
The premise of this review is that the develop-
ing immune system represents a particularly
sensitive xenobiotic target that is not effec-
tively modeled through routine screening for
immunotoxicity using adult exposure. Hence,
adult exposure testing for immunotoxicity is
limited in application, cannot address the
most significant immune vulnerabilities, and
should be replaced with a more predictive
assessment protocol. This conclusion is drawn
from recent developmental immunotoxicity
findings, including those from our own labo-
ratory, as well as from the conclusions of
numerous conferences and workshops. These
sources point to the special vulnerabilities of
the perinatal immune system compared with
the fully matured and dispersed immune
system of the adult.

Individuals in early-life stages have been
recognized as a special subset of the popula-
tion that is likely to be at greater toxicologic
risk than adults (Daston et al. 2004; Kimmel
2005; Landrigan et al. 2004; Selevan et al.
2000). Within this broader framework, a sig-
nificant number of recent review and consen-
sus workshop reports have stressed that
early-life exposure to xenobiotics poses the
greatest environmental risk for the immune
system and would be expected to exert the
greatest effect on subsequent human health
(Dietert 2005; Dietert et al. 2000, 2002;
Holladay 1999; Holladay and Smialowicz
2000; Holsapple et al. 2005; Kimmel et al.
2005; Luebke et al. 2006; Luster et al. 2005;

Van Loveren and Piersma 2004). Yet,
immune-associated safety from problematic
exposure to environmental chemicals as well
as drugs has hinged on adult exposure assess-
ment [Hinton et al. 2000; Luster et al. 1992
U.S. Food and Drug Administration 1999].
Developmental immunotoxicity screening was
not included in one recent immunotoxicity
draft guidance covering human pharmaceuti-
cals (U.S. Food and Drug Administration
2004), although its potential application within
safety screening is under ongoing consideration
(Holsapple et al. 2005; Ladics et al. 2005).

In this review we highlight some novel
processes of perinatal immune development
that both contribute to the immunotoxic vul-
nerability of the developing immune system
and cannot be effectively examined via cur-
rent adult-exposure assessment. Additionally,
specific examples of the problems associated
with reliance on adult-induced immunotoxic-
ity assessment are shown for a variety of
immunotoxicants.

Perinatal Immune 
Development versus the 
Adult Immune System
Immune development has been characterized
from a toxicologic perspective through a series
of discrete functional changes representing criti-
cal windows of differential vulnerability to toxi-
cants (Dietert et al. 2000; Holsapple et al. 2003;
Landreth 2002; Landreth and Dodson 2005;
Leibnitz 2005). These reviews have emphasized

that each “window” of development likely has
different immunologic risks associated with
immunotoxicant exposure, and indeed, exam-
ples of differential immunotoxic outcomes
among these windows do exist (Bunn et al.
2001b; Lee et al. 2001). Although it is not prac-
tical or necessary to directly evaluate the differ-
ential risk of limited exposures over different
periods within perinatal development, it is
important to accurately estimate immunologic
risk across the entire period of immune develop-
ment because of the important role of effective
immune function in children’s health (Daston
et al. 2004; Kimmel et al. 2005).

Table 1 draws upon the broader critical
windows of immune development (Dietert
et al. 2000) to illustrate a set of seven discrete
events that are either unique to perinatal
immune development or critical to the post-
natal immune integrity while serving a differ-
ent role in the adult. These immune events
include those that are restricted solely to the
immune system as well as some involving the
role of the immune system in host organ/tissue
homeostasis. In most cases, clear associations
exist between exposure to specific toxicants
and disruption of the perinatal event. It is not
simply by chance that this set of early immune
events seems to impinge primarily on the risk
of atopy, autoimmune disease, and later-life
immune balance (which also influences risk of
cancer, etc.). In fact, the perinatal period of
immune development is precisely the period in
which immune balance must shift from that of
an allogeneic yet full-term fetus to that of an
offspring ready to meet the complete spectrum
of disease challenges. At the heart of the issue is
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the fact that impact of a xenobiotic on that
shift cannot be tested with adult exposure
assessment.

