (Midwest
Research Institute, Kansas City, MO). To
avoid hydrolysis of the epoxide, we always
prepared a stock solution of BPDE fresh by
dissolving BPDE in anhydrous tetrahydro-
furan (THF) (> 99.9% purity; Sigma-Aldrich,
St. Louis, MO) immediately before use. iAsIII

was obtained as an arsenic atomic absorption
standard solution from Aldrich (Milwaukee,
WI) and used as a stock solution with a con-
centration of 13.3 mM. 

Cells and cell cultures. SV40 transformed
XPA fibroblast GM04312C cells and human
normal fibroblast GM00038B cells were
obtained from the NIGMS (National Institute
of General Medical Sciences) Human Genetics
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Cell Repository (Camden, NJ). Human nor-
mal fibroblast CRL2522 cells were obtained
from the American Type Culture Collection
(Rockville, MD). Cells were cultivated in
Dulbecco’s modified Eagle’s medium/nutrient
mixture F-12 (DMEM/F12) (1:1 ratio) (Gibco
BRL, Rockville, MD) supplemented with 10%
fetal bovine serum, penicillin (50 U/mL),
streptomycin (50 mg/mL), L-glutamine
(2 mM), nonessential amino acid (0.1 mM),
and sodium pyruvate (1 mM). The cells were
seeded in 100-mm dishes at a density of
1 × 106 cells per dish and maintained at 37°C
in humidified air containing 5% CO2. The
cells were grown to about 80–90% confluence
for treatments unless otherwise stated. 

Treatment of cells. We pretreated
GM04312C cells with iAsIII at the indicated
concentrations for the respective experiments in
complete growth medium for 24 hr. Cells were
washed twice with phosphate-buffered saline
(PBS) before the addition of BPDE in serum-
free medium. The final concentration of BPDE
was 0.5 μM. After a 30-min incubation, BPDE
was removed, and the cells were washed with
PBS 3 times, and their DNA was extracted for
measurement of the BPDE–DNA adducts. The
concentrations of THF did not exceed 0.001%
to avoid the influence of THF on the cells.

Neutral red uptake and colony-forming
assays. We determined the early cytotoxic
response of GM04312C cells to iAsIII by meas-
uring the ability of exposed cells to incorporate
neutral red (NR) into lysosomes. Cells were
seeded at densities approximating 2,500 cells
per well in a 96-well plate and allowed to grow
for 3 days. After treatment with iAsIII at vari-
ous concentrations for 24 hr, cells were washed
twice with PBS and assayed for NR uptake
using a TOX-4 kit per the manufacturer’s
instruction (Sigma). Briefly, cells were exposed
to NR in growth media for 2 hr and rinsed
with PBS before the NR dye was released.
Absorbance was measured at 540 nm with
background subtraction at 690 nm, using a
SPECTRA MAX 190 microplate spectro-
photometer controlled by SOFTmax PRO 4.0
(Molecular Devices Corp., Sunnyvale, CA).

For the colony-forming assay, exponen-
tially growing GM04312C cells were tryp-
sinized and resuspended in DMEM/F12
medium. Cells were seeded into 60-mm dishes
at densities from 300 to 2,500 cells per dish
and allowed to attach overnight so that no visi-
ble cell detachment was observed during treat-
ment. Cells were treated with iAsIII at various
concentrations for 24 hr. After treatment, cells
were washed 3 times with ice-cold PBS and
restored in fresh growth medium for colony
formation. After 2–3 weeks, colonies were
stained with 0.25% methylene blue and
counted, and the cloning capability was
compared with the plating efficiency of
untreated control cells. 

DNA isolation. Cells were lysed in DNAzol
reagent (Invitrogen Life Technologies, Carlsbad,
CA), and genomic DNA was precipitated with
ice-cold 99.9% ethanol and washed twice with
cold 70% ethanol. The DNA pellet was air-
dried and resuspended in deionized water and
the solution was placed in an incubator at 37°C
overnight to facilitate the redissolution of DNA.
DNA concentrations were measured at 260 nm
using a SmartSpec 3000 spectrometer (Bio-Rad
Laboratories, Cambridge, MA).

