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Polychlorinated biphenyls (PCBs) are a fam-
ily of synthetic hydrocarbon compounds
used extensively between the 1930s and
mid-1970s for a variety of industrial pur-
poses such as insulating materials and dielec-
tric fluids in electric transformers and
capacitors. Although banned in most indus-
trial nations, they continue to be among the
most ubiquitous environmental contami-
nants. Four prospective longitudinal studies
have linked background levels of prenatal
PCB exposure to poorer behavioral and
intellectual functioning in infancy and child-
hood: the North Carolina study (1), the
Michigan study (2), and studies in the
Netherlands (3), and Oswego, New York
(4,5). Prenatal PCB exposure is associated
with less optimal newborn behavioral func-
tion (4,6), poorer infant recognition mem-
ory (5,7), lower levels of general intellectual
competence during the preschool period
[(3,8,9), but see Gladen et al. (10)], and
poorer performance on standardized tests of
verbal IQ and reading comprehension at age
11 years (2). These effects have been linked
specifically to PCB exposure during the pre-
natal period; virtually no adverse effects have
been observed in relation to postnatal expo-
sure from breast-feeding.

Until recently, most risk assessments
conducted for environmental regulation
have attempted to identify a no-observed-
adverse-effect level (NOAEL)—that is, an
exposure level below which adverse effects
are not observed. The NOAEL methodology

was designed for data from laboratory ani-
mal experiments in which groups of animals
are administered discrete doses of a toxic
agent. The NOAEL is defined as the highest
dose at which no adverse effect is observed.
The NOAEL approach is not well suited for
data from studies relating human exposure
to adverse effects, where the distribution of
exposure levels is usually continuous. In this
context it requires the imposition of arbi-
trary cut points on the continuous data to
create discrete exposure groups, a procedure
that can generate spurious thresholds in the
data and can reduce the power to detect
adverse effects. 

Some human studies using linear multi-
ple regression analysis to evaluate teratogenic
effects have performed supplementary analy-
sis in which the children are divided into dis-
crete groups according to exposure level.
Visual inspection of bar graphs displaying
the group means generated by these analyses
often suggests a threshold of exposure below
which adverse effects are not observed. In
Rogan et al. (6), for example, poorer new-
born behavioral function was evident only in
the 49 infants most heavily exposed to
PCBs, the top 5.7% of the sample. In
Jacobson and Jacobson (2), adverse effects of
prenatal PCB exposure on verbal IQ were
observed only in the top 16.8% of the sam-
ple, although poorer reading comprehension
was observed at somewhat lower exposure
levels. Adverse effects on intellectual compe-
tence were evident at even lower levels in the

Netherlands study (3), and poorer infant
recognition memory was observed at lower
exposure levels in Oswego (5) than in the
Michigan study (7). One problem in assess-
ing thresholds in human studies is that
threshold values can vary considerably
depending on the reliability of the measure of
developmental outcome, the sensitivity of the
end point at the age at which it is assessed,
and the exposure group cut points selected by
the researcher (11). Improvements in the reli-
ability and sensitivity of biologic assays for
PCBs are likely responsible for the detection
of adverse effects at lower exposure levels in
the Netherlands and Oswego than in the
North Carolina and Michigan studies.

Given the high degree of between-study
variability in threshold values and the fact
that for some end points no thresholds are
seen, it is often very difficult to identify
definitive threshold values in human data.
One alternative that has been used in risk
assessments in recent years is benchmark
dose (BMD) analysis (12). BMD analysis
assumes that the relation between exposure
and adverse outcome is continuous, thus
avoiding the identification of specific thresh-
old values, and uses statistical and policy cri-
teria to establish cutoffs for risk assessment.
The BMD approach begins by identifying a
criterion for adverse effect. For some end
points, such as IQ score, the criterion might
be based on clinical criteria (e.g., an IQ < 70
is considered to constitute mental retarda-
tion). In most analyses, however, the crite-
rion for adverse effect has been the bottom
5th percentile in the distribution of the test
scores in a nonexposed population; the latter
criterion is referred to as a p0 of 0.05. The
BMD is defined as the level of exposure that

Address correspondence to J.L. Jacobson,
Department of Psychology, Wayne State
University, 71 W. Warren, Detroit, MI 48202
USA. Telephone: (313) 993-5454. Fax: (313) 993-
3427. E-mail: jjacobso@sun.science.wayne.edu

The Michigan study was supported by grants
R01-ES03256 and R01-ES05843 from the
National Institute of Environmental Health
Sciences/National Institutes of Health and grant
CR80852010 from the U.S. Environmental
Protection Agency. The study protocol was
approved by the Wayne State University Human
Investigation Committee, and informed consent
was obtained from all participants.