Establishing and Renewing
Macrophage-Derived Cells 
in Critical Tissues
One of the early events connecting the
immune system to virtually all organs is the
differentiation and seeding of myelomonocytic
lineage macrophages and macrophage-derived
cells to various sites, including the bronchial
(e.g., alveolar macrophages), hepatic (Kupffer
cells), neurologic (microglia), and reproductive
systems (testicular macrophages). These cells
provide regulatory and host defense roles in
these tissues. Specific examples describe the
vulnerability of these tissues during the peri-
natal period when exposure to toxicants
impairs macrophages, including the possibility
that the heavy metal lead can impair both the
function and the self-renewal of testicular
macrophages, which contributes to male steril-
ity problems (Pace et al. 2005). Similarly, pul-
monary and alveolar macrophages play a key
role in lung development (Beyea et al. 2005),

and sensitivity of the perinatal lung to some
environmental agents is directly related to
alterations in early-life macrophage popula-
tions (Cao et al. 2004; Li et al. 2001). In the
brain, inappropriate cytokine production from
microglial cells and/or astrocytes is now recog-
nized as an early component of many postna-
tal neurologic diseases (Bell and Hallenbeck
2002; Cacci et al. 2005; Mesples et al. 2005;
Ravizza et al. 2005). With Kupffer cells in the
liver (Naito et al. 1997), researchers recently
found that their capacity to develop a toler-
ance for lipopolysacharride (LPS) (Uhrig et al.
2005) is critical for the ability of the liver to
control inflammation.

Lymphoid seeding of the thymus and
thymopoiesis. Another early immune process
critical for subsequent host defense is the
migration of pro–T lymphocytes to the thy-
mus and their expansion during thymopoiesis.
During the perinatal period, the thymus is cen-
tral to the production of T lymphocytes. Even
in children, the thymus continues to play the
major role in T-lymphocyte generation
(Mackall et al. 1995; Schonland et al. 2003).
In contrast, the thymus has a much different

role in the adult. Although the adult thymus
retains some capacity for the production of
cells, particularly with severe immune deple-
tion, its role remains minor in the repopulation
of T lymphocytes (Hakim et al. 2005; Petrie
2002). Instead, most T-lymphocyte produc-
tion comes from the periphery in adults
(Hakim et al. 2005). The ramifications of this
are that the targeting of pro–T lymphocytes by
chemicals or drugs and/or induction of thymus
atrophy would be expected to have different
consequences depending upon age. As shown
in Table 1, several environmental agents
appear to target either pro–T lymphocytes or
the thymopoiesis process.

Negative selection in the thymus of auto-
reactive T-cell clones. A third early immune
process critical for host integrity is the nega-
tive selection and removal of autoreactive
T-lymphocyte clones in the thymus. This
occurs during the process sometimes desig-
nated as “T-cell education.” Meylan et al.
(2005) provided a clear demonstration of this
process as it occurs in humans. Partially mature
thymocytes undergo negative selection at the
corticomedullary boundary and in the medulla
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Table 1. Immune toxicant targets associated with perinatal development.

Key perinatal
immune events Timing in humans Benefit to host Examples of concern Health ramifications Key references

Differentiation and seeding 6–24 WG Self-renewing populations of Lead, LPS, ozone, Inflammation of lung, brain, Cao et al. 2004; Hao et al. 2001;
of macrophages to microglia, Kupffer cells, and cyclophosphamide or liver tissue dysfunction Janossy et al. 1986; Pace et al.
tissues alveolar macrophages; resident (e.g., male infertility) 2005

macrophage functioning in
tissues (e.g., testis)

