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Many different structural classes of industrial
chemicals released into the environment pos-
sess potential hormonal activity or may alter
normal patterns of hormone effects. Toxic
effects may be produced at very low doses by
interaction at hormone receptors (Triendl
2001). Many researchers hypothesize that
exposure to these endocrine disruptors during
critical periods of development—in utero or
early postnatal life—could cause morphologic
and functional alterations in wildlife and
humans by influencing growth, reproduction,
and development. Therefore, the term
“endocrine disruptor” and its associated nega-
tive connotations have gained increased visi-
bility as a public health issue. In April 2000,
environment ministers of the G8 group of
industrialized countries signed a commu-
niqué stating that the risks posed by haz-
ardous chemical substances comprised one of
the greatest concerns expressed by the people
of their countries (Loder 2000). 

The origins of the endocrine disruptor
hypothesis can be traced to reports on adoles-
cent daughters born to pregnant women who
had taken the highly potent synthetic estrogen
diethylstilbestrol (DES). These girls developed
a wide range of reproductive tract abnormali-
ties including a rare form of vaginal cancer,
vaginal adenocarcinoma (Herbst et al. 1971).

Bisphenol A (BPA), a chemical estrogen
(Dodds and Lawson 1936), is produced in
high amounts. Approximately 210,000 tons
of BPA are produced in Germany per year for
a wide range of applications such as flame
retardants and resins (epoxy, 30%; polycarbon-
ate, 70%) (Leisewitz and Schwarz 1998). These

resins are used in dental fillings, food contain-
ers, plastic baby bottles, containers for mineral
water storage, and food and beverage can lin-
ings. The ability of BPA to migrate from poly-
mer to food, especially at high temperatures,
has been described—for example, when canned
food is heat processed or plastic dishes are used
in the microwave (Brotons et al. 1995; Olea et
al. 1996; Yamamoto and Yasuhara 1999;
Yoshida et al. 2001). Leaching of BPA appears
to increase with repeated use of plastic prod-
ucts. This may be responsible for the small
amounts of BPA that are detectable in tap and
river water (Khim et al. 2001; Motoyama et al.
1999; Shin et al. 2001).

In rats, it has been shown that a major
percentage of orally administered 14C-BPA is
excreted in feces and urine. 14C-BPA-
monoglucuronide was determined as the
major urine metabolite (Pottenger et al.
2000). Parent 14C-BPA and other metabolites
can also be detected, but at levels much lower
than those of the BPA-monoglucuronide (<
2% of the total 14C-BPA) (Pottenger et al.
2000). Parent BPA is the major component
detected in feces because it may pass through
the intestinal tract unchanged or the glu-
curonide form may be transported into the
intestine via bile and become hydrolyzed
(Pottenger et al. 2000). BPA-monoglu-
curonide is biologically inactive (Matthews et
al. 2001). Rapid conversion to the monoglu-
curonide after oral administration of BPA
results in low bioavailability of parent BPA,
which is the active form. Experiments demon-
strating that minuscule amounts of parent BPA
alter the reproductive organs of developing

mice recently sparked the greatest alarm con-
cerning this substance. Exposure of rodent
fetuses to BPA at a very low dose (below the
no-observed-adverse-effect level) typical of envi-
ronmental exposure was found to produce
postnatal estrogenic effects: reduced daily
sperm production in males, increased prostate
gland weight, alteration in the development
and tissue organization of the mammary gland,
disruption of sexual differentiation in the brain,
long-term deleterious effects in the vagina, 
and accelerated growth and puberty in females
(Howdeshell et al. 1999; Kubo et al. 2001;
Markey et al. 2001; Nagel et al. 1997;
Schonfelder et al. 2002; Talsness et al. 2000;
vom Saal et al. 1998; Welshons et al. 1999).
Some groups, however, were unable to repro-
duce the effects on the reproductive tract
(Ashby et al. 1999; Cagen et al. 1999a, 1999b),
leading to a controversial discussion of their
potentially harmful effects. The ubiquitous use
of BPA has made many scientists and regula-
tory agencies concerned that human exposure
to BPA may occur at levels shown to have
adverse effects in rodent models. Until now, no
data exist concerning exposure of pregnant
women and their fetuses to parent BPA. A pro-
cedure with a low limit of detection is necessary
to measure the levels of parent BPA that are
estimated to occur in humans by typical envi-
ronmental exposure based on calculations from
recent pharmacokinetic studies in animals
(Pottenger et al. 2000; Takahashi and Oishi
2000). Most scientists, therefore, believe that
the active parent form of BPA cannot be found
in human plasma, especially in pregnant
women and their fetuses, because of the high
first-pass metabolism to the monoglucuronide.