Received 5 March 2001; accepted 10 October
2001.

Articles

Benchmark dose (BMD) analysis is used to determine levels of exposure to environmental conta-
minants associated with increased public health risk. In this study we used a benchmark approach
to evaluate the risks associated with prenatal exposure to polychlorinated biphenyls (PCBs). We
evaluated for intellectual impairment a cohort of children whose prenatal PCB exposure had been
assessed from biologic specimens. We calculated BMDs and lower-bound confidence limits
(BMDLs) for four end points using four sets of risk criteria. BMDLs were estimated using three
different statistical methodologies. The BMDs and BMDLs were remarkably consistent across the
four end points for each set of risk criteria, but differed substantially for the different risk criteria.
The proportion of the sample considered at risk ranged from 9.8% for the least protective criteria
to 74.1% for the most protective. Two methodologies, likelihood ratio and bootstrapping, gener-
ated generally similar BMDLs. BMD analysis provides a straightforward, reliable method for
evaluating levels of exposure associated with increased public health risk. In the analyses per-
formed in this study, the number of individuals considered at risk depended more on the risk cri-
terion selected than on the outcome assessed. Key words: benchmark dose analysis, dose–response,
environmental contaminants, in utero exposure, organochlorine contaminants, polychlorinated
biphenyls, risk analysis. Environ Health Perspect 110:393–398 (2002). [Online 8 March 2002]
http://ehpnet1.niehs.nih.gov/docs/2002/110p393-398jacobson/abstract.html



will increase the risk of performance below
the designated cutoff score by a prespecified
amount (e.g., from 5% to 10% or from 5%
to 15%). This increase is referred to as the
benchmark response (BMR). Given a p0 of
0.05, a BMR of 0.05 represents a doubling
of risk (i.e., from 5% to 10%), whereas a
BMR of 0.10 represents a tripling (5% to
15%).

It can be argued that the p0 = 0.05 crite-
rion used in most benchmark analyses to
date is not sufficiently protective because it
focuses exclusively on the increased risk of a
deficit in the moderate-to-severe range. In
our research on prenatal PCB exposure in a
predominantly white, middle-class cohort in
western Michigan, we found no evidence of
moderate-to-severe deficit. All but one of the
children performed in the normal range, and
the one child who was mentally retarded was
excluded on the grounds that she was an
outlier (2). Nevertheless, our analyses
showed that prenatal PCB exposure at or
above 1.25 µg/g was associated with a
tripling of the incidence of poor perfor-
mance in the low-normal range, defined as
more than 1 standard deviation below the
mean. Although the children performing in
that range were not more likely to require
special education services, it can be assumed
that, given their low IQ and reading scores,
they had to struggle to keep up in a normal
classroom. In light of these findings, it seems
reasonable also to use benchmark analysis to
determine the level of exposure associated
with an increase in relatively subtle deficits.
If subtle deficit is defined as a score more
than 1 standard deviation below the sample
mean (i.e., in the bottom 16th percentile),
the cutoff would be termed a p0 of 0.16 in
benchmark methodology (13). Given a p0 of
0.16, a BMR of 0.05 would represent a
31.3% increase in risk (i.e., from 16% to
21%); a BMR of 0.10 would represent a
62.5% increase (16% to 26%).

One problem that arises in research on
PCBs and other ubiquitous environmental
contaminants is the difficulty of identifying
a truly nonexposed population to determine
the test score cutoff associated with a p0 of
0.05 or 0.16. Many neurobehavioral tests
lack general population norms, and even
where norms exist, such as for IQ tests, they
may not be relevant for the population being
assessed in a given study. In studies of popu-
lations in which virtually all individuals have
some degree of exposure, we can extrapolate
from the dose–response curve for the study
sample to determine a test score that would
correspond to the cutoff for the bottom 5th
or 16th percentile in a truly nonexposed
population. The value of the test score
where the dose–response curve crosses the
y-axis (at the point of zero exposure) would

