
Mobile source emissions are important con-
tributors to ambient air pollution and have
been associated with cancer-related and non-
cancer-related health effects. Recent work has
shown that health effects and ambient air pol-
lution increase with proximity to roadways,
suggesting that motor vehicle traffic (engine
emissions) contributes a large share to ambient
health effects (Nicolai et al. 2003; Pearson
et al. 2000; van Vliet et al. 1997; Venn et al.
2001). Two interrelated issues pertaining to
the health hazards of motor vehicle emissions
continue to present serious challenges to
manufacturers, regulatory decision makers,
toxicologists, and risk assessors. First, it is
important to identify the most important con-
tributors to health risk among the myriad
physical–chemical species contained in emis-
sions. Second, it is important to be able to esti-
mate changes in health risks that will result
from changes in the composition of emissions.
Both issues are important for ensuring that the
most health-relevant components are con-
trolled and that technologic strategies for
meeting emissions regulations reduce rather
than increase hazards. The current knowledge
base does little to support such judgments
because there have been few direct comparisons
of the health effects of different types of emis-
sions. Moreover, except for bioassay-directed
fractionation schemes that have identified
nitro-polycyclic aromatic hydrocarbons as
major drivers of bacterial mutagenicity, few

approaches have been used to determine the
chemical species driving the health hazards of
complex emissions.

We have reported the results of studies in
which both bacterial mutagenicity (by Ames
tests) and lung toxicity assays of inflamma-
tion, cytotoxicity, and lung tissue damage
(Seagrave et al. 2002) were assessed to rank
the toxic potency of motor vehicle exhaust
samples of different chemical composition.
That work used combined suspensions of
particulate material (PM) and vapor-phase
semivolatile organic carbon (SVOC) samples
collected from a range of in-use (rented from
owners) gasoline- and diesel-powered vehi-
cles, including “high-emitting” vehicles.
Preliminary studies showed that it was impor-
tant to include the vapor-phase SVOC because
it comprised a large portion of the mass
[defined by gravimetric weight as described by
Seagrave et al. (2002)] emitted from some
vehicles and could contribute substantially to
toxicity as evidenced by evaluation of lung
inflammatory responses of separated PM and
SVOC samples collected from a traffic tunnel
(Seagrave et al. 2001). The samples were com-
bined into seven distinct groups of gasoline
and diesel-powered vehicles. There was a
5-fold range in the potency of the samples
for lung injury, and samples from high-emit-
ting vehicles (both diesel and gasoline pow-
ered) had the highest pulmonary toxicity per
unit of mass. There was also up to a 10-fold

difference in the bacterial mutagenicity
among these samples, with no clear differ-
ence between the potency of diesel exhaust
and gasoline exhaust on the basis of muta-
tions per milligram of sample.

We also reported the results of detailed
compositional measurements of the exhaust
samples described above (Zielinska et al.
2004). In the present work, we applied multi-
variate data analysis to determine the relation-
ship between composition and health
response. We selected a statistical approach
that had been successfully used to determine
the key components of organic extracts of
diesel exhaust particles causing mutations in
bacteria (Eide et al. 2001, 2002; Sjogren et al.
1996) and aryl hydrocarbon receptor induc-
tion (Sjogren et al. 1996). The combined
principal component analysis (PCA) and par-
tial least-squares regression (PLS; also known
as projections to latent structures) approach
allows analysis of the similarities and differ-
ences in the specific health responses (e.g.,
mutagenicity vs. lung toxicity) relative to
composition. The product of this work is
an assessment of the ability of the PLS to
“explain” the composition–response relation-
ship and an indication of which chemical
compounds in the exhaust samples were most
strongly associated with the health response.

Materials and Methods

In this article we summarize only the general
approaches used for collection, chemical
characterization, and toxicity evaluation of
vehicle exhaust samples that have been
reported in detail elsewhere (Seagrave et al.
2002; Zielinska et al. 2004). The classifica-
tions of vehicle samples, chemical/physical
classes measured in these samples, and the
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toxicologic evaluations conducted (including
health response category) are summarized in
Table 1.

Emission samples. Particle and vapor-
phase SVOC fractions were collected using
filters (for particles) and polyurethane
foam/XAD-4 resin traps (for vapor-phase
SVOC), respectively, from diluted, fresh
emissions from vehicles operated on chassis
dynamometers over the unified driving
cycle at the Southwest Research Institute
(San Antonio, TX, USA) (Whitney 2000,
Zielinska et al. 2004). The unified driving
cycle is a high-speed, rapid-acceleration test
cycle, consisting of a 300-sec cold start phase
followed by a 1,135-sec hot stabilized phase,

and a 300-sec hot start phase, which is a
repeat of the first phase. The maximum speed
employed in the cycle was 67.2 mph, with a
maximum acceleration of 6.9 mph/sec. Five
vehicles or composite groups of vehicles were
included: a group of five “normal-emitting”
gasoline vehicles (G); a group of three nor-
mal-emitting diesel vehicles (D); two “high-
emitting” single gasoline vehicles emitting
white (WG) or black (BG) smoke; and a
single high-emitting diesel vehicle (HD).
Specific emission rates for these vehicles are
reported elsewhere (Zielinska et al. 2004). All
vehicles were in-use light- or medium-duty
passenger cars, pickup trucks, or vans, ranging
from 1976 to 2000 model years and were
tested with fuel and crankcase oil as received
(recruited in San Antonio, TX, USA). The
normal-emitting groups were sampled while
operating both at room temperature and at
approximately 30°F (~ –1°C; G30, D30).

Chemical characterization of emission
samples. The chemical composition of the
particle and SVOC fractions of each of the
seven samples was analyzed at the Desert
Research Institute (Reno, NV, USA) as
described elsewhere (Zielinska et al. 2004).
Analyses included temperature fractions of
organic and elemental carbon, elements (met-
als and associated analytes), inorganic ions
(sulfate, nitrate), and speciation of resolvable
organic compounds. The temperature frac-
tions were obtained using the IMPROVE
thermal carbon analysis technique (Chow
et al. 2001), in which eight discrete fractions
of carbon are vaporized in a changing temper-
ature and helium/oxygen atmosphere. The
temperature fractions are grouped into four
“organic” and four “elemental” carbon desig-
nations as shown in Table 2. Although these
are not explicitly chemical fractions (related
to both chemical and physical properties),
they provide data on differences among the
emission samples and have been used in
source apportionment modeling studies to
differentiate among motor vehicle and other
types of emissions (e.g., Maykut et al. 2003;
Watson et al. 2002). The organic species
measured focused on components that have
been used in previous studies to illustrate dif-
ferences among motor vehicle and other types
of emissions. The classes of organic com-
pounds included polycyclic aromatic hydro-
carbons (PAHs), ranging in molecular weight
from 128 to 300 Da, a mass range that spans
from compounds that are considered to be
exclusively gases to species found exclusively
in the particle phase. Several subclasses of
PAHs, including oxygenated PAHs (oxy-
PAHs: ketones, aldehydes, quinones), nitro-
PAHs, and sulfur-containing PAHs were
measured. Hopanes and steranes, two classes
of compounds that are found in lubricating
oil (McDonald et al. 2003; Rogge et al.

1993), were also measured. A total of 184
composition variables were measured.

Toxicologic evaluations. Aliquots of the
PM and SVOC extracts (in acetone) were pro-
vided (by Desert Research Institute) to the
Lovelace Respiratory Research Institute for
toxicity testing [description of sample extrac-
tion and handling described briefly below and
in more detail by Seagrave et al. (2002)]. The
PM and SVOC samples were combined (origi-
nal PM and SVOC were extracted separately)
and either mixed with Salmonella culture
media (Ames bacterial reverse mutation assay)
or instilled into lungs of F344/CRL rats
(Charles River Laboratory, Wilmington, MA,
USA) over a range of total mass (PM plus
SVOC) doses (Seagrave et al. 2002). Responses
in rat lungs were evaluated at 4 hr (the cyto-
kine MIP-2) or 24 hr (all other responses) after
dosing, as described previously (Seagrave et al.
2002). Lungs were removed and weighed, and
then cells, protein, enzymes, and chemical
mediators of inflammation were measured in
bronchoalveolar lavage collected from the right
cardiac, diaphragmatic, and intermediate lobes.
The left lung was then fixed and examined
by light microscopy for histologic evidence
of inflammation and tissue damage. In all,
11 lung response variables were measured.
Bacterial mutagenicity was evaluated in Ames
tester strains TA98 and TA100, both with and
without metabolic activation by a liver micro-
some preparation (S9) (Seagrave et al. 2002).
Dose–response relationships were analyzed for
each variable and for each emission sample,
and (toxic) potency factors were derived from
these analyses (Seagrave et al. 2002).