Seeding of thymus Seeding 8–12 WG, Production of T-cell clones PAHs, T-2 toxin, Thymic atrophy, decreased Gehrs and Smialowicz 1997;
by pro–T cells and massive expansion necessary to establish tributyltins, TCDD postnatal T cells and Holladay and Smith 1994, 1995;
thymopoiesis to expand of populations peripheral T-lymphocyte T-dependent function, Holladay et al. 1993b, 1995;
populations 14–26 WG populations increased risk of cancer and Smialowicz et al. 1989, 1994;

infectious diseases Vos et al. 1990; Walker et al. 2004
Negative selection and 15–26 WG Elimination of most peripheral TCDD promotes If promoted, then deceased Camacho et al. 2004; Fisher et al.
apoptosis of autoreactive T-lymphocyte clones unnecessary negative numbers of thymocytes. If 2004
thymocytes thymocyte selection impaired, then, increased

increasing apoptotic risk of later-life self-
cell death reactivity

Treg cell (CD4+CD25+ Thymus appearance Active suppression of postnatal Possible low-dose If excessively promoted, then Cavani 2005; Cupedo et al. 2005;
high) population 12–13 WG; autoreactive T-cell clones cyclophosphamide, possible immune suppression. Darrasse-Jeze et al. 2005;
generation in thymus,  periphery selected doses of If impaired, then increased Kawai 2005; Lutsiak et al. 2005;
seeding and activation 14–16 WG cyclosporin A risk of later autoimmunity Robinson et al. 2004; Valmori
in periphery or allergy (e.g. breaking et al. 2005

tolerance to nickel)
Perinatal dendritic cell Birth–juvenile Increase in dendritic cell Dexamethasone, Increased risk of allergy and Andersson et al. 2004; De Wit et al.
maturation to support maturation and TH1-promoting nicotine some forms of autoimmunity 2003; Krumbiegel et al. 2005,
TH1 responses capacity after birth to achieve (e.g., type 1 diabetes) Mainali and Tew 2004; Nouri-Shirazi

necessary TH1 balance and Guinet 2003; Renkl et al. 2005;
Skarsvik et al. 2004

Increase in TH1 response Birth–juvenile Needed to avoid life-long TH2 Lead, mercury, With depressed TH1, Bunn et al. 2001b, 2001c; Fallarino
capacity among skewing kynurenines selectively increased risk of TH2 et al. 2003; Mellor et al. 2002;
peripheral T lymphocytes impair TH1 cells, associated diseases such Miller et al. 1998; Silva et al.
after birth 1-methyl-tryptophan as atopy and asthma 2005; Snyder et al. 2000

may promote TH1
Maturation and regulation 16 WG neonatal Needed to avoid oxidative Ethanol Increased risk of childhood Gauthier et al. 2005; Kaneko et al.
of fetal macrophages period SP-D; damage to lung and increased respiratory disease; 2001; Palaniyar et al. 2005;
via interactions with 19 WG neonatal risk of respiratory disease; potential problems with Pryhuber et al. 1991; Seppanen
surfactants A and D and period SP-A needed to facilitate parturition, labor, increased risk of et al. 2005; Zimmermann et al.
glutathione sources needed to regulate autoimmune disease 2005

macrophages

Abbreviations: LPS, lipopolysaccharide; PAHs, polycyclic aromatic hydrocarbons; SP-A, surfactant protein A; SP-D, surfactant protein D; T, thymic derived; TCDD, 2,3,7,8-tetra-
chlorodibenzo-p-dioxin; TH1, T helper 1; TH2, T helper 2; Treg, T regulatory; WG, weeks of gestation. 



of thymus (Sprent and Kishimoto 2002). This
process is essential if self-reactive clones are to
be eliminated before birth. Conversely, exces-
sive loss of thymocytes during negative selec-
tion leads to T-cell depletion. Although
explicit examples of chemicals or drugs block-
ing negative selection have yet to be deter-
mined, this perinatally unique stage of
immune development would appear to be a
significant factor in later-life autoimmune dis-
ease. Metals represent one category of immuno-
toxicants warranting examination based on the
capacity of mercury and other metals to either
trigger or accelerate the progression of autoim-
mune manifestations (Fournie et al. 2002;
Lawrence and McCabe 2002; Rowley and
Monestier 2005). Conversely, some chemicals
are known to disrupt the negative selection
process by overpromoting negative selection
and inappropriate thymocyte apoptosis.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)
is an example of such a toxicant (Camacho
et al. 2004; Fisher et al. 2004).