be considered the mean for a hypothetical
nonexposed population. A normal curve
with that mean and a variance equal to the
mean square error from the regression line
can be used to represent the nonexposed
population. From this distribution one can
determine the cut point below which the
bottom 5% or 16% of the hypothetical non-
exposed population might be expected to
score. If p0 is 0.05 and the BMR is 0.10, the
BMD will be the level of exposure at which
15% (i.e., an additional 10%) of the popula-
tion would be expected to score below the
cut point. In benchmark analysis the
BMDL, defined as the lower bound of the
95% confidence interval (CI) for the BMD,
is used as the principal criterion for regula-
tory purposes. The BMDL is used instead of
the BMD to provide a margin of safety and
ensure that the most sensitive individuals in
the population are protected.

Our study is the first to apply a BMD
analysis to data on the effects of prenatal

exposure to PCBs. We examined four end
points from the Michigan data set—three
from the 11-year follow-up and one from
the 4-year assessment. For one end point,
full-scale IQ, we compared three methods
for computing the BMDL: maximum likeli-
hood estimate, likelihood ratio, and boot-
strapping. For all four end points, we
compared the BMDs and BMDLs using two
cut points, p0 of 0.05 and 0.16, and two
response criteria, BMRs of 0.05 and 0.10. 

Materials and Methods

Sample. The Michigan cohort was recruited
in four maternity hospitals in western
Michigan in 1980–1981, a period during
which Lake Michigan fish were relatively
heavily contaminated with PCBs (14). Two
hundred forty-two mothers who had eaten at
least 11.8 kg of Lake Michigan fish during
the previous 6 years and 71 mothers who did
not eat these fish participated in the newborn
phase of the study. We used three biologic
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Table 1. Sample characteristics, levels of exposure, and outcome score.

Characteristic Total no. Mean SD No. (%)

Sociodemographic characteristics
Socioeconomic statusa,b

Executive or professional 203 36 (17.7)
Middle management or semiprofessional 203 66 (32.5)
Skilled workers, clerical, or sales 203 57 (28.1)
Semiskilled workers 203 38 (18.7)
Unskilled workers 203 6 (3.0)

Mother's age at child’s birth (years)a,b 203 27.4 4.7
Marital status–(no. married)a,b 203 170 (83.7)
Sex of childa,b

Male 203 104 (51.2)
Female 203 99 (48.8)

Paritya,b 203 2.0 1.2
Graviditya,b 194 2.3 1.4
No. of childrena,b 203 2.6 1.1
Maternal education (years)a,b 203 13.9 2.1
Maternal vocabularya,b 203 99.7 15.6
HOMEa,b 194 48.7 3.8
Nursery school attendanceb 194 41 (20.2)
Maternal employment (hours/week)b 194 14.0 16.5
Family stress at 4-year interviewb 194 4.1 1.9
Family stress at 11-year interview

Past yeara 178 3.6 2.1
Past 5 yearsa 178 3.8 2.1

Child's grade in school at 11 yearsa 178 5.5 0.5
Prenatal risk

Maternal drinking before pregnancya,b 178 0.1 0.3
Maternal drinking during pregnancya,b 178 0.0 0.1
Maternal smoking before pregnancya,b 178 0.4 0.6
Maternal smoking during pregnancya,b 178 0.2 0.4

Delivery complicationsa,b 194 48 (24.7)
Levels of exposure

Cord serum PCB concentration 144 2.6 2.0
Maternal serum PCB concentration 158 5.7 3.6
Maternal milk PCB concentration 124 829.7 384.3
Duration of breast-feeding 203 24.6 29.5

Outcome scales
WISC full-scale IQ 178 107.6 12.6
Wechsler reading word comprehension 177 100.9 11.6
Mental rotation reaction time 177 1889.9 546.3
McCarthy memory scale 194 51.3 8.7

HOME, home observation for measurement of the environment.
aTested for potential confounding in relation to the 11-year end points. bTested for potential confounding in relation to the
4-year end point. 
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samples to assess prenatal PCB exposure:
umbilical cord serum collected at delivery
and maternal serum and milk collected
shortly thereafter. A composite measure of
prenatal exposure was constructed by averag-
ing the data from these assays, as described
below. The 4-year follow-up sample assessed
here consisted of the 194 children assessed
on the McCarthy Scales for Children’s
Abilities (15) for whom there were sufficient
data to construct the composite measure of
prenatal PCB exposure. The 11-year sample
consisted of the 178 children tested on the
Wechsler Intelligence Scale for Children-
Revised (WISC-R) (16) for whom the com-
posite prenatal exposure measure was
available. Demographic characteristics, levels
of exposure, and outcome scores for these
children are summarized in Table 1.