Normalization of data for multivariate
data analysis. Data were normalized to weight
fraction before statistical analysis by dividing
the composition values by the sum of PM
and SVOC mass (i.e., composition per unit of
total mass). PM was the mass determined on
the filter and extracted into solution. As dis-
cussed previously (Seagrave et al. 2002), the
extraction protocol used to transfer PM into
suspension involved agitation, gentle brush-
ing, and sonication in acetone. Analysis of
aliquots of the particle extracts was used to
measure the recovery of the mass of material
in solution compared with the mass weighed
on filters before extraction. The recovery for
PM was 80–100% for gasoline exhaust sam-
ples and 65–70% for diesel exhaust samples.
The decreased extraction efficiency for the
diesel exhaust samples was likely caused by
difficulty in removing elemental carbon from
the filters. The SVOC mass was determined
by gravimetric analysis of spikes of extracts
that were evaporated to dryness to remove the
solvent (acetone). Because the compositional
data are not reported as weight fractions else-
where (Zielinska et al. 2004 reported emis-
sion rates), we include discussion on the mass
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Table 1. Summary description of engine samples,
chemical measurements, and toxicity measurements.

Exhaust samplesa

Gasoline
G
G30
WG
BG

Diesel
Diesel
D30
HD

Chemical measurements (by class)b
Total particle and SVOC mass
Inorganic ions
Carbon (organic, elemental, thermal fractions)
Transition metals
Other metals
Metalloids
Nonmetal elements
Bicyclic or two-ring PAH organic compounds
Tricyclic or three-ring PAH organic compounds
Tetracyclic or four-ring PAH organic compounds
Five-ring PAH organic compounds
Six-ring PAH organic compounds
Seven-ring PAH organic compounds
Oxygenated PAH organic compounds (including quinones)
Sulfur-containing PAHs
Nitro-PAH organic compounds
Hopane/sterane organic compounds (unique to oil)

Toxicity measurementsc

Lung toxicity
Inflammation potency estimates

Lavage macrophages
Lavage neutrophils
Total lavage leukocytes
Histopathologic inflammation
Macrophage inflammatory protein-2

Cytotoxicity potency estimates
Lactate dehydrogenase
Lavage protein
Histopathologic tissue injury

Parenchymal change potency estimates
Histopathologic structural remodeling

General toxicity potency estimates
Total histopathology
Lung weight as percentage of body weight

Bacterial mutagenicity
Mutagenicity potency estimates
TA98 – S9
TA98 + S9
TA100 – S9
TA100 + S9

aDescribed by Whitney (2000). bDescribed by Zielinska
et al. (2004). cDescribed by Seagrave et al. (2002).



composition of the samples and also include
the data as Appendix 1 of this report.

Multivariate data analysis (pattern recogni-
tion and prediction). The compositional data
were structured in an X-matrix with one row per
exhaust sample (i.e., a total of seven rows) and
one column per predictor variable (initially,
184 compositional parameters). The mutagenic-
ity and lung toxicity data were structured in a
Y-matrix with seven rows and one column per
response variable (i.e., a total of 15 responses).
Multivariate data analysis was performed with
Simca-P 10.0 (Umetrics, Umeå, Sweden). PCA
(Jackson 1991) was performed on the X-matrix
to evaluate similarities between mixtures and on
the Y-matrix to group responses. PLS was used
for the regression modeling to correlate the
measured responses to the compositional para-
meters (Wold et al. 1984). PLS was used for the
regression modeling because it overcomes
the problems of intercorrelated predictor vari-
ables and data matrices where the number of
variables exceeds the number of samples
(Kettaneh-Wold 1992; Kvalheim 1989).

The purpose of PCA is to define “struc-
ture,” or patterns, in data that exist in multi-
ple dimensions. Both the PCA and PLS
techniques use the same basic data simplifica-
tion principles by projecting linear planes (or
hyperplanes) into a multidimensional group-
ing of data (Kettaneh-Wold 1992; Kvalheim
1989). A principal component or a PLS com-
ponent is a straight least-squares regression
line (or plane) through the sample points in
the multidimensional space (Sjogren et al.
1996). Each component will “explain” a por-
tion of the variance in the data set. Typically,
multiple components are required to explain
most of the variance. However, it is desirable
to have few principal or PLS components rel-
ative to the number of samples for optimal
confidence in the outcome of the analysis.

The primary difference between PCA and
PLS is that PCA is performed on one data
matrix (e.g., X or Y) and PLS evaluates both (X
and Y) simultaneously to both develop a pre-
dictive model (e.g., predict Y from X) and to
evaluate relationships between specific X and Y
variables (e.g., which chemicals covary with
toxicity?). PCA is first used to identify charac-
teristics of data in either the X- or Y-matrix.
The principal outcome of this analysis is the
identification of data that “cluster” together
similarly and thus are assumed to have a
systematic relationship. This application of
PCA is illustrated in “Results” by the finding
that mutagenicity and pulmonary toxicity vari-
ables did not cluster together but that variables
within each category did cluster together. This
indicated that separate PLS models would be
needed for mutagenicity and toxicity.

A PCA analysis was first conducted on the
7 × 184 X-matrix to evaluate similarities
between samples by “score plots” and on the

7 × 15 Y-matrix to determine groupings (sim-
ilarities) among response variables by “loading
plots.” This grouping was used to segregate
the response variables into covarying groups

of responses that could be analyzed by PLS.
PLS was initially carried out with all 184 pre-
dictor variables; however, because of the low
number of samples, PLS had to be carried out
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Table 2. Chemical/physical variables (X-matrix) included in the final PLS model for lung toxicity.

Chemical/physical component Name used for loading plot

Particulate mass PM
Semivolatile organic mass SVOC
Nitrate NO3
Sulfate SO4
Ammonium NH4
Particle organic carbon mass Particle organic carbon
Elemental carbon EC
Total carbon TC
1st carbon thermal fraction O1TC
2nd carbon thermal fraction O2TC
3rd carbon thermal fraction O3TC
4th carbon thermal fraction O4TC
5th carbon thermal fraction OPTC
6th carbon thermal fraction E1TC
7th carbon thermal fraction E2TC
8th carbon thermal fraction E3TC
Transition metals Trans. met
Alkali earth metals Earth met
Metalloids Metalloids
Nonmetal elements Non-met
Group 3A metals 3A metals
Group 4A metals 4A metals
Total PAHs Total PAH
SVOC PAHs SVOC PAH
PM PAHs PM PAH
Two-ring PAHs 2-ring PAH
Three-ring PAHs 3-ring PAH
Four-ring PAHs 4-ring PAH
Five-ring PAHs 5-ring PAH
> Five-ring PAHs > 5-ring PAH
Nitro-PAHs Nitro-PAH
Oxygenated PAHs Oxy-PAH
C27-20S-13β(H),17α(H)-diasterane S1
C27-20R-13β(H),17α(H)-diasterane S2
C27-20S-13α(H),17β(H)-diasterane S3
C27-20R-13α(H),17β(H)-diasterane S4
C28-20S-13β(H),17α(H)-diasterane S5
C27-20S-5α(H),14α(H)-cholestane S6
C27-20R-5α(H),14β(H)-cholestane S7
C27-20S-5α(H),14β(H),17β(H)-cholestane S8
C27-20R-5α(H),14α(H),17α(H)-cholestane S9
C28-20S-5α(H),14α(H),17α(H)-ergostane S10
C28-20R-5α(H),14β(H),17β(H)-ergostane S11
C29-20R-13α(H),17β(H)-diasterane S12
C27-tetracyclic terpane S13
C28-20R-5α(H),14α(H),17α(H)-ergostane S14
C27-tetracyclic terpane II S15
C28-tetracyclic terpane S16
C29-20S-5α(H),14α(H),17α(H)-stigmastane S17
C28-tetracyclic terpane II S18
C29-20R-5α(H),14β(H),17β(H)-stigmastane S19
C29-20S-5α(H),14β(H),17β(H)-stigmastane S20
18α(H),21β(H)-22,29,30-trisnorhopane H1
17α(H),18α(H),21β(H)-25,28,30-trisnorhopane H2
C29-20R-5α(H),14α(H),17α(H)-stigmastane H3
17α(H),21β(H)-22,29,30-trisnorhopane H4
17α(H),18α(H),21β(H)-28,30-bisnorhopane H5
17α(H),21β(H)-30-norhopane H6
18α(H),21β(H)-30-norneohopane H7
17α(H),21β(H)-hopane H8
17β(H),21α(H)-hopane H9
22S-17α(H),21β(H)-30-homohopane H10
22R-17α(H),21β(H)-30-homohopane H11
17β(H),21β(H)-hopane H12
22S-17α(H),21β(H)-30,31-bishomohopane H13
22R-17α(H),21β(H)-30,31-bishomohopane H14
22S-17α(H),21β(H)-30,31,32-trishomohopane H15
22R-17α(H),21β(H)-30,31,32-trishomohopane H16



on subsets and groups of predictor variables,
as explained in “Results.”

