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Methodological Problems Arising from
the Choice of an Independent Variable in
Linear Regression, with Application to an
Air Pollution Epidemiological Study

by Inge F. Goldstein,* Joseph L. Fleiss,f
Martin Goldstein,i and Leon Landovitz**

In epidemiological studies using linear regression, it is often necessary for reasons of economy or
vnavailability of data to use as the independent variable not the variable ideally demanded by the hypothesis
under study but some convenient practical approximation to it. We show that if the correlation coefficient
between the “practical” and ““ideal” variables can be obtained, then a range of uncertainty can be obtained
within which the desired regression coefficient of dependent on “‘ideal’’ variable may lie. This range can be
quite wide, even if the practical and ideal variables are fairly well correlated. These points are illustrated
with data on observed regression coefficients from an air pollution epidemiological study, in which pollution
measured at one station in a large metropolitan area (containing 40 aerometric stations) was used as the
practical approximation to the city-wide average pollution. The uncertainties in the regression coefficients
were found to exceed the regression coefficients themselves by large factors, The problem is one that may
afflict application of linear regression in general, and suggests cavtion when selecting independent variables
for regression analysis on the basis of convenience, rather than relevance to the hypotheses tested.

Introduction

In the course of reviewing the literature on the
acute health effects of air pollution (/-5) we became
aware that too little attention has been paid to the
problem of incomplete concordance between the
population described by the health effects data and
the population described by the air pollution data.
We believe that this problem might have a much
wider relevance than to the specific studies which
suggested it to us.
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The problem may be stated in general terms as
follows. It is often necessary, for reasons of econ-
omy or availability of data, to use as an independent
variable not the ‘‘ideal” variable demanded by the
hypothesis under study but some more easily acces-
sible “‘practical’’ variable which is believed to be an
adequate approximation to the ideal one. If the ideal
variable is really inaccessible, so that we have no
quantitative information about the relationship be-
tween it and the practical variable, we have no
choice but to rely on our intuitive judgment that the
second is an adequate approximation to the first.
However, it occasionally happens that some quan-
titative information, even If incomplete, can be ob-
tained about their relationship — for example, their
correlation. The question we consider in this paper
is; given such information, can we estimate what
kinds of errors exist in the regression or correlation
coefticients between the dependent variable and the
*practical’’ independent variable if these coeffi-
cients are regarded as estimators of the regression or
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correlation coefficients between the dependent and
“ideal’’ independent variables?

The problem may be made more concrete by con-
sideration of a particular air pollution epidemiologi-
cal study (3). In this study a multiple regression
analysis was performed of daily city-wide mortality
in New York City on daily values of sulfur dioxide
and smokeshade (coefficients of haze) measured at a
single centrally located monitoring station over a
10-year period. Excess deaths attributable to pollu-
tion were calculated by multiplying the regression
coefficients by the average pollutant concentrations
observed at the central station. It was found that the
excess deaths attributable to sulfur dioxide, which
greatly exceeded the share attributable to particu-
lates, remained constant over the ten-year period,
even though the average annual sulfur dioxide con-
centration decreased to one-third of its initial value
over this time period in response to regulatory ef-
forts. The conclusion drawn was that sulfur dioxide
is not really the agent responsible for the excess
mortality, but instead the agent is some component
of urban pollution whose daily fluctuations are
highly correlated with sulfur dioxide, but which has
not changed over the ten-year period in which sulfur
dioxide has decreased significantly. The conclusions
of this study have been cited in the course of admin-
istrative and legislative hearings on air quality stan-
dards ).

During the course of the ten-year study, a number
of additional air pollution monitoring stations were
established, and, from 1967 on, data from a network
of 40 such stations have been available. On the basis
of an extended analysis of the data provided by this
network for the three-year period from 1969 to 1971
inclusive (7-9), we have found that correlation coef-
ficients for daily pollution concentrations between
pairs of stations, among them the central station used
in the 10-year study, were quite low, averaging 0.4
for smokeshade and 0.5 for sulfur dioxide. We were
led therefore to examine how the conclusions of the
former study might be altered by this new informa-
tion about the relation between pollution measured
. at the central station, regarded as the practical vari-
able, and the city-wide daily average, regarded as the
ideal variable.