Measures of exposure. Cord and maternal
serum samples were obtained shortly after
delivery, and maternal milk samples within
0.2–4.5 months postpartum (median = 1
month). All specimens were analyzed for
PCBs by packed column gas chromatogra-
phy, using the Webb-McCall method
(17,18). Because of the limitations of this
analytic methodology, PCB values were not
detectable in 70% of the cord and 22% of
the maternal serum samples. Because placen-
tal transfer provides the sole route of fetal
exposure to these compounds, which are in
equilibrium in fat deposits throughout the
body, maternal serum and milk concentra-
tions provide alternatives to cord serum for
evaluating prenatal exposure (1). To improve
reliability and sensitivity in the assessment of
fetal exposure, the cord serum and maternal
serum and milk values were converted to z-
scores and averaged to provide a single mea-
sure; serum values were included only if they
exceeded the detection limit (9). Eleven chil-
dren whose cord and maternal serum PCB
values were both nondetectable and for
whom no milk specimen was available were
assigned a prenatal exposure score at the
10th percentile of the distribution. The
composite z-scores generated by these analy-
ses were converted to their equivalent values
in terms of maternal milk PCB concentra-
tion (micrograms per gram on a fat basis) by
multiplying each z-score by the sample stan-
dard deviation for maternal milk PCB con-
centration (0.39) and adding the sample
mean (0.84). 

Because virtually all the children in this
sample were exposed to measurable quanti-
ties of PCBs, we used the dose–response
curve to extrapolate the test scores that
would correspond to the cutoffs for the bot-
tom 5th and 16th percentiles in a truly non-
exposed population. To determine the
equivalent of no exposure on our composite
measure, the z-scores corresponding to zero

on each of the components of that measure
were determined and averaged together,
yielding a composite z-score of –1.65. The
value of each end point on its dose–response
curve corresponding to an exposure of –1.65
was considered the mean for a hypothetically
nonexposed population. For full-scale IQ, a
normal curve derived from that mean and a
variance equal to the mean square error of
the regression yielded a cutoff of 92.9 for a
p0 of 0.05 and 100.3 for a p0 of 0.16.
Cutoffs for these two values of p0 were
derived for each of the other end points as
well.

Outcome measures. We performed BMD
analyses on four cognitive outcomes previ-
ously found to be related to prenatal PCB
exposure in the Michigan cohort (2,8). The
three end points from the 11-year follow-up
study were full-scale IQ from the WISC-R,
word comprehension from the Woodcock
Reading Mastery Tests–Revised (19), and
average reaction time from Kail’s (20) men-
tal rotation task. In the mental rotation task,
the child must determine whether a letter
displayed on a computer screen is forward or
backward (i.e., mirror image). Latency to
press a forward or backward button on the
computer is tabulated. Task difficulty is var-
ied by rotating the stimulus letter at varying
angles (e.g., 30°, 60°, 90°) clockwise from
the vertical. One end point, the McCarthy
Memory Scale (15), was examined from the
4-year assessment. 

Control variables. Twenty control vari-
ables were evaluated for the analyses of each
of the end points: the 18 indicated in Table
1, age of child when tested, and child exam-
iner. We used correlational analysis to deter-
mine which control variables needed to be
adjusted statistically to control for confound-
ing (except for examiner, where one-way
analysis of variance was used). Because a
control variable cannot be the true cause of
an observed deficit unless it is related to both
exposure and outcome (21), association with
either exposure or outcome can be used as
the criterion for statistical adjustment. In
this study we selected control variables in
relation to outcome, as recommended
Kleinbaum et al. (22). All control variables
even weakly related to each outcome (at p <
0.10) were controlled statistically by regress-
ing the outcome in question on the control
variables related to it. We used the residual-
ized outcome scores in the benchmark analy-
ses reported here. We added the mean value
for each outcome to its residual score to
restore it to its original units. 

