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Schizophrenia and related disorders are charac-
terized by hallucinations, delusions, social
withdrawal, and disorganized thinking.
Although typically diagnosed during late ado-
lescence and early adulthood, a growing body
of evidence suggests that events during pre-
natal development may play a role in the etiol-
ogy of these diseases. In particular, exposures
to agents that may disrupt or damage the
developing nervous system have been impli-
cated. This theory, commonly referred to as
the “neurodevelopmental hypothesis of schizo-
phrenia” (Murray et al. 1992; Weinberger
et al. 1996), has been supported by recent
findings that suggest prenatal nutritional depri-
vation and infection may be risk factors for
schizophrenia (Susser et al. 1999). However,
few investigators have considered schizophre-
nia among the possible neuropsychiatric
sequelae of chemical agents.

Lead, a known chemical teratogen, is
capable of disrupting both behavioral and
physical development (Sobotka and Rahwan
1995). Relationships between early exposure
to lead and neuropsychologic abnormalities
have been observed throughout the life course
(Bellinger et al. 1991; Kim et al. 1995; Pocock
et al. 1994). For example, the Yugoslavia
Prospective Study reported that lead exposure
during midpregnancy was associated with
deficits in neuropsychiatric function at 24
months of age (Factor-Litvak et al. 1999;
Graziano et al. 1990). Further assessments of
the cohort identified persistent decrements in
measures of attention, cognition, and verbal
comprehension at 4, 7, 10, and 12 years of age

(Wasserman et al. 2000). Needleman et al.
(1979, 1990) found associations between den-
tine lead levels measured in deciduous teeth
(6–8 years of age) and reading difficulties and
failure to graduate from high school.

In a prospective study conducted in
Cincinnati, Ohio, prenatal and average child-
hood blood lead concentrations were reported
to be associated with increased delinquent
behavior later in life (Dietrich et al. 2001).
This suggests that prenatal lead exposure may
be a risk factor for other adolescent and adult-
onset outcomes, possibly psychiatric disorders.
Schizophrenia is one plausible candidate
because some of its premorbid features such as
reduced attention, neurocognitive impairment,
and diminished educational attainment (Jones
et al. 1993) strongly resemble the behavioral
deficits associated with lead exposure.

The present study was designed to assess
the association between lead exposure in the
second trimester of pregnancy and schizophre-
nia using prospectively collected serum sam-
ples in a nested case–control study from a
birth cohort in which schizophrenia and
related disorders had been diagnosed (Susser
et al. 2000). Exposure to lead during the pre-
natal period is generally measured using whole
blood because most of the lead in blood is
contained in erythrocytes (Korpela et al.
1986). Only serum samples and not whole
blood specimens were available for this study.
Consequently, we used an indirect biologic
marker of lead exposure, δ-aminolevulinic
acid (δ-ALA). δ-ALA is part of the heme syn-
thetic pathway. Under normal conditions,

δ-ALA is rapidly dimerized by δ-ALA dehy-
dratase (ALAD) to form porphobilinogen.
During exposure to lead, levels of δ-ALA in
serum and urine increase because lead is a
potent inhibitor of the enzymatic activity of
erythrocyte ALAD (Bergdahl et al. 1997).

Materials and Methods

Description of cohort.  The Prenatal
Determinants of Schizophrenia (PDS) study,
described in detail elsewhere (Susser et al.
2000), is based on a cohort of live births col-
lected prospectively from 1959 through 1967
at the Kaiser Foundation Health Plan clinics
in Alameda County, California, as part of the
Child Health and Development Study. The
PDS study includes the 12,094 live-born
individuals who remained in the health plan
until 1981, when it became possible to use
computerized records to identify potential
cases of schizophrenia. In addition to detailed
records on a variety of demographic charac-
teristics of the parents and obstetric health,
samples of whole blood were drawn during
each prenatal visit, centrifuged, and divided
into four aliquots of serum (2 cc each)
(Brown et al. 2000); samples were maintained
at National Institutes of Health facilities at
–20°C. A prior study of this cohort indicates
that the sera are in good condition, specifi-
cally that they contain concentrations of sex
hormones comparable with those observed in
freshly drawn sera (Udry et al. 1995) and
expected quantities of antibodies to influenza
(Brown et al., in press).