Before analyses, the data were mean cen-
tered and scaled to unit variance as described
previously (Jackson 1991; Wold et al. 1984).
Data distributions were evaluated and deter-
mined to require no further normalization (e.g.,
log transformations) before analysis. The results
of the PLS analysis were evaluated in terms of
both goodness of fit (R2, analogous to Pearson
correlation coefficient) and goodness of pre-
diction (Q2, determined by cross-validation
procedures described in Appendix 2). Each
response end point was modeled individually
(15 total), and the model results were evaluated
by cross-validation procedures. To ascertain
that the overall PLS models contained system-
atic (nonrandom) associations, we validated the
models by performing PLS after randomizing
(reordering) the values in the Y-matrix as
described previously (Eide et al. 2001). This
validation procedure is referred to as validation
by response permutation (van der Voet 1994).
A more detailed description of the validation
approach and an example for the validation of
one model are included in Appendix 2.

Results

Composition of emission samples. The mass
composition of the emission samples is sum-
marized in Figure 1. These results have been
reported elsewhere (Zielinska et al. 2004) but
only in units of mass/mile traveled. The normal-
emitter and black-smoker gasoline samples were
composed primarily of vapor-phase SVOC
mass, whereas the others were composed pri-
marily of PM. The PM composition ranged
from approximately 20 to 95% organic carbon,
with no obvious distinction in the proportion of
organic carbon between diesel- and gasoline-
powered vehicles. This plot does not portray the
differences in specific organic classes; the data

for individual chemical species are reported in
Appendix 1.

The proportions of elements and PAH
compounds among these samples were variable,
and there was no clear difference in the classifi-
cations of vehicles (e.g., high emitter vs. normal
emitter or gasoline vs. diesel) that emit higher
proportions (as a weight fraction) of any of
these classes. In contrast, the higher-emitting
vehicles clearly showed higher proportions of
the hopane and sterane compounds (compo-
nents of lubricating oils).

Principal component analysis. The loading
plot shown in Figure 2 was obtained from PCA
on the toxicity data and shows the clustering of
the 15 different toxicity measurements accord-
ing to their similarity in responses to the exhaust
samples. The 11 lung toxicity responses clus-
tered together in one group, whereas the four
bacterial mutagenicity responses occurred at
different spots. This indicated that the lung
toxicity responses were associated with similar
chemical components and that these compo-
nents were different from those associated with

the mutagenicity responses. As a consequence,
regression modeling with PLS was done with
the 11 lung toxicity end points simultaneously
(it is advantageous to use multiple responses
because they will support one another in the
model), and the four mutagenicity end points
were modeled separately.

PLS analysis of lung toxicity data. The goal
in developing the PLS model was to explain
the most variation in the data using the small-
est number of PLS components. Initially, PLS
was performed with all 184 compositional
variables versus the 11 lung toxicity responses.
Although it was possible to obtain a PLS
model with high R2 and relatively high Q2

with all 184 predictor variables, validation by
response permutation showed that the overall
PLS model could be due to chance because of
the large number of compositional variables
relative to the relatively small number of sam-
ples. To alleviate this, we performed the PLS
analysis after grouping most of the individual
compositional variables by chemical class (e.g.,
hopanes) or subclass (e.g., two-ring PAHs).
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Figure 1. Composition of engine exhaust samples
normalized to weight fraction. Individual compo-
nents were divided by the concentration of total
particle and SVOC mass. The sum of particle and
SVOC mass equals 100%.

Figure 2. Loading plot showing the groupings among the 15 toxicity measurements. Measurements grouped
together responded similarly to the exhaust samples, and their proximity reflects the degree of similarity of
responses. Separation of mutagenicity and lung toxicity groups suggested that they responded to different
chemical components.

Figure 3. Goodness of fit (R2) and prediction (Q2) from the PLS model (68 variables and 11 responses).

100

90

80

70

60

50

40

30

20

10

0
WG BG HD D D30 G30G

High emitters Normal emitters

W
ei

gh
t f

ra
ct

io
n:

co
m

po
ne

nt
/(P

M
 +

 S
VO

C 
m

as
s)

 %

Elements
Inorganic ions
Elemental carbon
Particle organic carbon
Vapor-phase SVOC

▲

▲
▲ ▲

▲

▲
▲▲

▲▲▲ ▲
▲

▲▲

1.00

0.80

0.60

0.40

0.20

0.00

La
va

ge

macrophages

La
va

ge neutro
phils

La
va

ge le
uko

cyte
s

Infla
mmatory

hist
opathology

Macrophage

infla
mmatory 

protein-2

La
ctate dehyd

rogenase

La
va

ge protein

Hist
opathologic

tis
su

e in
jury

Hist
opathologic

str
uctural re

modelin
g

To
tal h

ist
opathology

Lu
ng w

eight a
s

% of b
ody w

eight

R 2

Q 2



The number of variables was reduced from
184 to 34, and PLS was carried out with
these 34 variables versus the 11 lung toxicity
responses. The resulting PLS model perfor-
mance was acceptable (R2 = 0.95; Q2 = 0.35)
with only two PLS components and was hence
used only to obtain first-pass indication of
which groups of compounds associated (covar-
ied) most strongly with the lung toxicity
responses. According to loadings and PLS
regression coefficients (not shown), the vari-
ables that associated most strongly with the
11 toxicity responses were particulate organic
carbon, select thermal fractions of the carbon
analysis, and the hopane and sterane classes of
compounds.

The 34-variable PLS model was followed
by a PLS model in which some compositional
variables were ungrouped into their individual
compounds (the hopanes and steranes). This
gave a final 68-variable X-matrix (Table 2) that
performed well (Figure 3 shows performance
for each lung toxicity measurement; overall
model performance: R2 = 0.93; Q2 = 0.72),
accounting for approximately 70% of the
variation in the data by just two PLS compo-
nents (53 and 15% by the first and second
PLS components, respectively). Each of the
11 toxicity response PLS models showed satis-
factory-to-excellent performance in the valida-
tion by permutation tests (results of validations
not shown, except the example given in
Appendix 2). The model performance indica-
tors for each lung response category (Figure 3)
indicated that the model had better predictive
capability for direct measures of inflammation
(e.g., cell count, histopathology) than for indi-
rect indicators (e.g., MIP-2). An example of the
high quality of the model prediction is shown
in Figure 4, which illustrates the observed ver-
sus predicted response for histologic evidence of
lung inflammation.

Once the predictive model was deter-
mined, the strength of association (PLS load-
ings) between the chemical components and
the individual lung toxicity responses was eval-
uated in a loading plot (Figure 5). This plot,
analogous to the plot shown in Figure 2 for the
15 toxicity variables, shows the clustering of
toxicity and chemical component variables,
illustrating the chemical components that were
most closely associated (covaried) with lung
toxicity. The plot combines the covariance
from the two PLS components that were

required for the 68-variable model. The chemi-
cal variables have been abbreviated or grouped
in the plot, and the full names associated with
the abbreviations are given in Table 2 (the
abbreviations give an indication of the chemical
class). The components that had the strongest
association with lung toxicity were most of the
hopanes, steranes, and particle-phase organic
carbon. The hopanes and steranes are com-
pounds that are found in crude oil and are thus
emitted as part of the crankcase oil emissions.
These compounds are derived from the dia-
genesis of plant materials (e.g., conversion of
phytosterols to steranes). Their characteristic
structures have been described elsewhere (e.g.,
Rogge et al. 1993). The analysis of fuel and
crankcase oil collected from the vehicles studied
here (reported in Zielinska et al. 2004) showed
that the hopanes and steranes were in high con-
centrations in oil (as expected) and only trace
amounts of the steranes were observed in fuel.
High-oil-burning vehicles will also show large
amounts of particle-phase organic carbon. The
most volatile thermal fractions from the carbon
analysis along with one elemental carbon tem-
perature fraction and nitrate also covaried with
the lung toxicity responses. Other components,
namely, the metals and PAHs, had little or no
correlation with the lung responses.