Calculation of BMDs and BMDLs.
Calculation of the BMDs followed the
framework given by Crump (12), a brief
outline of which is presented here. For a
given dose d, there is a resulting continuous

response X governed by a distribution func-
tion F. One of the parameters of F, Θ(d),
depends upon d, and the remaining parame-
ters, represented by α, do not. Given the dis-
tribution function F and the value of p0, a
cutoff score x0 can be calculated with
responses more extreme than x0 considered
abnormal. Using the above notation when
larger responses are more adverse, the proba-
bility of having an abnormal response as
defined by x0 given a subject’s dose d is given
by

P (d ) = 1 – F [x0; Θ(d ), α],

where F is the distribution function that
governs the continuous response X; d is the
dose the subject received; x0 is the score on
the outcome that corresponds to the chosen
p0; Θ(d) is the dose-dependent parameter
that describes the dose–response relation-
ship; and α is the vector of parameters that
does not depend on d.

The BMD is calculated by solving the
following equation:

F [x0; Θ(0), α] – F [x0; Θ(BMD), α] = BMR.

The outcomes assessed in this paper were all
approximately normally distributed, and a
Gaussian distribution function was used.
The dose-dependent parameter Θ(d) was
assumed to be a linear function of d, and the
standard deviation of the errors α was
assumed not to depend on the dose. We
used maximum likelihood estimation (MLE)
to obtain the regression estimates used to
calculate the BMDs.

We used three methods to calculate the
BMDLs. The first, MLE, is based on the
asymptotic normal distribution of the maxi-
mum likelihood estimate of the BMD. The
second is based on the asymptotic chi-square
distribution of the likelihood ratio statistic,
which Crump (12) recommends for com-
puting the BMDL because it is more robust
than MLE. For low-dose extrapolation prob-
lems, the distribution of the BMD is skewed
and the lower limit based on the asymptotic
normal approximation is unreliable. We cal-
culated the likelihood ratio-based confidence
limits using the profile likelihood method
(23), a general approach for calculating con-
fidence limits for parameters such as the
BMD that are defined in terms of more
basic parameters. The profile likelihood
method reduces the log-likelihood function
to a function of a single parameter of interest
by treating the other parameters as nuisance
parameters and maximizing over them. In
the third method, a bootstrap approach (24),
the BMD is estimated from 10,000 samples
drawn at random (with replacement) from
the data set. Each bootstrap sample has the



same n as the original study sample, but in
any given bootstrap sample some subjects are
randomly selected for inclusion more than
once, while others are omitted. Using the
percentile method (25), we calculated the
BMDL as the cut point below which 5% of
the bootstrapped BMD values fell.

Results

Figure 1 presents a scatterplot relating the
11-year full-scale IQ scores (residualized for
control variables and rescaled as described
above) to the composite prenatal PCB expo-
sure measure. Table 2 compares the BMDs
and BMDLs for full-scale IQ for four p0-
BMR combinations, with the BMDLs
derived using the three computational
methods described above. Not surprisingly,
the BMDs vary considerably depending on
the criterion for adverse effect (p0) and the
increase in risk (BMR) being stipulated.
The BMD for the least protective criteria, a
BMR of 0.10 for moderate-to-severe deficit
(p0 = 0.05), is 1.44 µg/g. Only 9.8% of the
cohort were exposed above that level. The
BMD for the most protective criteria, a
BMR of 0.05 for subtle deficit (p0 = 0.16),
is 0.58 µg/g. Using those criteria, 74.1% of
the Michigan sample would be considered
at increased risk from prenatal PCB expo-
sure. It is interesting that the BMDs for a
smaller increase in severe risk (p0 = 0.05,
BMR = 0.05) are very similar to those for a
greater increase in the risk of a subtler
deficit (p0 = 0.16, BMR = 0.10). The reason
for this similarity is that both sets of criteria

represent a 0.35 standard deviation shift on
the normal curve. 

The three computational methods gener-
ated similar BMDLs for the least-protective
criteria (p0 = 0.05, BMR = 0.10), possibly
because the values estimated by all three
methods are well within the range of the
observed data (Figure 1). By contrast, the
BMDL estimates were quite different for the
most protective criteria (p0 = 0.16, BMR =
0.05), especially the MLE estimate, which
was much lower than those generated by the
other two methods. For the two intermedi-
ate sets of criteria, the likelihood ratio and
bootstrap approaches provided generally
similar BMDL estimates, whereas the MLE
estimates were lower, confirming Crump’s
(12) concern that under some circumstances
MLE estimates might be unreliable. One
major advantage of the bootstrap approach is
that it makes no assumptions about the
shape of the BMD distributions. For that
reason and because it is much less difficult to
compute, we used bootstrapping to deter-
mine the BMDLs for the other three end
points (Table 3). 