The available literature on the behavior of
δ-ALA and porphyrin levels during pregnancy
indicated that fluctuations occur in the weeks
immediately preceding delivery (de Klerk
et al. 1975). In contrast, blood lead (BPb) lev-
els have been shown to change only slightly
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during the early stages of pregnancy and
remain stable during the second and third
trimesters (Baghurst et al. 1987; Graziano
et al. 1990). Therefore, midpregnancy serum
samples were sought for this analysis because
they were thought to be a point in develop-
ment when both the exposure and biomarker
of interest were likely to be stable. In addition,
developmental events during the second
trimester of pregnancy have been previously
implicated in schizophrenia, such as neuronal
migration and synaptogenesis (Beckmann
1999; Bracha et al. 1992).

Case ascertainment, diagnosis, and selec-
tion of controls. Screening for potential cases of
schizophrenia spectrum disorder was initiated
by identifying all possible cases using comput-
erized records from inpatient, outpatient, and
pharmacy databases. Possible cases were con-
tacted and assessed by experienced clinical
interviewers with master’s level training.
Standardized procedures included a structured
clinical interview (the Diagnostic Interview for

Genetic Studies; Nurnberger et al. 1994) and a
consensus diagnosis made by expert clinicians
after review of the narrative, psychiatric
records, and discussions with the interviewer. A
complete description of the methods used has
been previously published (Susser et al. 2000).

Cases identified through these methods
included 43 subjects with diagnoses of schizo-
phrenia, 17 cases of schizoaffective disorder,
5 cases of schizotypal personality disorder,
1 case of delusional disorder, and 5 cases who
met criteria for nonaffective psychoses not oth-
erwise specified. Controls were selected from
the remaining subjects without diagnoses of
schizophrenia spectrum disorder and were
matched to cases on timing of membership in
the health plan (such that controls were
required to be members of the health plan dur-
ing the time at which disease status was identi-
fied in the matched case), date of birth ± 28
days, sex, date of the first maternal blood draw
± 4 weeks, and equal numbers of maternal
serum samples available for study. Forty-four

cases and 75 controls (1–2/case) had second-
trimester maternal serum available for analysis.

Laboratory protocol. A method published
by Endo et al. (1993) and Oishi et al. (1996)
to determine plasma levels of δ-ALA was
adapted for use as a biologic marker for lead
exposure (Tomokuni et al. 1993), and further
adapted for use in stored serum samples in this
study. Briefly, δ-ALA reacts with acetylacetone
and formaldehyde to form 2,6-diactyl-1,5-
dimethyl-7-(2-carboxyethyl)-3H-pyrrolizine
(Figure 1), a derivative that can be quanti-
fied via fluorescence detection at excitation/
emission wavelengths of 370 nm and 460 nm,
respectively.

Frozen serum samples were identified by
coded labels, rendering the analyst blind to
case status. Samples were thawed in an ice
bath for 1 hr and transferred to Eppendorf
tubes. These tubes were placed in a 70°C
water bath for 20 min and then centrifuged
for 3 hr at 14,000 rpm in a Sorval microcen-
trifuge (Kendro Laboratory Products,
Asheville, TN) at 4°C. For the derivatization
reaction, an aliquot of 50 µL of supernatant
was removed and added to 16 Kimax glass test
tubes (125 mm; Kimble/Kontes, Vineland,
NJ) containing 1.5 mL acetylacetone reagent
(20% acetylacetone, 20% ethanol in deionized
water, vol/vol) and 450 µL 37% formaldehyde.
Tubes were loosely capped and held at 100°C
for 20 min using a dual aluminum alloy block
heater (VWR International, West Chester, PA).