Detection of BPDE–DNA adducts. In the
present study we used a capillary electrophore-
sis laser-induced fluorescence (CE-LIF)-based
immunoassay, as described previously (Le et al.
1998; Wang et al. 2003), to detect BPDE–
DNA adducts. Typically, 1 μg of DNA was
heat-denatured at 100°C for 5 min followed by
cooling on ice for 3 min. Denatured DNA was
incubated with a mouse anti-BPDE antibody
(Clone 8E11, isotype IgG1;Trevigen Inc.,
Gaithersburg, MD) and a goat anti-mouse
antibody provided in a Zenon Alexa Fluor 546
mouse IgG1-labeling kit (Molecular Probes,
Eugene, OR). We used an incubation buffer
(10 mM Tris and 80 mM glycine adjusted
with acetic acid to pH 7.8) to bring the total
sample volume to 20 μL. After overnight
incubation on ice in the dark, samples
(~ 10 nL) were electrokinetically injected into
the capillary using an injection voltage of
10 kV for 10 sec. The separation was carried
out at room temperature with a separation
voltage of 20 kV. The running buffer was a
Tris–glycine mixture containing 30 mM Tris
and 170 mM glycine, at pH 8.3. Between
runs, the capillary was rinsed electrophorecti-
cally for 5 min with 0.02 M NaOH and
5 min with the running buffer. 

Cellular glutathione content. Cellular GSH
content was determined using a Bioxytech
GSH-400 colorimetric assay kit (Oxis
International, Portland, OR). Cells (106–107)
were trypsinized, centrifuged, and washed with
PBS. They were then resuspended in 100 μL
of ice-cold metaphosphoric acid. After four
cycles of freeze–thaw, the solution was cen-
trifuged at 10,000 × g at 4°C for 10 min. The
clear supernatant was collected at 4°C for the
subsequent assay. Reagent R1 and NaOH
from the assay kit were added to the super-
natant. After incubation at 25°C for 10 min in
the dark, the absorbance of the solution was
measured at 400 nm. The GSH concentration
in the solution was calculated from the
absorbance and a prestored calibration curve of
a GSH standard. The cellular GSH content is
expressed as nmoles of GSH per million cells.

Glutathione S-transferase activity assay.
Cellular glutathione S-transferase (GST) activ-
ity was measured by a GST colorimetric activ-
ity assay kit (Biovision, Cedarlane Laboratory
Ltd., Mountain View, CA) using 1-chloro-
2,4-dinitrobenzene (CDNB) as the substrate.

Briefly, the cells were trypsinized, centrifuged,
and homogenized in 100 μL of GST sample
buffer. After centrifugation at 10,000 × g at
4°C for 10 min, the supernatant was col-
lected for the subsequent assay. GSH and
CDNB in GST assay buffer were added to
the supernatant and mixed. Absorbance was
read at 340 nm using a SPECTRA MAX 190
microplate spectrophotometer controlled by
SOFTmax PRO 4.0 (Molecular Devices
Corp.). Absorbance readings were taken
repeatedly for a minimum of five time inter-
vals to obtain enzyme kinetic information.
GST activity was expressed as nmoles of
CDNB reduced per minute per million cells.

Chromatin accessibility. A denaturation
sensitivity assay was used to examine chro-
matin accessibility, as described by Rubbi and
Milner (2003), with some modifications.
Cells were cultured in DMEM/F12 (1:1
ratio) (Gibco BRL) supplemented with 10%
fetal bovine serum on coverslips placed in
35-mm dishes. After reaching 80–90% con-
fluence, the cells were incubated with iAsIII at
various concentrations. After a 24-hr incuba-
tion, the cells were washed and fixed with 2%
paraformaldehyde for 30 min, then incubated
with 50 μg/mL RNase A (Sigma) in PBS at
room temperature for 1 hr. The cells were
then denatured for 30 sec with 0.1 M HCl.
The denaturation was stopped with 20 μg/mL
acridine orange (AO) (Molecular Probes) in
0.1 M phosphate/citrate buffer (pH 2.6), and
the coverslips were mounted with the addi-
tion of 1,4-diazobicyclo-[2,2,2]-octane
(DABCO, #D2522; Sigma) and Mowiol 488
(#475904; Calbiochem, La Jolla, CA). A
Zeiss LSM510 laser scanning confocal micro-
scope (Carl Zeiss, Jena, Germany) with an
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Figure 1. Repair of BPDE–DNA adducts in human
normal CRL2522 fibroblasts and XPA GM04312C
fibroblasts. More than 90% confluent cells were
treated with 1 µM BPDE for 30 min, then allowed to
repair in complete medium for 0, 2, 4, 8, or 24 hr.
Error bars indicate 1 SD of four determinations
from duplicate experiments of cell treatment.
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F-Fluar 40×, NA 1.3 objective lens was used
to obtain fluorescence images. The cell sam-
ples were scanned using a 488-nm argon ion
laser for excitation (0.75% transmission);
both green (dsDNA) and red (ssDNA) fluo-
rescence signals were detected through the
505/50BP and 650LP filters, respectively.
The fraction of dsDNA was calculated as
FdsDNA = G/(G+R) and displayed numerically. 