PLS analysis of mutagenicity data. PLS
of the mutagenicity data using either the
complete set (184) or the first reduced set (34)
of chemical variables in the X data matrix
was performed without satisfactory results.
The 34-variable data set grouped together
the chemical components that were known,
based on previous studies, to be mutagenic.
However, grouping by compound classes did
not reveal associations between composition
and mutagenicity and did not yield satisfac-
tory performance in the PLS model. A sepa-
rate strategy for configuring the X data matrix
was adapted that ungrouped the individual
nitro- and oxy-PAHs known to be direct

mutagens and used them in a reduced data set
of 23 variables (Table 3). The best model per-
formance (R2 = 0.98; Q2 = 0.73) was obtained
with these variables applied to the TA98 and
TA100 strains without S9 metabolic activa-
tion. Figure 6 shows the observed versus pre-
dicted mutagenicity with this PLS model for
strain TA100. The models for TA98 and
TA100 could explain approximately 60% of
the variation with three PLS components.
In contrast, PLS models did not perform well
for TA98 and TA100 strains with metabolic
activation (not shown). This was not surprising
because most of the mutagens that have been
implicated in engine exhaust are direct acting
(e.g., do not require metabolic activation). In
addition, the presence of S9 may suppress
mutagenicity by inactivating or adsorbing cer-
tain mutagens (Shah et al. 1990).

Figure 7 shows the loading plot with com-
bined mutagenicity and chemical variables.
Similar to what was expected based on the
known mutagenicity of these compounds, the
particle-bound higher-molecular-weight nitro-
PAH compounds had the highest association
with mutagenicity, whereas most of the 
oxy-PAHs and volatile nitro-PAHs had poor
or no association. The similarity between the
PLS model associations identified in this study
and chemical components that were previ-
ously known to drive mutagenicity helped val-
idate the PCA/PLS approach for evaluating
composition–response relationships for lung
toxicity, for which composition–response rela-
tionships were not known in advance.

Discussion

The present study represents a step toward a
better understanding of the physical–chemical
components of engine emissions presenting
the greatest lung health hazards. There is
growing recognition of the need to develop a
more integrated understanding of the air
quality–health relationship (Mauderly 2003;
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Figure 4. Observed versus predicted histologic
inflammation, showing good predictive performance
of the PLS model. R2= 0.97.
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Figure 5. Loading plot showing the lung toxicity and 68 chemical components for the first and second PLS
components. Proximity to the lung toxicity responses reflects the strength of association (degree of
covariance) of individual chemical components to the response. See Table 2 for abbreviations.
aCarbon analysis fractions.
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National Research Council 2001), but disen-
tangling the relative roles of air contaminants
in complex environmental pollution and
source emissions has progressed slowly. Except
for the biodirected fractionation approach that
identified certain nitro-PAHs as driving bacte-
rial mutagenic responses, there has been little
progress in determining the specific species
causing the effects of physically and chemically
complex combustion emission mixtures.
Most epidemiology and toxicology has focused
on specific pollutants (e.g., unspeciated PM
or nitrogen dioxide) or treated complex emis-
sion exposure atmospheres as a single material.
Studies comparing the effects of filtered and
unfiltered emissions (Maejima et al. 2001)
or the effects of the elemental carbon and
extractable organic fractions of diesel soot
(Nel et al. 2001) are examples of simplified
biodirected fractionation but fall far short of
testing the roles of the full range of emission
species. Epidemiologists commonly employ
multivariate analyses involving multiple envi-
ronmental pollutants, but have data for only a
few pollutant species and usually focus on
determining the influence of copollutants on
estimates of the effects of the single pollutant
(or class, e.g., PM) of chief interest (Samet
et al. 2000). In a study conceptually more
similar to the present study, Wellenius et al.

(2003) applied multivariate regression model-
ing to data from multiple exposures of dogs
to concentrated ambient air PM to identify
an association between silicon and cardiac
effects, but studied only the PM fraction of
pollution and did not have data on speciated
organic compounds. There are no previous
reports of the use of multivariate analyses to
disentangle the roles of both the vapor and
PM organic phases of engine emissions.

This study, although certainly an over-
simplification of environmental exposures to
inhaled emissions, demonstrates that PCA/PLS
has potential for exploring complex exposure
composition–health response associations,
given a suitable data set. The utility of this
approach in identifying putative causal agents
in diesel exhaust samples had been demon-
strated but with only a single health response
(mutagenicity) and a larger number of samples
(Eide et al. 2002). A challenge in applying PLS
in the present study was the inclusion of many
health responses (15) and composition vari-
ables (184) but only seven samples—a very
practical situation in view of the limited sample
(or exposure) number and diversity typical of
environmental studies. The approach worked
well largely because of success in grouping
covarying composition and response variables
and reducing their relationships into a number
of principal components smaller than the
number of samples. Grouping compositional
components by class, however, has the disad-
vantage of making the often-false assumption
that all species within the class are equally toxic
per unit of mass or that the proportions among
the grouped compounds are similar. This
assumption was certainly not true for muta-
genicity, in which case total nitro-PAH mass
was poorly predictive, but foreknowledge of
the mutagenicity of particular species allowed
development of a more focused and highly pre-
dictive model. In the absence of little previous
information on the contributions of individual
components, as was the case for lung toxicity,

iterative approaches to grouping the composi-
tion into classes and disaggregating classes into
individual compounds can be used to explore
and optimize models. The small number of
samples also raised the possibility that appar-
ently meaningful composition–response rela-
tionships could reflect random (nonsystematic)
statistical associations. The cross-validation and
confirmatory steps were critical to developing
confidence that the associations portrayed by
the models having the best fit and predictive
performance were in fact systematic (non-
random). Overall, the results suggested that
PCA/PLS can be useful for identifying compo-
sition–response associations for complex expo-
sures even when the number of exposure cases
is small. An alternative to grouping and vari-
able selection is hierarchical PLS [described by
Wold et al. (1996)], which was used (not
shown) to confirm the conclusions of the
PCA/PLS results presented in this article.

The use of collected and processed samples,
wherein acetone was used to extract species
from the collected exhaust material, was a limi-
tation of this study. First, the exhaust collec-
tions account for only a portion of the exhaust.
Although attempts were made to quantitatively
remove 100% of the PM from the filters, only
approximately 65–70% of the PM from diesel
exhaust samples with high amounts of inor-
ganic carbon could be removed. Although the
vapor-phase SVOCs were collected, the samples
did not include the most volatile vapor and gas
components of the exhaust. In addition, it is
known that chemical artifacts can be induced
during sample collection and processing (Arey
et al. 1988), and it is possible that there were
potentially important compositional differences
between the collected samples used for this
study and the original emissions. However,
confidence in the present results derives from
the fact that the hopanes and steranes having
the strongest associations with toxicity are
not formed by artifact, are chemically stable
(not prone to decomposition), and are known
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Table 3. Chemical/physical variables (X-matrix)
used for final PLS model of mutagenicity.

Oxygenated PAH organic compounds
9-Fluorenone
Xanthone
Acenaphthenequinone
Perinaphthenone
Anthraquinone
9-Anthraldehyde
Benz[a]anthracene-7,12-dione

Nitro-PAH organic compounds
1-Nitronaphthalene
2-Nitronaphthalene
2-Methyl-1-nitronaphthalene
α-Methyl-1-nitronaphthalene
β-Methyl-1-nitronaphthalene
2-Nitrobiphenyl
4-Nitrobiphenyl
5-Nitroacenaphthene
9-Nitroanthracene
2-Nitrofluoranthene
3-Nitrofluoranthene
1-Nitropyrene
7-Nitrobenz[a]anthracene
6-Nitrochrysene
6-Nitrobenzo[a]pyrene
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Figure 7. Loading plot showing the mutagenicity and chemical components for the first and second PLS
components. Proximity to the mutagenicity responses reflects the strength of association (degree of
covariance) of individual chemical components to the responses.

Figure 6. Observed versus predicted mutagenicity
of TA100 (without S9), showing good predictive
performance of the PLS model. R2= 0.98.
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components of lubricating oil. Thus, although
the roles of components that might have been
lost during sample processing could not be
tested, the components most strongly associated
with the lung responses were extremely unlikely
to be artifacts.