The tubes were then cooled in an ice bath
for 10 min and allowed to stand at room
temperature in the dark for 1 hr. An aliquot
(1 mL) of supernatant was transferred to
light-proof Eppendorf tubes and centrifuged
for 1 hr. The supernatant was then filtered
through 3-cc disposable syringes using acrylic
syringe filters with 0.45 µm pores and aspi-
rated through 9.5 mm, 26-gauge needles
(Fisher Scientific, Atlanta, GA) to a final vol-
ume of 750 µL. The filtrate was transferred to
light-resistant 700 µL 8 × 30 mm crimp-top
HPLC injection vials with aluminum caps
(Alltech Associates, Deerfield, IL).

We used a Perkin-Elmer model LC-250
equipped with an LC-600 autosampler and an
LC-40 fluorescence detector (Perkin-Elmer,
Norwalk, CT) for analysis. Separation was per-
formed at a flow rate of 1.0 mL/min using an
Adsorbosphere HS C18 column (5 µm, 250 ×
4.6 mm) attached to a Spherisorb C18 Guard
column (5 µm, 17 × 4.6 mm; both from
Alltech Associates). A CH-500 integrated
heater/controller with aluminum alloy column
fittings was used to maintain a temperature of
37 ± 1°C (Eppendorf/Brinkman Instruments,
Westbury, NY). δ-ALA was separated using an
isocratic mobile phase of methanol/water/
glacial acetic acid in proportions of 500:500:10
(vol/vol/vol) that was filtered and degassed
using helium.
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Figure 1. Derivitization of δ-ALA to 2,6-diactyl-1,5-dimethyl-7-(2-carboxyethyl)-3H-pyrrolizine. δ-ALA (A), an
indicator of elevated lead exposure; acetylacetone (B); and formaldehyde (C) react at 100°C to produce
several intermediate products (D, E) that combine to form 2,6-diactyl-1,5-dimethyl-7-(2-carboxyethyl)-
3H-pyrrolizine (F), a fluorescent derivative.

Figure 2. HPLC assay with fluorescence detection (HPLC-FD) of δ-ALA. Chromatograms from (A) a
10-ng/mL standard solution of δ-ALA in deionized H2O, and (B) sera from the Yugoslavia study taken from a
lead-exposed subject. Arrows indicate the δ-ALA peak at a retention time of approximately 11 min.
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Intraday variability of 4.7% for this assay
was determined by repeating the analytic pro-
cedure eight times using a standard solution
of δ-ALA in deionized water at a concentra-
tion of 25 ng/mL. The interday variability by
repeated injection of the same standard solu-
tion for 8 consecutive days was 7.8%. Based
on the standard curve established using data
from intraday analyses, the detection limit for
δ-ALA was calculated to be 4.67 ng/mL (Ren
et al. 1998). During the primary study, stan-
dard concentrations of 50 ng/mL δ-ALA were
used for detector calibration before and after
every four serum injections.

Reliability and validity studies. For the pur-
pose of testing the reliability of the laboratory
method for measurement of δ-ALA in stored
maternal serum and the validity of δ-ALA as an
indicator of BPb, we obtained aliquots of sera
for 23 subjects (supplied by J.G.) from the
Yugoslavia Study of Environmental Lead
Exposure and Child Development (Graziano
et al. 1990). Although these sera had been
stored at –20°C for 13–15 years, whole BPb
measurements had been made at Columbia
University within weeks after collection of the
samples. The samples selected for reliability
and validity testing were drawn at random
from a larger pool of subjects across a range of
midpregnancy BPb levels (4.5–41.3 µg/dL).
Based on literature reports of BPb levels for
women living in California in the 1960s
(Ludwig et al. 1965; Thomas et al. 1967), we
estimated that the distribution of BPb levels in
our prenatal cohort would range from 3 to 45
µg/dL and that the mean would likely fall
between 10 and 20 µg/dL.

Initial assessments of δ-ALA levels from
23 Yugoslavia study subjects indicated that
levels were comparable with those expected in
freshly drawn sera. A subset of 18 aliquots was
available in duplicate to assess the reliability of
the laboratory technique for measurement of
δ-ALA in stored maternal serum (Figure 2).
The intraclass correlation coefficient for the
18 duplicate samples was 0.91, indicating that
repeated measures of δ-ALA levels on the same
sample were highly correlated. When δ-ALA
levels were dichotomized at the median
(9.05 ng/mL) such that subjects with levels
≥ 9.05 ng/mL were categorized as “high” and
those < 9.05 ng/mL as “low,” the kappa statis-
tic for duplicate samples was 0.89 with an SE
of 0.23, indicating excellent agreement
between repeated measures for δ-ALA.