Cellular uptake of BPDE. Eighty to
ninety percent confluent GM04312C cells
grown in 6-well plates were treated with
iAsIII for 24 hr. After being washed twice
with PBS, the cells were incubated with
0.5 μM [3H]-anti-BPDE (2030 mCi/mmol)
(Chemsyn Science Laboratories, Lenexa, KS)
for 30 min. After washing with PBS 3 times,
the cells were lysed in 0.2 M NaOH before
radioactivity measurement. Cells in parallel
wells were trypsinized and counted. The
radioactivity of each sample was determined
with an LS5801 liquid scintillation counter
(Beckman Coulter, Fullerton, CA) and
expressed as cpm/106 cells.

Results

Repair capability of the chosen XPA cell line.
To justify the use of GM04312C cells as
NER-deficient cells for studying the effects of
arsenic on the formation of BPDE–DNA
adducts, repair experiments with GM04312C
and CRL2522 (repair proficient, positive con-
trol) cells were carried out. The repair kinetics
in these cell lines are shown in Figure 1.
Ninety percent confluent cells were used to
limit posttreatment replication. While 55%
of BPDE–DNA adducts were removed
within 24-hr after BPDE treatment in normal
fibroblast CRL2522 cells, the differences in

BPDE–DNA adduct levels in the GM04312C
cells between different repair times up to 24 hr
were not statistically significant (p > 0.05).
These results confirmed that GM04312C
cells lack the ability to repair BPDE–DNA
adducts.

Cytotoxicity of iAsIII to GM04312C cells.
The cytotoxicity of iAsIII was determined both
by the NR uptake assay immediately after
exposure to arsenic and by the colony-forming
assay, which requires cell growth for 2–3 weeks
after exposure (Figure 2). When we used the
NR uptake assay, the cytotoxic effects were
observed only in cells exposed to iAsIII at con-
centrations > 2.5 μM. After treatment with
10 μM iAsIII, 60% of the cells remained viable,
whereas treatment with 50 μM iAsIII left 20%
of cells viable. Colony-forming ability, how-
ever, was inhibited at all concentrations of
iAsIII tested (2.5–50 μM) in a dose-dependent
manner. Only 28% of the cells exposed to
10 μM iAsIII were able to form colonies. No
colonies were observed at 50 μM iAsIII. The
colony-forming assay is known to be a very

sensitive method of toxicity evaluation, but it
may underestimate early cell survival (Hamdan
et al. 1999). 

Effects of iAsIII on the formation of
BPDE–DNA adducts. The GM04312C cells
were treated with graded concentrations
(0–50 μM) of iAsIII for 24 hr. After a 
30-min incubation with 0.5 μM BPDE, the
BPDE–DNA adducts in the cellular DNA
were measured by the CE-LIF–based immuno-
assay. Figure 3 shows that iAsIII increased
adduct formation by 39% at 10 μM and by
60% at 50 μM. 

Effects of iAsIII on GSH-mediated inactiva-
tion of BPDE. The GSH levels in GM04312C
cells increased significantly from 5.8 nmol/106

cells to 11 nmol/106 cells after a 24-hr treat-
ment with 10 μM iAsIII. A higher concentra-
tion (50 μM) of iAsIII did not lead to a further
increase in the GSH levels (Figure 4). 