Given the paucity of data on BPA expo-
sure, the widespread use of BPA, and expressed
concerns among researchers and the public, we
undertook this study to determine parent BPA
in tissue samples and human plasma from
pregnant women and their fetuses. We devel-
oped an extremely sensitive gas-chromatogra-
phy/mass-spectrometry (GC/MS) method that
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Bisphenol A (BPA), an endocrine disruptor, is employed in the manufacture of a wide range of
consumer products. The suggestion that BPA, at amounts to which we are exposed, alters the repro-
ductive organs of developing rodents has caused concern. At present, no information exists concern-
ing the exposure of human pregnant women and their fetuses to BPA. We therefore investigated
blood samples from mothers (n = 37) between weeks 32 and 41 of gestation. Afer the births, we also
analyzed placental tissue and umbilical cord blood from the same subjects. We developed a novel
chemical derivatization–gas chromatography/mass spectrometry method to analyze parent BPA at
concentrations < 1 µg/mL in plasma and tissues. Concentrations of BPA ranged from 0.3 to 18.9
ng/mL (median = 3.1 ng/mL) in maternal plasma, from 0.2 to 9.2 ng/mL (median = 2.3 ng/mL) in
fetal plasma, and from 1.0 to 104.9 ng/g (median = 12.7 ng/g) in placental tissue. BPA blood con-
centrations were higher in male than in female fetuses. Here we demonstrate parent BPA in preg-
nant women and their fetuses. Exposure levels of parent BPA were found within a range typical of
those used in recent animal studies and were shown to be toxic to reproductive organs of male and
female offspring. We suggest that the range of BPA concentrations we measured may be related to
sex differences in metabolization of parent BPA or variable maternal use of consumer products leach-
ing BPA. Key words: bisphenol A, endocrine disruptor, fetus, human, maternal blood, placenta, sex
differences. Environ Health Perspect 110:A703–A707 (2002). [Online 10 October 2002]
http://ehpnet1.niehs.nih.gov/docs/2002/110pA703-A707schonfelder/abstract.html



also excluded false positive results occurring
from leaching of parent BPA from reaction
solvents into human samples. This method
will enable us to perform further epidemio-
logic studies on human maternal exposure to
BPA and possible effects in offspring.

Materials and Methods

We undertook this study between October
2000 and May 2001 at the Benjamin Franklin
Medical Center. Mothers lived in urban areas.
Tissue and blood collection was performed
according to the standard guidelines set by the
ethical committee of the Benjamin Franklin
Medical Center, Freie Universität Berlin. As
women from the Berlin area arrived to give
birth at the hospital, we asked them to partici-
pate in the study. All the women agreed and
only those from whom we were unable to
obtain human umbilical cord blood and pla-
cental tissue were omitted. Data from physical
examinations, laboratory tests, and question-
naires from the Department of Gynecology
and Obstetrics were recorded. Blood samples
from mothers (n = 37 Caucasian females;
Table 1) were collected between week 32 and
41 of gestation. Human umbilical cord blood
from the same subjects was taken from the
umbilical vein after the placenta was expelled.
Blood (4 mL) was collected in a sterile vacu-
tainer containing K2EDTA (Becton Dickinson
Vacutainer Systems Europe, Plymouth, UK)
via a vacutainer needle (both not leaching
BPA) that was directly placed into the
patient’s or the umbilical vein. Plasma was
obtained by centrifugation of cord and mater-
nal blood samples. Placental tissues from the
same subjects were homogenised.