BPb and δ-ALA levels were compared con-
tinuously in all 23 samples (Figure 3), and the
correlation coefficient was 0.64. When a
regression line was drawn, points at the lower
levels of BPb and δ-ALA tended to fall outside
a 95% confidence interval (CI). We therefore
conducted a validity study to establish a
method for categorizing δ-ALA as a predictor
of BPb. We chose a cutoff point of 15 µg/dL

to define our exposure categories, such that
subjects with BPb ≥ 15 µg/dL would be classi-
fied as “exposed” and those with levels
< 15 µg/dL would be defined as “unexposed.”
δ-ALA levels were then dichotomized into
“high” and “low” categories using the median
δ-ALA value (9.05 ng/mL) as a cutoff point.
Sensitivity (i.e., the proportion of subjects clas-
sified as exposed to lead and also categorized as
high δ-ALA) was 91% for the first trial of the
18 samples from the Yugoslavia study analyzed
in duplicate and 90% for the second trial. The
positive predictive values were 89% for the first
trial and 91% for the second, indicating the
proportion of subjects for which an δ-ALA
level ≥ 9.05 ng/mL would accurately predict a
BPb level ≥ 15 µg/dL.

Statistical methods. In order to examine
the relationship between δ-ALA and schizo-
phrenia spectrum disorders, we used two
approaches. The first, a Mantel-Haenszel
odds ratio (MH OR), provided a summary
measure that estimated the odds of having a
diagnosis of schizophrenia spectrum disorder
if exposed versus the odds if unexposed, after
taking into account the correlation within
matched sets. This approach provides a sim-
ple and readily interpretable OR that
accounts for the matching variables, although
it does not adjust for other covariates. Second,
conditional logistic regression models were
fitted (Neuhaus 1992), including δ-ALA
exposure as a predictor of schizophrenia spec-
trum disorder, while adjusting for covariates
(Greenland 2000, Greenland et al. 2000).
Parameter estimates for the fitted models were
calculated using the STATA statistical pack-
age (Stata Corp., College Station, TX).

Potential confounders were assessed on the
basis of their known association with both lead
exposure and schizophrenia, including mater-
nal and paternal age, education, race/ethnicity,

family income, father’s income, maternal
smoking, maternal alcohol use, hemoglobin
levels, and number of previous pregnancies.
After testing each for associations between
serum δ-ALA and disease, addition and
removal procedures were performed. During
construction of the regression models, the util-
ity of all potential covariates was assessed
through sequential inclusion and exclusion. A
change of ± 10% in the point estimate corre-
sponding to δ-ALA provided justification for
including a variable in the model.

Results

Demographics. Thirty-one case–control sets
contained 2 controls, and the remaining
13 had 1 control, for a total of 175 subjects
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Figure 3. BPb and δ-ALA levels in midpregnancy sera,
Yugoslavia study. Midpregnancy BPb levels in 23 sub-
jects from the Yugoslavia Study of Environmental
Lead Exposure and Child Development (Graziano
et al. 1990) are compared with δ-ALA levels in
archived serum samples stored for 13–15 years at
–20°C. A regression line and 95% CIs are shown.

Table 1. Demographic characteristics of parents (%)
by case status.

Cases Controls 
(n = 44) (n = 75)

Father’s age at delivery (years)
15–19 0 1
20–29 34 33
30–39 36 37
40–45 25 12
Unknown 5 16

Father’s race
White/Caucasian 43 43
African American 41 31
Mexican, other 7 12
Unknown 9 15

Father’s education
< High school diploma 20 16
High school or vocational 29 33
Some college 18 20
College graduate 20 20
Unknown 11 11

Family annual income
< $2,500 0 3
$2,500–5,999 32 28
$6,000–9,999 33 31
$10,000–14,999 10 14
≥ $15,000 2 1
Unknown 25 21