We also measured GST activity of the
GM04312C cells after pretreatment with
iAsIII for 24 hr, as shown in Figure 5.
Pretreatment with iAsIII had no significant
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Figure 2. Effects of iAsIII on the cell viability of
GM04312C cells examined by neutral red (NR)
uptake and a colony-forming assay (CFA). For NR
experiments, approximately 2,500 cells were
seeded in each well of a 96-well plate and allowed
to grow for 3 days. The cells were treated with iAsIII

for 24 hr, and the NR uptake ability was examined.
For CFA experiments an appropriate number of
cells (300–2,500) were seeded in each designated
dish and allowed to attach overnight. After a 24-hr
treatment with iAsIII at the indicated concentra-
tions, cells were restored in fresh growth medium
for colony formation. Error bars indicate the SE of
four determinations from two experiments.
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Figure 3. Effects of iAsIII on the formation of BPDE–DNA adducts. GM04312C cells were pretreated with
iAsIII at the indicated concentrations for 24 hr, then incubated with 0.5 µM BPDE for 30 min. The cells were
lysed, and DNA was extracted for analysis of BPDE–DNA adducts using a CE-LIF–based immunoassay.
(A) Electropherograms: peak 2 corresponds to the antibody complex with the BPDE-damaged DNA; peak 1
corresponds to the excess antibodies. (B) Relative adduct levels compared to those of controls. Adduct
levels obtained from BPDE incubation only were normalized to 100%. 
**Statistically significant difference from controls (p < 0.010) using one-way Student’s t-test. Error bars indicate 1 SD from
three experiments.
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Figure 4. Effects of iAsIII on cellular-reduced GSH
levels. Eighty to ninety percent confluent GM04312C
cells were treated with iAsIII at the concentrations
indicated for 24 hr, then homogenized for GSH detec-
tion. Error bars indicate 1 SD from three experiments.
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Figure 5. Effects of iAsIII on the activity of GST. Eighty
to ninety percent confluent GM04312C cells were
treated with iAsIII at the concentrations indicated for
24 hr, then homogenized for the GST activity assay.
Error bars indicate 1 SD from three experiments.
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effect on GST activity in the concentration
range under investigation. 

Effects of iAsIII on chromatin accessibility.
A confocal microscope-based technique origi-
nally devised by Dobrucki and Darzynkiewicz
(2001) to examine chromatin relaxation
in situ was adapted in our study to investigate
the effect of iAsIII on chromatin accessibility in
GM04312C cells. After removal of RNA and
partial denaturation of DNA by HCl, AO was
used to stain nondenatured dsDNA and dena-
tured ssDNA, resulting in green and red fluo-
rescence, respectively. Green fluorescence is
associated with relaxed chromatin and red flu-
orescence with condensed chromatin. As a
method-positive control, GM00038B cells
had relaxed chromatin structure after 4 J/m2

UVC irradiation, which is in agreement with a
previous report (Rubbi and Milner 2003).
Conversely, the same UVC dose did not 
lead to a change in chromatin structure in
GM04312C cells (Figure 6). Attenuation of
p53 functionality by SV40 transformation
might be the cause for the difference because
functional p53 was demonstrated to be
required for UV-induced chromatin relaxation
(Rubbi and Milner 2003). 

Pretreatment of GM4312C cells with iAsIII

at concentrations up to 50 μM also failed to
relax the chromatin structure (Figure 7). In fact,
cells treated with this dose appeared to have
more condensed chromatin than the controls. 

Effects of iAsIII on the cellular uptake of
BPDE. Radioactive [3H]-BPDE was used to
probe the effect of iAsIII on the cellular uptake

of BPDE after iAsIII pretreatment. The
GM04312C cells exposed to 0.5 μM
[3H]-BPDE in the absence of iAsIII resulted in
a radioactivity measure of 55,000 cpm/106

cells, which corresponded to approximately
12.3 pmol of BPDE in 106 cells. Treatment
with iAsIII led to increased cellular uptake in a
concentration-dependent manner (Figure 8).
At 10 μM iAsIII the uptake of BPDE increased
by 1.2-fold, whereas at 50 μM iAsIII the uptake
increased by 8.6-fold. 