The problem can be stated concisely in statistical
terms. Given the regression coefficient o, of a de-
pendent variable y on an independent variable x, and
the correlation coefficient p,,- between x and a sec-
ond variable x’, what can be inferred about the re-
gression coefficient «,..? We assume throughout
that the observable coefficients are based on suffi-
ciently many observations that they may be taken as
population parameters. Considering the coefficients
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as being subject to sampling variation would add yet
further uncertainty to the determination of the de-
sired coefficients.

Limits of Uncertainty on the
Regression Coefficient

Using the symbols ., o, and a, for the standard
deviation of the variables x, x', and y, respectively,
we have the well known relation between regression
and correlation coefficients

oy = (g/0;) Pux (n

where p,, is the correlation coefficient between y
and x.

The basis of our determination of the relation be-
tween the observed (w,.) and desired (o, ) regres-
sion coefficients will be the formulas for partial and
multiple correlation coefficients, which relate the
correlation coefficients between three variables
taken pairwise. Consider the partial correlation
coefficient

Pur = Pyx Pre
Pyztr = @

\/l — Pyt \,/I = P’
and the squared multiple correlation coefficient
Ryze® = py + (1 — py”) pyr-s” (3)

Assuming that the partial correlation coefficient [Eq.
(2)]is nonnegative (this is a reasonable assumption in
the present case, though not a necessary one), we
find that the desired correlation coefficient is

Pyz' = Pyr Pz T+ \/l = Pro? \/Ry.u'z = Pyt (4)
and that the desired regression coefficient is

v = Qyp (P oelog) +
(Uy/UIJ) \1"1 - p.r.r'2 \ij_II;Q - py$2 (5)

If the partial correlation coefficient is negative, the
second term on the right-hand side of Eq. {(5) has a
minus instead of a plus sign attached to it.

The leading term in Eq. (5),

Oy

atu"’ = Oyp (prr’ O-I/U.I';") (6)

has been proposed as a ‘‘corrected’’ regression
coefficient, with the second term omitted (3). Such
use is clearly inappropriate unless either py,.2 = 1
(this may be checked empirically from data at hand)
or R, ..* = p,,2 (this assumption usually requires
validation from other sources, because the squared
multiple correlation coefficient is not likely to be
available). Without these assumptions, it is neces-
sary to bear in mind that the *‘corrected”’ coefficient
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cannot be simply assumed to equal the desired coef-
ficient; i.e., that knowledge of the pairwise coeffi-
cients is not sufficient to determine the desired coef-
ficient.

As p,, approaches unity (i.e., as the practical
variable converges to the ideal variable), the multi-
plicative factor (1 — p,,.?)} approaches zero, and the
single ‘‘corrected’” coefficient indeed approaches
the correct one. If, however, p., is (.8, a value
generally taken to represent excellent correlation,
the multiplicative factor is equal to 0.6, which is quite
large. When p.,» = 0.9, the factor is equal to 0.44,
which is still appreciable. )

The second factor contributing to uncertainty in
the desired coefficient, (R, .. — p, ), measures
the increase in the proportion of the variance in y
associated with adding x’ to the linear regression
equation already containing x. If x' contains no in-
formation relevant to y not already contained in x,
then there is no increase in the proportion of the y
variance explained, and the second factor is zero. If,
however, the addition of x’ results in as much as a
10% increase in the proportion of the variance of y
explained, the value of the factor is 0.32: even if its
addition adds only 5% to the proportion of y's ex-
plained variance, the value of the factor is 0.22.
Factors of these magnitudes may have appreciable
effects, as shown below.

We may sum up the above discussion by stating
that uncertainty in the ““corrected’” regression coef-
ficient is a function both of imperfect correlation
between the practical and ideal independent vari-
ables and of the existence of incremental information
about the dependent variable in the ideal indepen-
dent variable not contained in the practical one.

Application

As an example of the degree of uncertainty that
can be introduced into determining a regression
coefficient, we give some results of applying the
above formulae to the regression coefficients ob-
tained in the air pollution study referred to earlier (3)
(see Table 1). In Table 1 we give the ‘‘corrected”
regression coefficients [a*, from Eq. (6)] for each of
three mortality variates on the two pollution vari-
ates, sulfur dioxide and smokeshade, measured by
the aerometric network, and, in addition, intervals
for he desired regression coefficients associated with
three assumed increments in the proportion of var-
iance in y explained by adding x' to the prediction
equation already containing x. The upper limits are
given by Eq. (5) by using the plus sign; the lower
limits are obtained by using the minus sign.