Mother’s age at delivery (years)
15–19 9 14
20–29 50 44
30–39 38 37
40–45 2 5
Unknown 0 0

Mother’s race
White/Caucasian 45 49
African American 45 37
Mexican, other 7 12
Unknown 2 1

Mother’s education
< High school diploma 18 8
High school or vocational 38 43
Some college 18 24
College graduate 17 16
Unknown 9 8

Number of previous pregnancies
0 23 21
1 23 25
2 16 16
3 29 27
> 3 0 2
Unknown 9 9



divided into 44 sets. Table 1 compares the
demographic characteristics of the parents of
cases and controls. Although the distributions
for cases and controls are not significantly dif-
ferent for most variables examined (p ≥ 0.2),
fathers of cases were somewhat older, which is
consistent with findings from a previous
cohort analysis of these data (Brown et al.
2002). The difference in mean age of the
father at delivery is of borderline statistical
significance (p = 0.07). Maternal characteris-
tics were similar, and the differences were
small and not statistically significant.

δ-ALA distribution. In serum from all
119 subjects, concentrations of δ-ALA range
from nondetectable to 79.5 ng/mL, with a
mean concentration (± SD) of 9.0 ± 9.80
(Figure 4). Exclusion of the one control subject
with a δ-ALA level of 79.5 ng/mL in the analy-
sis did not alter the conclusions of the study.

Because the validity study described in
“Materials and Methods” demonstrated that
the use of a cutoff point of 9.05 ng/mL δ-ALA
(corresponding to a BPb level of 15 µg/dL)
yields high sensitivity and positive predictive
values, this cutoff point was used to define high
and low levels of serum δ-ALA. This cutoff
point was used to classify exposure in subjects
from the primary study. Fifty-three subjects
with δ-ALA levels ≥ 9.05 ng/mL (24 cases and
29 controls) were categorized as exposed and
66 subjects with levels < 9.05 ng/mL (20 cases
and 46 controls) were categorized as unexposed.

δ-ALA and schizophrenia spectrum dis-
order. Table 2 shows estimates of the risk of
schizophrenia in individuals whose mothers
had higher levels of maternal δ-ALA during the
second trimester, compared with lower levels,

using different statistical approaches. Using the
MH method, the estimated OR was 1.83
(95% CI, 0.85–3.95). In a continuous analysis
on a logarithmic scale, the effect for each unit
increase in serum ALA was calculated as an OR
of 1.92 (95% CI, 0.90–4.13; p = 0.09). One
variable, mother’s age at delivery, met our cri-
teria for inclusion in a logistic regression model
using the methods described above. When
maternal age was categorized (15–19, 20–29,
30–39, and > 39 years) and included in the
model, the estimated OR was 2.4 (95% CI,
0.99–5.96; p = 0.051). Controlling for addi-
tional variables such as father’s age at delivery,
parental race, education, family income, and
number of previous pregnancies had no effect
on our findings.

Discussion

Our study represents the first report of a
prospective examination of a prenatal chemical
exposure as a risk factor for an adult psychiatric
disease. Lead was widely distributed through-
out urban areas during the era when this
cohort was founded. Although BPb levels in
the United States have declined, lead exposure
continues to be of great concern. Despite bans
on both leaded gasoline and lead-based paint
that have been in effect for more than two
decades, it has been estimated in national sam-
ples of children and neonates that 5% still have
BPb ≥ 10 µg/dL (Satcher 2000), with regional
rates as high as 29% (Vivier et al. 2001).
Internationally, lead exposure continues to be a
concern because use of leaded gasoline persists
in many parts of the world.

On the basis of our results, we suggest
that further study is required to determine
whether prenatal exposure to lead and/or ele-
vated levels of serum δ-ALA during the sec-
ond trimester of pregnancy may be associated
with an increased risk of schizophrenia spec-
trum disorder. When our finding is adjusted
for covariates, the observed effect approaches
statistical significance. These conclusions are
subject to several limitations. First, the sample
size is modest. Second, although methods for
adjusting for potential confounders were
used, some confounders may not have been
adequately controlled for as a consequence of
the matched design and sample size or
because of a lack of sufficient information.
For instance, data on family history of mental
illness are incomplete for this cohort. Third,
for similar reasons, we were unable to exam-
ine postnatal factors that might modify the
effects of prenatal lead exposure. For example,

childhood socioeconomic status (SES) may
reverse lead-induced neuropsychologic deficits
in high-SES children (Tong et al. 2000).