Plasma and tissue BPA concentrations
were determined by GC/MS. The samples
were analyzed in a double-blinded manner.
Placental homogenate samples (0.5 g) were
transferred into 10 mL glass vials and 0.5 mL
H2O and 1.0 mL of ethyl acetate (Merck,
Berlin, Germany) containing the internal stan-
dard 2,2-bis-(4-hydroxy-3-methylphenyl)-
propane (BPC; Aldrich, Taufkirchen,
Germany) were added. Plasma samples
(50 µL) were transferred into 1-mL reaction
vials with 200 µL ethyl acetate containing the
internal standard. The vials were sealed with
Teflon-coated crimp caps and gently agitated
for 30 min. Then 100 µL of the supernatant
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Figure 1. Comparison of parent bisphenol A contamination using either an external derivatization or an
internal derivatization procedure for BPC. In the representative GC/MS chromatography, retention time for
the reference (internal) standard (IS) BPC was 8.10 min and 7.76 min for the parent BPA. External derivati-
zation of BPC (A) leads to less BPA contamination than does internal derivatization (B).

Figure 2. GC/MS spectrum to identify parent BPA in the eluted peak at 7.76 min retention time. The mass
spectrum of the eluted peak at 7.76 min revealed ions at m/z 372 (M+ion) for BPA-trimethylsilyl and at m/z
357 (M–15 ion) for the demethylated BPA-trimethylsilyl.
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Table 1. Characteristics of mothers and children.

Characteristics Median (range) n = 37

Maternal age (years) 33 (22–44)
Maternal height (cm) 165 (150–182)
Maternal weight at delivery (kg) 78 (54–120)
Grava 2 (1–6)
Children

Male 24 (65%)
Female 13 (35%)

Gestational age at delivery (weeks) 39 (32–41)
Birth weight (g) 3,490 (1,820–4,520)



were transferred to 1-mL glass reaction vials,
and the extracts were concentrated under a
stream of nitrogen. 

To avoid BPA contamination occurring
from leaching of parent BPA from the derivati-
zation reagent, bis(trimethylsilyl)trifluoroac-
etamide (BSTFA; Sulpeco, Deisenhofen,
Germany), into the human samples, the vials
with the dry samples were placed in 5-mL
screw cap septum glass reaction vials (so-called
external derivatization) containing 100 µL
BSTFA, instead of directly adding BSTFA to
the dry samples (internal derivatization). The
vials were sealed with Teflon/silicone cap liners
and heated in an oven (50°C) for 20 min. The
derivatization took place without BPA conta-
mination from the reagent. The 1-mL glass
vials were removed and 50 µL ethyl acetate
were added. Samples of 1 µL were injected
splitless into the GC-MSD system (Hewlett
Packard 5890 Series II gas chromatograph

coupled to a HP 5971A mass selective detec-
tor; Hewlett Packard, Waldbronn, Germany).
The GC separations were achieved with a 10
m × 0.18 mm Rtx-5 fused silica capillary col-
umn with 0.2 µm film thickness from Restek
GmbH (Sulzbach, Germany) with helium as
carrier gas. The initial temperature of 90°C
was held for 1 min and then raised at
25°C/min to 250°C. The injector temperature
was 280°C and the transfer line temperature
was 250°C. The mass selective detector was
operated by a HP-DOS Chemstation (Hewlett
Packard) in electron impact and multi-ion
detection mode using m/z 372 (M+ion) for
BPA-trimethylsilyl and m/z 385 for BPC as the
internal standard. In GC/MS chromatogra-
phy, retention times for the internal standard
were 8.10 min and 7.76 min for the parent
BPA (Figure 1). The mass spectrum of the
eluted peak at 7.76 min revealed ions at m/z
372 (M+ion) for BPA-trimethylsilyl and at m/z