Instillation of extracted material into the
lung has limitations in evaluation of the health
hazard of materials that are inhaled in the envi-
ronment. The instillation of collected non-
volatile material could not accurately mimic
the particle size–dependent deposition pattern
of inhaled PM. The comparative utility of dos-
ing by inhalation and instillation has been
reviewed (Driscoll et al. 2000), and although
inhalation remains the “gold standard” for haz-
ard assessment, instillation has proven useful
for comparing effects among samples and
screening for potential cause–effect relation-
ships. Exposure of cultured cells is another
alternative to inhalation for comparative toxic-
ity screening, but work preceding the present
analysis demonstrated that lung responses to
instilled samples and responses of cultured
epithelial cells and lung macrophages to the
same samples gave quite different sample
rankings (Seagrave et al. 2003). Compared
with cell culture, lung instillation was consid-
ered the more relevant approach for identify-
ing potential public health hazards. In view
of the difficulty, cost, and time requirements
of conducting inhalation exposures to a
wide range of vehicle emissions, the study pro-
vided a test of the utility of a practical, albeit
limited, approach to identifying chemical
composition–toxicity associations warranting
closer examination.

However good the models developed
from the present sample set might be, caution
must be exercised in extrapolating these
results broadly to all gasoline and diesel
engine emissions. The concordance of the
present results for mutagenicity with pre-
existing information on the importance
of nitrogenated PAHs in different combus-
tion emissions (e.g., Lewtas et al. 1992) sug-
gests that the mutagenicity model might
be broadly applicable to normal- and high-
emitting gasoline and diesel engines and
lends confidence that the lung toxicity results
are also likely to be valid beyond this sample
set. However, it is clear that lung toxicity was
driven largely by the coincident differences in
composition and toxicity between the samples
from high-emitting and normal-emitting
vehicles. The finding that lubricating oil trac-
ers were highly associated with lung toxicity
in this sample set does not necessarily mean
that oil emissions would be the major deter-
minant of lung toxicity in all engine emis-
sions, and especially among emissions from
engines having low oil consumption. The
addition of more samples to the analysis,
and especially samples differing even more

markedly in composition, would bolster con-
fidence in the results and their applicability
across a broader spectrum of engine emis-
sions. Regardless, the present results strongly
indicate that attention should be given to oil-
derived as well as fuel-derived emissions and
suggest that as total emissions from fuel com-
bustion continue to fall, oil-derived emissions
could contribute relatively more to any residual
health hazards.

There is little information on the effects
of motor oil in the lung. Subchronic inhala-
tion exposure of rats to high concentrations of
aerosolized petroleum oils, including a formu-
lation representing unused motor oil, pro-
duced only modest toxicity (Dalbey 2001). It
is likely that the toxicity of motor oil increases
with use. Zielinska et al. (2004) analyzed the
composition of fuel and crankcase oil from
the vehicles used in the present study. They
reported that diesel fuel was enriched in
light and semivolatile PAHs compared with
gasoline fuel. In contrast, used oil from the
gasoline-powered vehicles in this study was
enriched in PAHs, including heavy, particle-
phase PAHs, compared with used diesel oil.
Lubricating oil in the gasoline vehicles appar-
ently serves as a “sink” for the partitioning of
combustion- or fuel-derived components;
thus, it is important to consider the time in
use of oil in studies of the contribution of oil
components to the toxicity of engine emis-
sions. Only one study has investigated the tox-
icity of used motor oil; Costa and Amdur
(1979) reported a 28% increase in pulmonary
resistance in guinea pigs exposed to used
motor oil, but the variability in the pulmonary
measurements rendered the difference from
control animals insignificant. Clearly, more
work needs to be done to investigate the toxi-
city of used motor oil as it is emitted in motor
vehicle emissions.

A final caveat is that the statistical compo-
sition–response associations resulting from this
work do not prove causality. There is consid-
erable information indicating that nitro-PAHs
cause mutations in bacteria, but there is little
information on the effects of hopanes and
steranes in the lung. It is possible that these
putative agents could have covaried in mass
concentration with unknown proximal causal
species, rather than actually causing the
responses. Although the composition of the
samples was determined in detail, the meas-
ured mass by organic speciation accounted for
only a small percentage (average ~10%) of the
total SVOC + PM mass. Additional samples
having different toxicity and chemical com-
position would strengthen the confidence in
the observed associations. The causality of
specific chemical classes or components of
exhaust can be examined in complementary
studies, including exposure to inhaled emis-
sions containing different contributions from

crankcase oil, “doping” samples with the
putative causal agents, and/or progressive
fractionation and testing of samples (i.e.,
bioassay directed fractionation).

The bioassay-directed fractionation
approach may be useful for confirming and
further evaluating the components that cor-
relate with pulmonary toxicity. However, an
important consideration in applying bioassay-
directed fractionation for pulmonary toxicity
is the much larger effort and cost of the in vivo
assays relative to the simpler, less expensive
bacterial mutagenicity assays that have been
used. As mentioned above, in vitro testing
with lung cells ranked the samples quite differ-
ently from the in vivo results (Seagrave et al.
2003). Because in vivo toxicity should be more
relevant to human health hazard than in vitro
results, it appears unlikely that biodirected
fractionation for nonmutagenic lung toxicity
can be done using in vitro assays.

Conclusions

Despite its several limitations, this study pro-
vides important insights into the physical-
chemical components of engine emissions
that most strongly influence the toxicity of
inhaled emissions. We extend the previous
conclusion (Seagrave et al. 2002) that high-
emitting vehicles contribute disproportionately
to the health hazards of engine emissions, to
conclude now that crankcase oil–derived, parti-
cle-associated organic compounds may con-
tribute strongly to the inflammatory effects of
inhaled emissions from high-emitting vehicles.
Importantly, the chemicals most closely associ-
ated with pulmonary toxicity were different
from the chemicals (e.g., nitro-PAHs and oxy-
PAHs such as quinones) that were associated
with bacterial mutagenicity. This is especially
important considering the small amount of
information available on chemicals that are
associated with pulmonary toxicity. Further
work is warranted to confirm the causality of
specific classes and compounds, to confirm
that oil-derived components are important
to the toxicity of inhaled (as well as instilled)
emissions, and to determine the relative
importance of oil- versus fuel-derived compo-
nents to the health hazards of emissions from
a broader range of normal- and high-emitting
vehicles. Moreover, we conclude that the
PCA/PLS analytical strategy shows promise
for disentangling composition–response
associations, even when the exposures are
extremely complex, the number of exposures
is limited, and multiple responses are meas-
ured. In such situations, the success of the
approach hinges on the extent to which com-
position and response variables can be lumped
into covarying groups such that predictive
models require a number of principal com-
ponents substantially less than the number
of exposures.
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Appendix 1. Entire compositional data set presented as weight fraction.

BG WG HD G G30 D D30

Total PM and SVOC
Particle mass 0.288877 0.689480 0.628759 0.162128 0.295583 0.717567 0.693145
SVOC mass 0.711123 0.310520 0.371241 0.837872 0.704417 0.282433 0.306855

Inorganic ions
Chloride 0.000891 0.000661 0.000017 0.001062 0.001106 0.000637 0.000000
Nitrate 0.000294 0.001022 0.000345 0.000273 0.000422 0.000254 0.000585
Sulfate 0.002643 0.002143 0.003073 0.004721 0.013193 0.174678 0.049407
Ammonium 0.001337 0.001251 0.001060 0.004087 0.009031 0.003130 0.001317
Sodium 0.000099 0.000227 0.000516 0.000001 0.000000 0.000185 0.000117

Carbon
Particle organic carbon mass 0.195937 0.657895 0.488888 0.084029 0.100675 0.141816 0.461659
Elemental carbon 0.044261 0.020826 0.130267 0.040269 0.148137 0.348723 0.123590
Total carbon 0.207543 0.569073 0.537674 0.110293 0.232034 0.466659 0.508301

Carbon splits
O1TC 0.087617 0.197504 0.267370 0.031775 0.045685 0.056771 0.099821
O2TC 0.066411 0.297777 0.140208 0.014997 0.018800 0.025543 0.031097
O3TC 0.012191 0.032741 0.033965 0.013365 0.014883 0.029318 0.038484
O4TC 0.009070 0.009965 0.009971 0.010214 0.013101 0.026178 0.031534
OPTC 0.020649 0.119907 0.037376 0.013678 0.008207 0.004008 0.260722
E1TC 0.059643 0.110620 0.035683 0.043630 0.053664 0.196258 0.217269
E2TC 0.001662 0.009845 0.125607 0.007894 0.101237 0.155739 0.123341
E3TC 0.000164 0.000285 0.000121 0.000233 0.000108 0.000068 0.000244