Although δ-ALA is a biologic indicator of
lead exposure, other factors may affect δ-ALA
levels. One alternative hypothesis that might
explain our finding relates to the fact that
ALAD is polymorphic. The most common
variant, designated ALAD-1, is differentiated
from its counterpart, ALAD-2, by a single
locus G-to-C transversion in the coding region
(Kelada et al. 2001). The carriers of the
ALAD-2 allele have been shown to have higher
BPb levels and lower levels of lead in bone,
whereas individuals homozygous for ALAD-1
have higher levels of δ-ALA in plasma and
urine (Kelada et al. 2001). A variety of findings
suggest that interactions between ALAD poly-
morphisms and lead exposure may affect long-
term outcomes, including differences in
neuropsychologic effects of lead exposure
(Bellinger et al. 1994). It is possible that a spe-
cific ALAD polymorphism may be a risk factor
for schizophrenia, either independently or
through interactions with blood lead. DNA
samples were not available from the maternal
cohort, although genotyping of the subjects
may be possible in order to test this hypothesis
in the future.

In considering lead exposure during
development as a risk factor for adult mental
illness, both direct and indirect mechanisms
may be postulated. Direct mechanisms could
involve physical interactions between lead and
the developing nervous system, interfering
with growth, differentiation, or structural
development. Examples supported by experi-
mental evidence include effects on molecules
of neural adhesion (e.g., nerve-cell adhesion
molecule, N-cadherin, L1 neural cell adhesion
molecule) (Prozialeck et al. 2002) and alter-
ations of synaptic function (e.g., N-methyl-D-
aspartate receptor expression) (Toscano et al.
2002). Both have been implicated in the
pathogenesis of schizophrenia (Olney et al.
1999; Vawter 2000).

Indirect mechanisms might include effects
of lead that are not specific to the central ner-
vous system, such as renal damage (Loghman-
Adham 1997), altered transthyreitin secretion
at the choroid plexus (Zheng et al. 1999), or
interactions with nutrient absorption and dis-
tribution (Dawson et al. 1999). One specific
indirect mechanism that must be considered
is the potential toxicity of δ-ALA. δ-ALA is a
known neurotoxin, and elevated levels of
δ-ALA are associated with psychosis in adults,
as characterized by various forms of porphyria
(Estrov et al. 2000). In experimental models,
δ-ALA has been shown to interfere with
gamma-aminobutyric acid neurotransmission
(Percy et al. 1981), a process that has also
been implicated in schizophrenia (Benes
1997). Thus, it is possible that δ-ALA itself
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Figure 4. Distribution of second-trimester δ-ALA lev-
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Table 2. Estimated ORs relating δ-ALA (categorized as ≥ 9.05 and < 9.05 ng/mL) and schizophrenia spectrum
disorder using three statistical methods.

Method Estimated OR (95% CI) p-Value

MH OR, unadjusted 1.83 (0.87–3.87) 0.106
Conditional logistic regression, unadjusted 1.89 (0.86–4.11) 0.109
Conditional logistic regression, adjusted for mother’s age at delivery 2.43 (0.99–5.96) 0.051
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elevates the risk of schizophrenia spectrum
disorders, independently or as a consequence
of lead exposure.

Over the past century, regulatory stan-
dards governing lead exposure during preg-
nancy and childhood have become less
permissive, recognizing detrimental effects at
progressively lower concentrations. In parallel
with this trend, research has begun to focus
on the effects of prenatal lead exposure at
increasingly distal points along the life course
as cohorts move out of infancy and child-
hood, through adolescence. The results of our
study expand this premise to include an adult
psychiatric disease, suggesting that lead-
induced prenatal damage to the developing
brain may manifest throughout the decades
after the initial exposure.
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