Evenwhen the increment is assumed to be as small
as 1%, the upper bounds on the desired regression
coefficients vary from nearly twice to eight times the
“corrected”’ coefficients. When the increment in
variance is assumed to be 10%, the upper bounds are
greater yet. The lower bounds on the desired coeffi-
cients are associated with a negative partial correla-
tion coefficient; these vary from slightly positive to
appreciably negative values. While mathematically
possible, a negative partial correlation coefficient for
the variates under study does not make substantive
sense. The value of p,, ... is negative if, on days when
the city-wide average pollution level is higher (or
lower) than would be expected from the poltution
level measured at the central station, the city-wide
mortality is lower (or higher) than would be expected
from the level at the central station. We are unable to

Table 1. Observed regression coefficients of city-wide mortality variates (y) on centrally measured pollution variates (x),
and ranges for regression coefficients on city-wide pollution averages (x').

Pellution Mortality Interval for «,, at different values of Ry.z0® — pys®
variate variate
x yo e ok, 0.01 0.05 0.10

Sulfur dioxide®
¥1 0.22 0.33 —0.30,0.95 -1.07,1.72 —1.64,2.30
ye 0.01 0.02 —-(.11,0.15 —(0.28,0.31 —0.40,0.44
¥ 0.11 0.16 ~0.20,0.52 —0.65,0.96 -0.98,1.30

Smokeshade?
¥1 0.32 0.43 0.05,0.81 —(.43,1.28 —0.78,1.63
yz 0.01 0.01 -0.07,0.09 -0.17,0.19 —0.24,0.27
¥a 0.18 0.25 0.03,0.47 —0.24,0.74 —0,45.0.95

#The regression coefficients were calculated by using Table 7, 8, and 9, with the aid of Table 3 of Schitnmel and Murawski (3). The
periods covered by these tables do not coincide exactly with the period 1969-1971 for which we have air pollution data for the entire city.
Therefore, we calculated weighted averages of Schimmel and Murawski's data for their periods of 1967-1969 and 1970-1972, assigning a
weight of % to the earlier period, to obtain estimates for the 1969-1971 period.

b1 = total mortality (¢,,* = 329.4), yz = respiratory disease mortality (o,* = 14.82), ya = heart disease mortality (o,* = 110.2).

cFor sulfur dioxide: o,* = 12.53, o2 = 3.38, prr = 0.78.

dFor smokeshade o,* = 56.13, o2 = 13.00, p. = 0.65.

October 1979 313



identify any physically sensible set of circumstances
which might give rise to such a state of affairs.

In summary, the uncertainty in the “corrected””
coefficients is great, even though the correlation
coefficients between the practical and ideal variables
(0.78 for sulfur dioxide, 0.65 for smokeshade) are
appreciable, and even though only modest incre-
ments in the proportions of explained variance were
assumed. Further, because negative values of p,...
are unreasonable in this particular case, we suggest
that the “‘corrected’” coefficient is likely to be an
underestimate of the desired coefficient.

Appropriateness of the
“Corrected” Coefficient

In an unpublished appendix to the air pollution-
acute health effects study cited earlier (3), available
on request from the authors, Schimmel and
Murawski responded to our earlier criticisms (/) of
the use of a single monitoring station to represent the
whole metropolitan area. They made an estimate,
using our published correlation coefficients for pairs
of stations, of the effect their procedure had on their
conclusions. As they have not yet published their
analysis in the literature, we will not criticize it in
detail. Their correction effectively amounts to the
use of the first term on the right-hand side of Eq. (3),
i.e.,of the ““corrected’” coefficient; the implication is
that there is no range of uncertainty in the *‘cor-
rected’’ regression coefficient.

In our view their implication is valid only if the
assumption is made that the differences between the
practical and ideal variables are due solely to random
errors in the practical variable (in statistical terms,
only if p,. . = 0 or, equivalently, that R, ...* = p,.*,
so that x’ adds nothing te the prediction of y from x
alone). The validity of this assumption is germane to
the subject of this paper. The assumption that the
ertors in the practical variable are random ones is a
very restrictive one, and should not be made without
direct evidence that they are.