Transition metals
Titanium 0.000008 0.000000 0.000000 0.000016 0.000004 0.000027 0.000033
Vanadium 0.000000 0.000004 0.000002 0.000003 0.000018 0.000012 0.000000
Chromium 0.000088 0.000009 0.000020 0.000051 0.000107 0.000585 0.000473
Manganese 0.000161 0.000008 0.000003 0.000064 0.000086 0.000078 0.000108
Iron mass 0.022771 0.000475 0.000280 0.012046 0.012934 0.011622 0.026206
Cobalt 0.000002 0.000003 0.000006 0.000000 0.000000 0.000005 0.000022
Nickel 0.000054 0.000002 0.000005 0.000029 0.000056 0.000262 0.000311
Copper 0.000352 0.000049 0.000002 0.000119 0.000110 0.000076 0.000113
Zinc 0.002677 0.000536 0.000389 0.001604 0.001206 0.000879 0.001239
Yttrium 0.000006 0.000007 0.000000 0.000002 0.000003 0.000006 0.000011
Zirconium 0.000030 0.000018 0.000000 0.000024 0.000054 0.000010 0.000021
Molybdenum 0.000017 0.000000 0.000000 0.000002 0.000004 0.000000 0.000000
Palladium 0.000022 0.000000 0.000003 0.000001 0.000001 0.000000 0.000007
Silver 0.000021 0.000000 0.000035 0.000009 0.000000 0.000065 0.000000
Cadmium 0.000012 0.000000 0.000000 0.000001 0.000010 0.000001 0.000000
Lanthanum 0.000000 0.000000 0.000000 0.000020 0.000000 0.000022 0.000000
Gold 0.000020 0.000004 0.000025 0.000016 0.000018 0.000020 0.000039
Mercury 0.000002 0.000009 0.000021 0.000002 0.000001 0.000002 0.000000

Other metals
Magnesium 0.000831 0.000449 0.000110 0.000296 0.000133 0.000146 0.000140
Aluminum mass 0.000254 0.000000 0.000000 0.000292 0.000259 0.000522 0.001545
Potassium 0.000069 0.000000 0.000000 0.000146 0.000087 0.000057 0.000027
Calcium 0.001574 0.000304 0.000668 0.001825 0.001369 0.001708 0.002423
Gallium 0.000003 0.000006 0.000018 0.000000 0.000001 0.000001 0.000006
Rubidium 0.000004 0.000008 0.000005 0.000002 0.000003 0.000005 0.000004
Strontium 0.000000 0.000003 0.000008 0.000004 0.000002 0.000005 0.000008
Indium 0.000028 0.000101 0.000107 0.000012 0.000005 0.000027 0.000023
Barium 0.000064 0.000234 0.000000 0.000101 0.000033 0.000249 0.000000
Thallium 0.000000 0.000025 0.000012 0.000005 0.000003 0.000017 0.000013
Lead 0.004843 0.000034 0.000046 0.000264 0.000397 0.000041 0.000036
Uranium 0.000001 0.000007 0.000021 0.000004 0.000000 0.000005 0.000000

Metalloids
Silicon mass 0.005000 0.000951 0.000918 0.007752 0.002787 0.003295 0.004616
Arsenic 0.000000 0.000000 0.000000 0.000001 0.000002 0.000004 0.000000
Tin 0.000050 0.000064 0.000033 0.000032 0.000023 0.000024 0.000047
Antimony 0.000006 0.000031 0.000172 0.000009 0.000004 0.000000 0.000036

Nonmetal elements
Sulfur 0.002354 0.001825 0.001508 0.001716 0.002100 0.028206 0.018411
Chlorine 0.000726 0.000008 0.000016 0.000236 0.000601 0.000000 0.000000
Phosphorous 0.001334 0.000274 0.000152 0.000978 0.000591 0.000139 0.000545
Selenium 0.000001 0.000002 0.000006 0.000003 0.000002 0.000010 0.000008
Bromine 0.000028 0.000004 0.000003 0.000004 0.000001 0.000010 0.000000

Continued, next page
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Bicyclic or two-ring PAH Organic Compounds
Naphthalene 0.003309 0.003459 0.000626 0.045334 0.003114 0.003792 0.011416
2-Menaphthalene 0.001595 0.002445 0.000997 0.017146 0.002901 0.002079 0.003719
1-Menaphthalene 0.001034 0.002018 0.001099 0.016027 0.002357 0.002054 0.003757
2,6 + 2,7-Dimenaphthalene 0.003518 0.002303 0.000676 0.008528 0.006724 0.001017 0.001218
1,6 + 1,3+1,7-Dimethylnaphthalene 0.004080 0.003833 0.001158 0.012884 0.009602 0.001726 0.002036
2,3 + 1,4+1,5-Dimenaphthalene 0.000883 0.001516 0.000371 0.004195 0.003289 0.000562 0.000709
1,2-Dimethylnaphthalene 0.000401 0.000984 0.000195 0.001914 0.001984 0.000248 0.000252
1-Ethyl-2-methylnaphthalene 0.002846 0.002836 0.000218 0.004541 0.004886 0.000375 0.000480
Biphenyl 0.001059 0.000927 0.000379 0.005099 0.002949 0.000635 0.000976
2-Methylbiphenyl 0.000169 0.000157 0.000102 0.000821 0.000306 0.000167 0.000178
3-Methylbiphenyl 0.000233 0.001011 0.000539 0.005404 0.001538 0.000921 0.001338
4-Methylbiphenyl 0.000104 0.000519 0.000207 0.002470 0.000749 0.000355 0.000613
Bibenzyl 0.000792 0.004328 0.000068 0.006136 0.004549 0.000701 0.001061
α-Trimethylnaphthalene 0.000427 0.001258 0.000304 0.004647 0.002628 0.000666 0.001060
1-Ethyl-2-methylnaphthalene 0.014773 0.003354 0.000028 0.039013 0.033539 0.000881 0.001511
β-Trimethylnaphthalene 0.000285 0.000986 0.000481 0.004565 0.002411 0.000699 0.001057
γ-Trimethylnaphthalene 0.000177 0.000925 0.000336 0.004009 0.001965 0.000616 0.000953
2-Ethyl-1-methylnaphthalene 0.000020 0.000114 0.000009 0.000169 0.000150 0.000014 0.000024
ε-Trimethylnaphthalene 0.000111 0.000475 0.000296 0.002788 0.001094 0.000414 0.000658
f-Trimethylnaphthalene 0.000119 0.000455 0.000258 0.002878 0.001180 0.000425 0.000666
2,3,5-Trimethylnaphthalene 0.000172 0.001039 0.000509 0.005509 0.002367 0.000790 0.001268
2,4,5-Trimethylnaphthalene 0.000057 0.000399 0.000054 0.001224 0.000795 0.000092 0.000252
j-Trimethylnaphthalene 0.000048 0.000306 0.000125 0.001293 0.000505 0.000202 0.000303
1,4,5-Trimethylnaphthalene 0.000644 0.000408 0.000065 0.002682 0.002074 0.000288 0.000222
1,2,8-Trimethylnaphthalene 0.000295 0.000213 0.000011 0.001438 0.001124 0.000127 0.000132

Tricyclic or three-ring PAH organic compounds
Acenaphthylene 0.002691 0.004103 0.000115 0.008941 0.025590 0.000486 0.002132
Acenaphthene 0.000280 0.000414 0.000046 0.001136 0.001579 0.000107 0.000242
Fluorene 0.000879 0.003382 0.000238 0.012595 0.008075 0.000760 0.003204
Phenanthrene 0.001121 0.001538 0.000546 0.008017 0.008055 0.000650 0.001958
α-Methylfluorene 0.000187 0.000616 0.000218 0.002117 0.000878 0.000291 0.000519
1-Methylfluorene 0.000126 0.000471 0.000166 0.002054 0.000583 0.000312 0.000509
β-Methylfluorene 0.000062 0.000177 0.000037 0.000477 0.000206 0.000082 0.000117
α-Methylphenanthrene 0.000159 0.000513 0.000238 0.002131 0.000709 0.000260 0.000519
2-Methylphenanthrene 0.000188 0.000629 0.000238 0.002574 0.000856 0.000351 0.000633
γ-Methylphenanthrene 0.000176 0.000601 0.000135 0.001923 0.000862 0.000196 0.000473
1-Methylphenanthrene 0.000147 0.000491 0.000110 0.001590 0.000521 0.000242 0.000383
3,6-Dimethylphenanthrene 0.000031 0.000135 0.000058 0.000637 0.000145 0.000085 0.000160
α-Dimethylphenanthrene 0.000052 0.000234 0.000071 0.000979 0.000184 0.000123 0.000246
β-Dimethylphenanthrene 0.000029 0.000138 0.000035 0.000632 0.000108 0.000087 0.000162
γ-Dimethylphenanthrene 0.000116 0.000606 0.000125 0.001837 0.000448 0.000227 0.000460
1,7-Dimethylphenanthrene 0.000073 0.000392 0.000057 0.000940 0.000268 0.000103 0.000231
d-Dimethylphenanthrene 0.000024 0.000131 0.000026 0.000567 0.000103 0.000070 0.000145
ε-Dimethylphenanthrene 0.000053 0.000353 0.000037 0.000803 0.000248 0.000091 0.000188
Anthracene 0.000228 0.000438 0.000041 0.001107 0.001244 0.000046 0.000258
9-Methylanthracene 0.000028 0.000098 0.000001 0.000129 0.000052 0.000021 0.000029
Retene 0.000010 0.000005 0.000003 0.000032 0.000010 0.000006 0.000008