Discussion

Resistance to arsenic in mammalian cells has
been shown to correlate with high levels of
intracellular GSH and high GST activity
(Brambila et al. 2002; Lee et al. 1989; Lo et al.
1992). Depletion of GSH has been shown to
block arsenic methylation (Buchet and
Lauwerys 1987) and results in increased cyto-
toxicity and clastogenicity of arsenic (Oya-Ohta
et al. 1996). GST-catalyzed GSH conjugation
of BPDE is believed to be the most important
enzymatic pathway to inactivate BPDE (Hu
et al. 1996; Robertson et al. 1986a, 1986b).
The results of our experiments indicated that
iAsIII increased GSH levels in a concentration-
dependent manner (Figure 4) and had no sig-
nificant effect on GST activity (Figure 5).
However, BPDE–DNA adducts increased after
iAsIII pretreatment (Figure 3). This lack of cor-
relation is in agreement with the observation by
Maier et al. (2002). They treated cells with
iAsIII for 30 min before addition of B[a]P and
determined the GSH levels after 1.5 hr of iAsIII

and B[a]P co-treatment. They either depleted
GSH with L-buthionine-S,R-sulfoximine or

replenished GSH with glutathione ethylester to
modulate cellular GSH levels. The changes in
the cellular GSH status led to noticeable effects
on the yields of the B[a]P-induced BPDE–
DNA adducts. However, those changes could
not be achieved by micromolar iAsIII treatment
alone because of the millimolar levels of cellular
GSH. Their results did not suggest that iAsIII

increases BPDE–DNA adducts through direct
competition with B[a]P metabolites for the
cellular GSH pool. 

Chromatin relaxation carries an increased
risk of certain types of DNA damage.
Evidence has shown that compact chromatin
is protective against DNA double-strand
breaks and oxidative DNA damage. This pro-
tection is reduced after chromatin deconden-
sation (Ljungman and Hanawalt 1992).
UV-induced global chromatin relaxation ren-
dered DNA more susceptible to a number of
DNA-damaging agents (Ljungman 1989). To
test if enhanced formation of BPDE–DNA
adducts was due to a more relaxed chromatin
structure, we examined chromatin accessibility
in GM04312C cells after iAsIII treatment.
Our study showed that iAsIII treatment did
not lead to more relaxed chromatin (Figure 7),
which means that BPDE forms DNA adducts
regardless of additional chromatin relaxation.
In line with our results, no differences in the
BPDE–DNA adduct levels were shown across
different cell cycle phases (Shinozaki et al.
1998), although it is known that changes in
chromatin structure are associated with differ-
ent cell cycle phases. Similarly, the BPDE–
DNA adduct levels in quiescent cells were
close to the levels in rapidly proliferating cells
(Cunningham et al. 1989). Furthermore, his-
tone hyperacetylation by butyrate treatment
did not influence the initial levels of
BPDE–DNA adducts nor did it change the
rate of removal of BPDE–DNA adducts from
chromatin in either normal human fibroblasts
or XP fibroblasts (Kootstra 1982). The author
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Figure 7. DNA denaturation sensitivity measured by
the HCl/AO assay on 80–90% confluent GM04312C
cells after treatment with iAsIII for 24 hr. At least
three sampling areas were pooled, and each circle
represents a single cell. 
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concluded that the subtle changes in chro-
matin brought about by histone acetylation
had no influence on these processes. 