Figure 2 shows the dose–response rela-
tions generated when the four end points
included in this article were examined in
relation to prenatal PCB exposure divided a
priori into five groups. For three of these end
points, visual inspection of the bar graphs
suggests that no adverse effect is seen below
1.25 µg/g, whereas the threshold for reading
word comprehension appears to be notably
lower (1.0 µg/g). By contrast, with the BMD

methodology (Table 3), the BMDLs for
reading word comprehension are virtually
indistinguishable from those for full-scale
IQ. Although the BMDLs for the 4-year
McCarthy Memory Scale are consistently
the highest across all four sets of analyses, the
magnitude of the differences between the 4-
year and 11-year BMDLs is very small.

Discussion

BMD analysis is particularly well suited for
risk assessment based on continuous data
from human exposure studies, in which it 
is often difficult to identify discrete dose–
response thresholds. It has been used, for
example, in recent risk assessments for pre-
natal methylmercury exposure in both the
United States (26) and Canada (27). Crump
(12) recommends MLE analysis to generate
the BMD values, but because standard
methods for computing confidence limits
based on MLE are often unreliable for calcu-
lating BMDLs, he recommends using likeli-
hood ratio-based confidence limits for the
BMDL. The latter are computationally com-
plex, however, and not available in standard
computer packages. This study is among the
first to use a bootstrap approach to generate
BMDLs. The likelihood ratio and bootstrap
approaches generated similar BMDLs for
three of the four sets of p0-BMR criteria
examined in this study. Two major advan-
tages of bootstrapping are that it makes no
assumptions regarding the distribution of
the data, and it is relatively easy to program
in packages such as SAS (28), S-PLUS (29),
and Resampling Stats (30).

A priori division of the continuous distri-
bution of prenatal PCB exposure levels into
distinct exposure groups appears to reveal
nonlinearities in the dose–response relation-
ships (Figure 2) that might provide the basis
for identifying a NOAEL. These nonlineari-
ties may be misleading, however, because
they may be influenced by the selection of
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Figure 1. Dose–response regression line and 95% CIs relating full-scale IQ (residualized for the control
variables indicated in Table 3) to prenatal PCB exposure, based on the asymptotic normal distribution of
the maximum likelihood estimate. The confidence limits flare at both ends of the distribution because the
regression line is measured most reliably at the center of the dose–response distribution. 
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Table 2. BMD analyses for full-scale IQ scores
comparing three methods for computing the
BMDL.a

BMR = 0.05 BMR = 0.10

p0 = 0.16
BMD 0.58 0.91
BMDL

Maximum likelihood –1.80 0.26
Likelihood ratio –0.20 0.56
Bootstrap 0.42 0.62

p0 = 0.05
BMD 0.94 1.44
BMDL

Maximum likelihood 0.36 1.08
Likelihood ratio 0.50 1.10
Bootstrap 0.63 0.93

aValues are composite measures of prenatal PCB expo-
sure expressed in terms of micrograms of fat in maternal
milk. Full-scale IQ scores were residualized for the con-
trol variables listed in the footnote to Table 3.



the exposure group cut points, which have
no biologically meaningful basis. Because the
number of children in each group is rela-
tively small, there is also a risk that a few
individuals may unduly influence a group
mean. 

A major advantage of the benchmark
methodology is that the BMD and BMDL
are derived from the slope of the entire
dose–response function. Although most
benchmark analyses performed to date have
used a linear model, this methodology can
also be applied to nonlinear dose–response
curves (12). In this study the BMDs and
BMDLs derived from benchmark analysis
were remarkably consistent across four differ-
ent end points at two different ages.
Benchmark analyses performed on data sets
from three different studies of prenatal
methylmercury exposure also showed
remarkable cross-end point consistency
within each of the studies examined (27).
The BMDs and BMDLs differed consider-
ably, however, among the three methylmer-
cury studies. Similarly, we would anticipate
that BMDs and BMDLs derived from the
more recent Netherlands (3) and Oswego
studies (4,5), which used more sensitive mea-
sures of prenatal PCB exposure than were
available for the Michigan study (2), might
well be lower than those reported here.