Tetracyclic or four-ring PAH organic compounds
2,3-Benzofluorene 0.000156 0.001283 0.000003 0.000957 0.001241 0.000013 0.000192
Fluoranthene 0.000454 0.000778 0.000026 0.002844 0.003514 0.000097 0.000688
Pyrene 0.000344 0.000409 0.000058 0.002116 0.001901 0.000045 0.000548
1-Methylfluorene + a-methylfluorene 0.000002 0.000012 0.000001 0.000008 0.000007 0.000001 0.000000
b-Methylpyrene + b-methylfluorene 0.000122 0.000851 0.000009 0.000769 0.000654 0.000031 0.000164
c-Methylpyrene + c-methylfluorene 0.000084 0.000620 0.000002 0.000462 0.000573 0.000009 0.000094
4-Methylpyrene 0.000027 0.000109 0.000010 0.000227 0.000084 0.000006 0.000058
1-Methylpyrene 0.000023 0.000127 0.000006 0.000196 0.000078 0.000003 0.000050
Benzo[c]phenanthrene 0.000032 0.000101 0.000001 0.000207 0.000216 0.000006 0.000052
Benz[a]anthracene 0.000065 0.000173 0.000002 0.000275 0.000293 0.000004 0.000067
7-Methylbenz[a]anthracene 0.000001 0.000002 0.000000 0.000002 0.000003 0.000000 0.000000
Chrysene 0.000093 0.000250 0.000006 0.000849 0.000516 0.000022 0.000227
5+6-Methylchrysene 0.000008 0.000055 0.000001 0.000059 0.000031 0.000027 0.000015

Five-ring PAH organic compounds
Benzo[b+j+k]FL 0.000071 0.000137 0.000003 0.000449 0.000326 0.000008 0.000122
7-Methylbenzo[a]pyrene 0.000001 0.000003 0.000000 0.000007 0.000006 0.000003 0.000002
Benzo[e]pyrene 0.000031 0.000090 0.000002 0.000225 0.000147 0.000003 0.000060
Perylene 0.000010 0.000023 0.000000 0.000010 0.000062 0.000001 0.000002
Benzo[a]pyrene 0.000038 0.000099 0.000001 0.000089 0.000225 0.000028 0.000022
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Six-ring PAH organic compounds
Indeno[123-cd]pyrene 0.000035 0.000071 0.000001 0.000204 0.000204 0.000002 0.000056
Benzo[ghi]perylene 0.000104 0.000107 0.000002 0.000276 0.000279 0.000003 0.000074
Dibenz[ah+ac]anthracene 0.000004 0.000015 0.000000 0.000032 0.000024 0.000000 0.000009

Seven-ring PAH organic compounds
Coronene 0.000056 0.000007 0.000001 0.000078 0.000103 0.000002 0.000020

Oxygenated PAH organic compounds
9-Fluorenone 0.007703 0.001677 0.000001 0.012351 0.020705 0.000564 0.000399
Xanthone 0.000000 0.000060 0.000071 0.000008 0.000099 0.000048 0.000002
Acenaphthenequinone 0.000000 0.000018 0.000002 0.000000 0.000000 0.000016 0.000000
Perinaphthenone 0.000000 0.000000 0.000020 0.000000 0.000000 0.000000 0.000000
Anthraquinone 0.000103 0.000466 0.000001 0.000712 0.000507 0.000034 0.000140
9-Anthraldehyde 0.000033 0.000000 0.000035 0.000309 0.000056 0.000112 0.000085
Benz[a]anthracene-7,12-dione 0.000003 0.000050 0.000000 0.000035 0.000055 0.000004 0.000009

Sulfur-containing PAH
Benzonaphthothiopene 0.000005 0.000064 0.000001 0.000091 0.000012 0.000005 0.000024

Nitro PAH organic compounds
1-Nitronaphthalene 0.000012 0.000007 0.000012 0.000029 0.000008 0.000012 0.000013
2-Nitronaphthalene 0.000005 0.000002 0.000002 0.000016 0.000011 0.000004 0.000005
2-Methyl-1-nitronaphthalene 0.000001 0.000001 0.000000 0.000000 0.000001 0.000008 0.000001
α-Methyl-1-nitronaphthalene 0.000001 0.000001 0.000000 0.000001 0.000001 0.000001 0.000000
β-Methyl-1-nitronaphthalene 0.000003 0.000008 0.000003 0.000003 0.000003 0.000005 0.000003
2-Nitrobiphenyl 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
4-Nitrobiphenyl 0.000005 0.000002 0.000012 0.000003 0.000002 0.000003 0.000007
5-Nitroacenaphthene 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
9-Nitroanthracene 0.000000 0.000000 0.000000 0.000001 0.000002 0.000002 0.000002
2-Nitrofluoranthene 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
3-Nitrofluoranthene 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1-Nitropyrene 0.000001 0.000001 0.000002 0.000001 0.000000 0.000013 0.000010
7-Nitrobenz[a]anthracene 0.000000 0.000001 0.000000 0.000000 0.000000 0.000000 0.000001
6-Nitrochrysene 0.000002 0.000000 0.000001 0.000006 0.000001 0.000002 0.000003
6-Nitrobenzo[a]pyrene 0.000000 0.000000 0.000001 0.000000 0.000000 0.000001 0.000005