357 (M–15 ion) for the demethylated BPA-
trimethylsilyl (Figure 2). Mass spectra from
parent BPA and the internal standard were
obtained using the same system operated in
scan mode with a mass range from m/z 60 to
m/z 450 with 2 scans/sec. For quantification of
parent BPA, the plasma and tissue samples
were prepared by spiking with BPA. The con-
centrations of BPA ranged from 0.1 to 200
ng/mL. The level of parent BPA in the samples
was calculated based on the ratio of parent
BPA to internal standard peak area response.
The slope of the plot (peak-area ratio vs.
amount of BPA added) indicated a linear
dependence (r = 0.9985). 

Additional control experiments were per-
formed to check whether BPA leached from
the GC/MS itself as well as storage containers
and all the tubes and vessels used to obtain
blood from patients. The migration test was
conducted by collecting water (Lichrosolve;
Merck KGaA, Darmstadt, Germany) instead
of human samples in sterile vacutainers
containing K2EDTA (Becton Dickinson
Vacutainer Systems Europe) via vacutainer
needles. Afterwards, the GC/MS analysis was
performed following the same procedures. 

Data analysis was performed using the
Statistical Package for Social Sciences, ver-
sions 10.0 for Windows, (SPSS, Chicago, IL,
USA). Values are given as mean ± SD if not
otherwise indicated. BPA concentrations in
maternal plasma, fetal plasma, and placental
tissue were tested for normal distribution
using Kolmogorov-Smirnov-test (KS-test).
Additionally, the significance of the sex differ-
ence in fetal plasma BPA levels and the sex
difference in fetal plasma BPA levels related

Children’s Health • Parent bisphenol A accumulation in humans

Environmental Health Perspectives • VOLUME 110 | NUMBER 11 | November 2002 A 705

Figure 3. GC/MS spectrum to identify parent BPA. The lower detection limit (LOD = 0.010 ng/mL) of the parent
substance was determined as the lowest concentration giving a response three times the average baseline
noise (A). Additional control experiments determined that BPA was below the LOQ in all the storage contain-
ers and tubes and vessels used in obtaining blood from patients (B). BPC was used as internal standard.
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Figure 4. Ion-chromatogram to quantify parent BPA in human samples. Our GC/MS method was able to detect BPA in human samples. Representative ion-chro-
matogram demonstrates parent BPA in human maternal plasma (A), placenta (B), and fetal plasma (C) at gestational week 40 of a normal pregnancy. BPC was
used as internal standard.
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to birth weight (birth weight followed
Gaussian distribution) were tested with the
paired t-test. Furthermore, Fisher´s exact test
was used to analyze the 24 consecutive new-
born males whose fetal BPA plasma levels
were higher than the maternal plasma levels,
for comparison with that of 13 consecutive
newborn female children.

Results

We were able to achieve a lower limit of quan-
tification (LOQ = 0.1 ng/mL of plasma) of par-
ent BPA using this newly developed external
derivatization method (Figure 1A), compared
to internal derivatization (Figure 1B). The
lower detection limit (LOD = 0.010 ng/mL) of
the parent substance was determined as the
lowest concentration giving a response three-
times the average baseline noise (Figure 3A). 

Additional control experiments deter-
mined that BPA was below the LOQ in all
the storage containers, tubes, and vessels used
to obtain blood from patients (Figure 3B).