The attempt to correlate cellular GSH lev-
els, GST activity, or chromatin accessibility
with BPDE–DNA adduct levels is driven and
justified by the assumption that cellular
bioavailability of BPDE remained unchanged
after iAsIII treatment. However, iAsIII might
have enhanced the formation of BPDE–DNA
adducts simply by increasing the stability of
BPDE in aqueous medium or the cellular
uptake of BPDE. In our treatment protocols,
the cells were washed following iAsIII treatment
and then incubated with BPDE for 30 min.
The pretreatment of iAsIII was not expected to
affect BPDE stability in aqueous medium.
However, as shown in Figure 8, the uptake of
BPDE was clearly affected by iAsIII pretreat-
ment. This increased uptake of BPDE was in
parallel with the enhanced formation of
BPDE–DNA adducts after iAsIII treatment.
However, the increased uptake of BPDE did
not translate into direct proportional enhance-
ment of BPDE–DNA adduct formation
(Figures 3 and 8), i.e., 50 μM iAsIII increased
the uptake of BPDE by almost 10-fold,
whereas adduct formation increased by only
1.6-fold. iAsIII may decrease BPDE efflux by
inhibiting the activity of GSH-conjugate trans-
porters. There is a positive correlation between
the intracellular accumulation of the GSH
conjugate of BPDE and increased formation of
BPDE–DNA adducts in cells lacking multi-
drug resistance-associated protein 2 (MRP2)
(Srivastava et al. 2002). Most evidence to date
indicates that iAsIII induces expression of multi-
drug resistance transport proteins (Chin et al.
1990; Kioka et al. 1992; Kojima et al. 2006;
Takeshita et al. 2003; Vernhet et al. 2001).
Because the transport of the GSH conjugate of
BPDE is adenosine triphosphate (ATP)-depen-
dent (Srivastava et al. 1998), the possibility of
ATP depletion by iAsIII should be considered
(Yih et al. 1991). Recently, iAsIII has been
shown to modulate the induction of some
detoxifying phase II genes mediated by the aryl
hydrocarbon receptor such as quinone oxido-
reductase (QOR) (Elbekai and El-Kadi 2004;
Kann et al. 2005). However, it is unlikely for
QOR to inactivate BPDE because BPDE is a
poor substrate (Iskander et al. 2005; Thakker
et al. 1977). Despite this, after entry into the
cell, BPDE may be sequestered or inactivated
by alternative minor pathways (Dock et al.
1986; Yang and Gelboin 1976), which may be
affected by arsenic. 

Currently, the data on the effects of
arsenic on the uptake of other chemicals in
human cells are limited. Ochi (1997) observed
that micromolar concentrations of iAsIII

increased the uptake of cystine in Chinese
hamster V79 cells. It was suggested that the
cystine transport system was induced by iAsIII

treatment. Similarly, micromolar concentra-
tions of iAsIII were shown to increase cystine
uptake in AG06 keratinocytes (Schuliga et al.
2002). In the same cell line, low doses of iAsIII

(< 1 μM) were also shown to increase NR dye
uptake, whereas higher doses of iAsIII up to
3 μM decreased the dye uptake (Snow et al.
1999). In 3T3-L1 adipocytes, iAsIII inhibited
glucose uptake by interfering with a glucose
transporter (Walton et al. 2004). For BPDE,
no transporters have been reported for its cel-
lular uptake. However, the logKow (a measure
of a chemical’s partition between octanol and
water phases) of BPDE may be estimated as
2.5–3.5 on the basis of its SMILES (simplified
molecular input line entry system) notation
using ALOGPS 2.1 software (free software
available at www.vcclab.org/lab/alogps) com-
pared with the logKow of 6.3 for its parent
compound B[a]P (more hydrophobic).
Therefore, although B[a]P enters cells by pas-
sive diffusion (Plant et al. 1985; Brunette and
Katz 1975), the possibility that BPDE is taken
up by active as well as by passive transport
must be considered. Pretreatment with iAsIII

may have a negative impact on the active
transport while the passive transport is
favored. In the latter case, iAsIII may enhance
BPDE uptake by binding to sulfhydryl groups
in membrane proteins and thus prevent
adsorption of BPDE to the cell membrane
during BPDE influx. 

Conclusions

Pretreatment with subtoxic concentrations of
iAsIII enhanced the formation of BPDE–DNA
adducts in a DNA repair-deficient human cell
line. Treatment with iAsIII had no significant
effect on the GSH conjugation system, the
major inactivation pathway for BPDE nor did
it affect chromatin structure. However, iAsIII

increased the cellular uptake of BPDE, which
paralleled the elevated levels of BPDE–DNA
adducts. Our results suggest that modulation
of cellular uptake of BPDE by iAsIII may be a
major if not the determining factor leading to
the observed enhancement of BPDE–DNA
adduct formation. It should be noted that the
concentration of 10 μM iAsIII used in our
study is relevant to some real-world exposure
scenarios and in biological systems (National
Research Council 2001; Snow et al. 2005).
Our study implies that the issue of bioavail-
ability should be considered when co-expo-
sure to more than one carcinogen is examined
for co-carcinogenicity. BPDE is a reactive
metabolite of benzo[a]pyrene, a common
environmental carcinogen. iAsIII may con-
tribute to its co-carcinogenicity with BPDE
and other relatively polar environmental pro-
carcinogens that have cellular uptake mecha-
nisms similar to those of BPDE, aside from
its well-demonstrated inhibitory effect on
DNA repair.
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