In the case of the relation between pollution at the
central station and city-wide pollution there are a
priori reasons for believing that at least some of the
factors giving rise to differences are structured
rather than random. The central station is located in
a specific geographic area (Harlem) of the city, and
has its own relation to geographical features such as
hilly terrain, distance from the rivers surrounding
Manhattan Island, prevailing wind directions, and so
on. These, in turn, interact with the location of major
pollution sources in such a way as to make it likely
that there is a distinct pattern to pollution in the
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vicinity of this station that makes its daily variations
something other than merely unbiased estimators of
the daily variations of city-wide pollution. This is
made additionally plausible by the facts that pollu-
tion at the central station tends to be considerably
greater than the city-wide average, and its changes
over long periods of time do not always paraliel those
of the city-wide average.

This a priori argument for the existence of a non-
random component in the relation between the two
variables is confirmed by our own studies of the data
of the New York City aerometric network, from
which we have concluded that poor correlation be-
tween stations is not solely due to random errors of
measurement (8, ). On the other hand, our attempts
to find an inner structure to the data, in terms of
meteorological patterns, inter-station distances,
proximity to pollution source, etc., have met with
only modest success (//). For example, principal
component analyses of the covariance matrix of
daily pollution readings did not reveal clearcut sys-
tematic patterns in the data.

Our failure to discover such patterns may reflect a
large component of random errors or it may reflect
our own lack of ingenuity in the search. In any event,
our efforts in this direction are continuing.

How Ideal is the Ideal Variable?

In the above analysis we have assumed that the
city-wide average level of pollution is the ideal vari-
able, to which pollution measured at a central station
is a practical approximation. However, we must ac-
knowledge that epidemiological considerations raise
questions about even this conclusion.

The pollutants measured by the New York City
aerometric network — sulfur dioxide and smoke-
shade — are only two of a great number of different
pollutants in urban air that might have adverse health
effects. Further, the average as we have defined it
does not weight the individual stations according to
the size of the populations in the areas in which they
are located, nor does it take into account the demo-
graphic characteristics of these populations.

A population-weighted city average of, say, sulfur
dioxide, need not necessarily be perfectly correlated
with the exposure to sulfur dioxide of the individual
inhabitants of the city, some of whom spend most of
their time indoors while others do not, and some of
whom spend their days in a different area of the city
from where they spend their nights while others stay
in one area all the time. Still further, it is not clear
whether the focus of the health study should be on
the population as a whole, or on susceptible sub-
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groups, nor whether mortality is a better indicator of
health effects of pollution than morbidity.

It should be clear from this discussion that what
we have designated as the ‘‘ideal’” variable is far
from ideal. We do not have a solid empirical basis for
deciding what the ideal independent variable in air
pollution studies should be, nor, inevitably, any
knowledge of how well the city-wide average of sul-
fur dioxide or smokeshade correlates with it. We
must acknowledge therefore that as great as the de-
gree of uncertainty is in our estimates of the regres-
sion coefficients of health outcomes on the city-wide
averages, they are probably gross underestimates of
the real uncertainty in ocur knowledge of the health
effects of air pollution.

Conclusions

While we have discussed this problem using one
particular air pollution study as an example, it should
be obvious that it is a problem of much wider rele-
vance in all areas of epidemiology, and, for that
matter, whenever linear regression is used to provide
clues to causal relationships.

We have calculated, using well-known relations
among pairwise correlation coefficients, both a
“corrected”’ regression coefficient and indications
of its uncertainty, applicable to the situation where
practical considerations dictate a choice of indepen-
dent variable other than the one ideally demanded by
the hypothesis under test and where the correlation
coefficient between the two independent variables is
known.

We have found that the range of uncertainty may
greatly exceed the coefficient itself, even if the two
independent variables are fairly well but not per-
fectly correlated. We have shown further that ap-
preciable uncertainty exists even when only a small
increment in the proportion of variance in the depen-
dent variable is assumed to be associated with the
ideal variable. In the example we have considered in
this paper, a study of the effect of air pollution on
health, the uncertainty in the ‘‘corrected’” regression
coefficient due to the imperfect correlation between
the practical and ideal independent variables makes
it quite unreliabie as an estimator of health effects, in
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spite of the fact that it is statistically significant by
the usuat tests.

It is more commonly the case that the practical
independent variable is recognized to be an
uncertain measure of the ideal variable, but no quan-
titative information about their relationship is avail-
able. An awareness of how uncertain the observed
regression coefficient can actually be under such
conditions should lead to greater caution in in-
terpretation of the results of a regression analysis.
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