Our GC/MS method was able to detect
BPA in human samples (Figure 4). The quanti-
tative analyses measured parent BPA in all the
human samples tested (Figure 5A). The KS-test
revealed a normal distribution of parent BPA
levels in maternal plasma, fetal plasma, and pla-
cental tissue. Concentrations of parent BPA
(Figure 5A) in maternal plasma ranged from
0.3 ng/mL to 18.9 ng/mL (4.4 ± 3.9 ng/mL,
median = 3.1 ng/mL; quartile 1 = 1.8 ng/mL;
quartile 3 = 7.1 ng/mL; n = 37); in fetal plasma
from 0.2 ng/mL to 9.2 ng/mL (2.9 ± 2.5
ng/mL, median = 2.3 ng/mL; quartile 1 = 1.1
ng/mL; quartile 3 = 5.2 ng/mL; n = 37); and in
placental tissue from 1.0 ng/g to 104.9 ng/g
(11.2 ± 9.1 ng/g, median = 12.7 ng/g; quartile
1 = 3.6 ng/g; quartile 3 = 22.5 ng/g; n = 37).

In some cases, fetal plasma levels of parent
BPA were higher than those for maternal
blood (n = 14; Figure 5B; Table 2). When we
considered just these cases, the percentage of
cases with higher levels of parent BPA in fetal

plasma was significantly higher in the male
group (12 of 24 cases) than in the female group
(2 of 13 cases) (p = 0.0402, Fisher´s exact test).

In addition, the paired t-test revealed sig-
nificantly higher levels (p = 0.016) of BPA in
male fetal plasma (Figure 6A; 3.5 ± 2.7
ng/mL, median = 2.8 ng/mL, quartile 1 =
1.15 ng/mL; quartile 3 = 5.35 ng/mL) than
in female (1.7 ± 1.5 ng/mL, median = 1.3;
quartile 1 = 0.5 ng/mL; quartile 3 = 2.4
ng/mL). When fetal BPA concentrations were
correlated to birth weight (bw), the paired t-
test revealed a significantly higher level (p =
0.012) of BPA in male fetal plasma [1.0 ± 0.8
(ng BPA/mL)/kg bw; median = 0.8 (ng
BPA/mL)/kg bw than in female (0.5 ± 0.4
(ng BPA/mL)/kg bw; median = 0.5 (ng
BPA/mL)/kg bw] (Figure 6B). 

Conclusions

This is the first study demonstrating parent
BPA in human samples of pregnant women
and their fetuses. 

The issue of bioavailability of parent BPA
in humans, especially in pregnant women and
their fetuses, has been contentious. It has been
generally suggested that after oral administra-
tion, parent BPA is partially absorbed and
rapidly excreted (half-life is less than 1 day)
with no evidence of bioaccumulation in tissues.
It was therefore uncertain whether parent BPA
circulated at concentrations shown to be toxic
to reproductive organs of male and female off-
spring of mice and rats (Nagel et al. 1997). Our
quantitative analyses detected parent BPA from
0.3 ng/mL to 18.9 ng/mL in maternal plasma,
and in fetal plasma in the range between 0.2
ng/mL to 9.2 ng/mL. Data from a recent study
reported by Takeuchi and Tsutsumi (2002)
support our findings that parent BPA accumu-
lation can be measured in humans and that
there might be sex differences. Unlike these
findings, we could detect BPA at a broader
range in serum, not just at concentrations
around 1 ng/mL. In contrast to our study and

the reports of Inoue et al. (2001) and Ohkuma
H. et al. (2002), Fung et al. (2000) did not
detect BPA in serum of 40 healthy subjects
when investigating the pharmacokinetics of
BPA released from a dental sealant. 