Another methodology that has sometimes
been used to identify no-effect levels is non-
parametric regression (31,32). Nonparametric
regression fits a series of curves in overlapping
segments corresponding to small regions of
the dose–response relationship, to which a
scatterplot smoothing technique is then
applied. The resulting curve is often nonlin-
ear, relatively flat at lower levels of exposure,
and becomes steeper as exposure increases.
However, it is usually not possible to discern a
discrete no-effect cutoff in this continuous
distribution. Moreover, because each of the
segments used to construct the nonparametric
curve is based on a relatively small number of
cases, the curves generated for different end
points frequently bend at quite different
thresholds (32).

Besides providing BMD criteria likely to
be stable across a range of end points (at least
within a given study), the BMD approach
enables the risk assessor to derive regulatory
standards for exposures for which no reliable
NOAEL values have been detected. The
absence of a reliable NOAEL is also com-
mon in laboratory animal experiments,
where adverse effects are often evident even
at the lowest doses tested. Moreover, a
NOAEL derived from one study is often
superseded by evidence of adverse effects at
lower exposure levels in subsequent studies
that use more reliable exposure measures or
more sensitive end points. In most cases,

therefore, it may be most reasonable to
assume that there is no true no-effect level
and to derive BMDs and BMDLs from the
dose–response curve. 

One important feature of the benchmark
methodology is that it focuses the attention
of the policy maker more directly on the
cost–benefit tradeoffs that environmental
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Figure 2. Relation of each developmental end point (residualized for the control variables indicated in
Table 3 and rescaled as described in the text) to prenatal PCB exposure divided a priori into five groups.
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Table 3. BMD analyses for four cognitive end points based on the bootstrap computation.a

BMD BMDL
BMR = 0.05 BMR = 0.10 BMR = 0.05 BMR = 0.10

p0 = 0.16
Full-scale IQb 0.58 0.91 0.42 0.62
Reading word comprehensionc 0.57 0.90 0.44 0.64
Mental rotationd 0.63 1.00 0.43 0.63
McCarthy memory scalee 0.64 1.02 0.46 0.69

p0 = 0.05
Full-scale IQb 0.94 1.44 0.63 0.93
Reading word comprehensionb 0.93 1.43 0.65 0.95
Mental rotationd 1.03 1.59 0.64 0.94
McCarthy memory scalee 1.05 1.63 0.71 1.04

aValues are composite measures of prenatal PCB exposure expressed in terms of micrograms of fat in maternal milk.
bResidualized for socioeconomic status, maternal education, maternal vocabulary, and HOME Inventory. cResidualized
for socioeconomic status, child's sex, parity, maternal education, maternal vocabulary, HOME Inventory, maternal alco-
hol consumption and smoking during pregnancy, and child's age when tested. dResidualized for child’s grade.
eResidualized for socioeconomic status, maternal age, child's sex, maternal education, maternal vocabulary, HOME
Inventory, and child's age when tested.



regulation almost always entails. Given that
it is unlikely to be economically feasible to
completely rid the environment of every
substance for which there is some evidence
of adverse effect, the benchmark approach
requires the regulator to determine the level
of risk of increased adverse effect he or she is
willing to tolerate. The data reported here
make clear how dramatically the selection of
regulatory criteria can alter the proportion 
of the population deemed to be at risk.
Analyses based on visual inspection of the
dose–response data (Figure 2) suggest that
15–35% of the Michigan cohort was at risk
from prenatal PCB exposure. Based on the
least-protective benchmark criteria we tested,
only about 10% of the Michigan cohort
would have been considered at risk, whereas
using our most stringent criteria, almost 75%
would have been deemed at risk. It is surpris-
ing that the least-protective criteria examined
in this paper are the ones that have been used
most frequently in benchmark analyses per-
formed to date (33,34). These criteria (a p0 of
0.05 and a BMR of 0.10) are designed to pro-
tect against the tripling of the risk of moder-
ate-to-severe deficit (from 5% in a nonexposed
population to 15%). It would seem more
appropriate to tolerate at most a doubling of
the incidence of moderate-to-severe deficit
and/or to base risk assessment on the preven-
tion of more subtle deficit.
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