Hopane/sterane organic compounds
C27-20S-13β(H),17α(H)-diasterane 0.000010 0.000011 0.000010 0.000002 0.000002 0.000007 0.000004
C27-20R-13β(H),17α(H)-diasterane 0.000007 0.000006 0.000005 0.000002 0.000001 0.000006 0.000002
C27-20S-13α(H),17β(H)-diasterane 0.000003 0.000003 0.000003 0.000001 0.000000 0.000002 0.000001
C27-20R-13α(H),17β(H)-diasterane 0.000004 0.000006 0.000004 0.000001 0.000001 0.000003 0.000001
C28-20S-13β(H),17α(H)-diasterane 0.000005 0.000004 0.000001 0.000001 0.000001 0.000002 0.000001
C27-20S-5α(H),14α(H)-cholestane 0.000019 0.000007 0.000001 0.000001 0.000002 0.000006 0.000003
C27-20R-5α(H),14β(H)-cholestane 0.000019 0.000014 0.000018 0.000002 0.000002 0.000010 0.000005
C27-20S-5α(H),14β(H),17β(H)-cholestane 0.000007 0.000009 0.000012 0.000001 0.000002 0.000005 0.000003
C27-20R-5α(H),14α(H),17α(H)-cholestane 0.000019 0.000022 0.000020 0.000003 0.000004 0.000007 0.000008
C28-20S-5α(H),14α(H),17α(H)-ergostane 0.000003 0.000005 0.000003 0.000001 0.000001 0.000003 0.000002
C28-20R-5α(H),14β(H),17β(H)-ergostane 0.000007 0.000008 0.000010 0.000001 0.000001 0.000007 0.000003
C29-20R-13α(H),17β(H)-diasterane 0.000008 0.000016 0.000023 0.000002 0.000003 0.000006 0.000005
C27-Tetracyclic terpane 0.000010 0.000016 0.000037 0.000005 0.000004 0.000014 0.000007
C28-20R-5α(H),14α(H),17α(H)-ergostane 0.000004 0.000007 0.000008 0.000001 0.000001 0.000004 0.000002
C27-Tetracyclic terpane 0.000003 0.000002 0.000000 0.000001 0.000001 0.000004 0.000003
C28-Tetracyclic terpane 0.000009 0.000007 0.000144 0.000004 0.000004 0.000009 0.000005
C29-20S-5α(H),14α(H),17α(H)-stigmastane 0.000005 0.000012 0.000014 0.000001 0.000002 0.000007 0.000004
C28-Tetracyclic terpane 0.000003 0.000019 0.000001 0.000001 0.000001 0.000005 0.000003
C29-20R-5α(H),14β(H),17β(H)-stigmastane 0.000010 0.000015 0.000021 0.000001 0.000003 0.000008 0.000006
C29-20S-5α(H),14β(H),17β(H)-stigmastane 0.000006 0.000010 0.000013 0.000001 0.000002 0.000006 0.000003
18α(H),21β(H)-22,29,30-trisnorhopane 0.000002 0.000002 0.000009 0.000000 0.000000 0.000001 0.000001
17α(H),18α(H),21β(H)-25,28,30-trisnorhopane 0.000001 0.000002 0.000006 0.000000 0.000000 0.000001 0.000001
C29-20R-5α(H),14α(H),17α(H)-stigmastane 0.000008 0.000015 0.000016 0.000001 0.000003 0.000007 0.000004
17α(H),21β(H)-22,29,30-trisnorhopane 0.000042 0.000083 0.000106 0.000012 0.000016 0.000056 0.000030
17α(H),18α(H),21β(H)-28,30-bisnorhopane 0.0000010 0.0000022 0.0000019 0.0000001 0.0000002 0.0000008 0.0000004
17α(H),21β(H)-30-norhopane 0.0000319 0.0000690 0.0000000 0.0000073 0.0000095 0.0000412 0.0000196
18α(H),21β(H)-30-norneohopane 0.0000040 0.0000099 0.0000027 0.0000006 0.0000003 0.0000030 0.0000031
17α(H),21β(H)-hopane 0.0000029 0.0000066 0.0000076 0.0000003 0.0000009 0.0000030 0.0000014
17β(H),21α(H)-hopane 0.0000020 0.0000023 0.0000081 0.0000002 0.0000007 0.0000023 0.0000014
22S-17α(H),21β(H)-30-homohopane 0.0000146 0.0000345 0.0000514 0.0000027 0.0000046 0.0000187 0.0000088
22R-17α(H),21β(H)-30-homohopane 0.0000090 0.0000258 0.0000351 0.0000018 0.0000035 0.0000129 0.0000067
17β(H),21β(H)-hopane 0.0000031 0.0000123 0.0000040 0.0000004 0.0000010 0.0000043 0.0000019
22S-17α(H),21β(H)-30,31-bishomohopane 0.0000072 0.0000199 0.0000544 0.0000011 0.0000025 0.0000094 0.0000045
22R-17α(H),21β(H)-30,31-bishomohopane 0.0000045 0.0000136 0.0000342 0.0000009 0.0000014 0.0000070 0.0000035
22S-17α(H),21β(H)-30,31,32-trishomohopane 0.0000044 0.0000155 0.0000156 0.0000006 0.0000015 0.0000055 0.0000023
22R-17α(H),21β(H)-30,31,32-trishomohopane 0.0000032 0.0000098 0.0000093 0.0000004 0.0000010 0.0000036 0.0000016
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Methods for evaluation of statistical modeling results. The PLS model
results were evaluated based on indices of goodness of fit (R2) and
prediction capacity (Q2). The R2 goodness of fit coefficient is analo-
gous to the multiple regression correlation coefficient (squared
Pearson product-moment correlation between observed and predicted
Y-values). Although this index provides insight into the strength of
the observed association between model-predicted and observed
health outcomes, it is not necessarily a reliable measure of the predic-
tive capacity of models. Q2 is calculated for this purpose. Based on
the cross-validation technique described by Wold (1978), Q2 assesses
the model’s ability to predict health outcomes for each individual
sample when that sample is not used in the PLS model. The Q2

goodness of prediction parameter is similar to R2 in that it is based on
the sums of squares of prediction errors. However, unlike the predic-
tion errors used in calculating R2, the prediction errors for Q2 are
independent of the prediction itself, rendering Q2 a more reliable
index of prediction performance.

Both R2 and Q2 values were calculated for model predictions on
the original data matrix as well as for 20 random orderings of the
Y (health outcomes) data matrix, while keeping the X-matrix (emis-
sions sample composition) fixed. As the randomly reordered Y-matrix
(Yr) changes, the correlation between the original Y-values and
reordered Y-values, (i.e., corr[Y1,Yr]), decreases to smaller and smaller
values. If there is an underlying systematic (nonrandom) relationship
between the Y- and X-matrices, a PLS model constructed on the ran-
domly reordered Y-values (i.e., Yr) would be expected to exhibit pre-
dictive power that decreases (decreased Q2) as corr[Y1,Yr] decreases. If
this does not occur, and the predictive capability of a model based on
random pairings of the health outcome data with their emission sample
predictors is as good as the predictive capability of the model based on
the observed pairing of health outcome and emissions sample data, there
is good evidence that the model is based on chance as opposed to sys-
tematic (nonrandom) associations between the health outcome and
emission composition. Thus, the test of model plausibility is based upon
the examination of relationship between corr[Y1,Yr] and the Q2 associ-
ated with reordered Y-values (i.e., Q2[Yr]). If the model is capturing a
systematic (nonrandom) relationship, the scatter plot of corr(Y1,Yr) ver-
sus Q2[Yr] should exhibit a linear relationship, and the estimated inter-
cept should be near zero. The R2 value may be in the acceptable range
even when the variation in the Y-matrix yields an unacceptable Q2, indi-
cating that data exhibit correlations by chance but there are no clear dif-
ferences in the associations between specific predictor variables and the
dependent variables. This illustrates the importance of using the Q2 cri-
terion with permutation testing of these models, which is not always
conducted and reported in the literature.

The overriding difficulty in performing the present analysis was the
large number of predictor (composition) variables and relatively smaller
number of emission samples on which to examine health outcomes.
Without some strategy to group (and reduce) the number of composi-
tion variables, the identification of systematic (nonrandom) relation-
ships between the composition variables and health outcomes might
prove impossible. The strategy for grouping predictor variables focused

on composites (sums) of chemical classes or subclasses. This strategy
allowed greater interpretive ability because the importance of specific
classes of components could be identified. Compounds were also
grouped because the lower number of predictor variables improved the
model performance (R2, Q2). The problem with grouping compounds
in a particular chemical class is that the assumption is made that the
individual compounds within that group contribute equally to toxicity.
If there are differences among the toxicity of individual components,
combining them might mask the effects of the most important compo-
nents. In addition, grouping compounds masks the differences in the
concentrations of individual compounds among the group.

Validation of statistical model, example. Each iteration of the
PLS model was systematically validated as described herein. This
began with evaluation of the performance parameters (R2 and Q2,
with 1.0 being perfect correlation or goodness of fit or prediction,
respectively) of the base model, and was followed by validation by
response permutation to ensure that the overall model was robust and
not due to chance (random associations). As described, the final
model plausibility was based on the relationship between corr[Y1,Yr]
and the Q2 associated with reordered response (in this study, response
is toxicity) data. Here we give one example (Figure A2-1) of the result
from the validation by response permutation for the PLS prediction
of lavage protein. Twenty random variations (permutations) of the
ordering of the compositional data were modeled by PLS, and the
scatter plot of corr(Y1,Yr) versus Q2[Yr] (Figure A2-1) had an inter-
cept near zero, indicating that the base model associations were non-
random. An important point that is illustrated by this scatter plot is
that each of the reordered Y-matrix models showed acceptable R2,
even when there was poor Q2. This is important because models that
rely on R2 alone may show correlations between variables that are
actually random associations, and this would not be detected without
validation using the Q2 criteria.

Each of the individual models and iterations of the groupings of
the compositional variables was evaluated by this permutation of the
Y-matrix. Only models where the slope of corr(Y1,Yr) versus Q2[Yr]
was near zero were accepted and used to show associations between
compositional components and lung or mutagenicity responses.
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Figure A2-1. Scatter plot of corr(Y,Yr) versus Q2[Yr]. The near zero y-intercept of
the line plotted through the Q2 values confirms that the base model (right) is not
due to random statistical associations, by showing that changes in the structure
of the data decrease the performance of the model. High R2 for nearly all of the
model permutations illustrates the need for the Q2 diagnostic because correlation
(R2) occurs under several conditions without good model performance.
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