Here, we show that humans have levels of
parent BPA in the range of those used in recent
animal studies (Pottenger et al. 2000), where
differences in the concentration–time profiles
of parent BPA, based on dose and sex, could be
demonstrated. Parent BPA could not be quan-
tified after oral administration of 10 mg
BPA/kg bw to male rats, but was quantifiable
for over 22 hr after oral administration of this
dose to female rats (Cmax = 40 ng BPA/g).
Oral administration of 100 mg BPA/kg bw
resulted in about a 10-fold increase in the
concentration of parent BPA (Cmax = 2.290
ng/g) in the blood of female rats, compared
with the 10-mg dose, and was quantifiable in
blood through the last sample analyzed at 12
hr after administration. In contrast, concen-
trations of parent BPA in the blood of males
dosed with 100 mg BPA/kg BW were about
10 times less (Cmax = 220 ng/g). Furthermore,
previous studies demonstrated that sex and
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Figure 5. Parent bisphenol A levels in placental tissue and maternal and fetal plasma from pregnancies (n = 37). (A) The KS-test revealed a normal distribution of
parent BPA levels in maternal plasma, fetal plasma, and placental tissue. (B) In some cases, fetal plasma levels of parent BPA were higher than those for maternal
blood (n = 14).
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Table 2. Maternal and fetal plasma levels of parent
BPA (ng/mL). 

Sex Gestational Maternal Fetal 
(fetus) week plasma plasma

Male 40 4.3 9.2
Male 40 3.5 6.8
Male 40 1.9 5.2
Male 39 2.0 3.7
Male 39 4.5 4.7
Male 39 1.7 2.5
Male 39 2.5 3.6
Male 38 0.3 1.1
Male 38 4.2 5.4
Male 37 0.9 1.8
Male 36 1.8 6.5
Male 35 1.1 7.7
Female 39 2.5 2.9
Female 38 1.1 2.9

In some cases (n = 14), fetal plasma levels of parent BPA
(ng/mL) were higher than that for maternal blood. 



long-term soy diets affect the metabolism and
excretion of phytoestrogens. The excretion
half-life shortened progressively in women but
lengthened progressively in men (Lu and
Anderson 1998). Thus, we suggest that the
range of BPA concentrations we measured
may be related to sex differences in metabo-
lization of free BPA or variable maternal use
of consumer products leaching BPA. In accor-
dance with a recent rat study (Takahashi and
Oishi 2000), our findings demonstrate that
the human placenta does not act as a barrier
to parent BPA. The rate of clearance of BPA is
slower in the fetus than in maternal blood
(Takahashi and Oishi 2000), because most
uridinediphosphate–glucoronosyltransferase
isoenzymes are not expressed until after birth,
with the full complement being expressed by
3 months of age (Coughtrie et al. 1988).

The etiology of many adverse reproductive
outcomes among humans is poorly understood.
A growing body of scientific evidence indicates
that a number of chemicals to which humans
are in contact—including natural and synthetic
hormones, organometals, pesticides, persistent
environmental pollutants, monomers, and
additives used in the plastic industry—may
interfere with the endocrine system, potentially
causing adverse effects to both wildlife and
humans. Reasons for concern include evidence
for a number of trends: There are indications
for an increase in the incidence of some hor-
monally sensitive carcinomas, decrease in sperm
count and quality, and increased obesity and
earlier puberty occurring in girls, as well as
altered physical and mental development in
children. To date, there is no evidence that
ingestion of BPA at levels estimated to occur by
typical environmental exposure has adverse
effects in humans; a causal relationship of the
observed effects with BPA has not yet been ade-
quately established. Long-term follow-up stud-
ies are needed to assess the adverse effects of

BPA exposure in early life. Further studies on
human exposure to BPA are needed to
address the question whether maternal expo-
sure to BPA can lead to adverse health effects
in offspring. Our method allows us to investi-
gate parent BPA levels in small human sam-
ple volumes to perform those exposure
studies on the human population. 
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Figure 6. Sex differences in BPA concentrations of fetal plasma (A) and after fetal BPA concentrations
were correlated bo body weight (B). The paired t-test revealed an increase (p = 0.016) in BPA fetal plasma
concentrations (A) in males. When fetal BPA concentrations were correlated to body weight (B), the
paired t-test revealed a significant increase (p = 0.012) in fetal plasma concentrations in males compared
to females. Error bars indicate SD.
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