Thymic Generation of
Regulatory T-Cells (CD4+CD25+

High Expression) and
Acquisition of Tolerance

A parallel protection against self-reactivity
resides in the gestational thymic production and
subsequent activation of a specialized population
of regulatory T lymphocytes. The specialized
regulatory T-cell (Treg) population carries the
phenotype FoxP3+CD4+CD25+ and develops
during gestation (~ 12–13 weeks) in the human
fetus (Cupedo et al. 2005; Darrasse-Jeze et al.
2005). Tregs are critical in the suppression of
autoreactive lymphocytes that have escaped
elimination through negative selection in the
thymus (Cupedo et al. 2005; Kronenberg and
Rudensky 2005; Sakaguchi and Sakaguchi
2005). It appears that Tregs acquire their regu-
latory and suppressive phenotype while within
the fetal thymus and are further activated in
peripheral lymphoid organs (Cupedo et al.
2005). The process through which these cells
emerge and acquire the capacity to identify and
suppress self-reactive lymphoid clones occurs
embryonically. As with negative selection dis-
cussed previously, the active perinatal process of
producing and activating Tregs is a logical stage
where toxicant-induced risk of later-life autoim-
mune disease would be great. Evidence suggests
that some doses of cyclophosphamide (Lutsiak
et al. 2005) and cyclosporin A (Kawai et al.
2005) cause inhibition of Treg populations.
Treg suppression is thought to be one route to
increase allergic disease (Robinson et al. 2004),
and the breaking of tolerance to nickel has been
associated with Treg suppression (Cavani 2005).

Maturation of dendritic cells from the fetal
(immature) phenotype. Dendritic cells are
known to be important in antigen presentation

and in determining the nature of subsequent
immune responses. A fifth perinatal process
involves the maturation of immature dendritic
cells to produce interleukin (IL-12) (counter-
balancing IL-10 production) and acquire the
capability of promoting T-helper 1 (TH1) or
type 1 responses. This does not happen in
humans until parturition under normal cir-
cumstances (Holt and Jones 2000; Holt and
Sly 2002).

In fact, the TH1 response must be sup-
pressed until after birth to protect the preg-
nancy from TH1-mediated immunologic
rejection (Lim et al. 2000). One of the
processes for accomplishing this is the metabo-
lism of the amino acid tryptophan by the
enzyme indoleamine-2,3-dioxygenase (IDO)
to produce tryptophan metabolites such as
kynurenines (Fallarino et al. 2003; Gutierrez
et al. 2003; Meisel et al. 2004; Mellor et al.
2002). These metabolites selectively suppress
TH1 function by inducing apoptosis in TH1
but not TH2 cells (Fallarino et al. 2003),
thereby skewing responses toward TH2. In the
fetus, this is required to avoid allogeneically
induced miscarriage (Mellor et al. 2002). But
in the newborn this must be corrected to pro-
vide adequate immune balance. Not surpris-
ingly, imbalances in IDO activity have been
associated with diseases such as colitis (Gurtner
et al. 2003) and inflammatory bowel disease
(Wolf et al. 2004).

The perinatal system is exquisitely sensi-
tive to these time/life-stage–dependent shifts
in immune balance. For example, Malamitsi-
Puchner et al. (2005) demonstrated that even
the mode of birth delivery can influence the
acquisition of TH1 cytokine production
capacity in humans. Newborns delivered by
cesarean section remained more TH2 skewed
compared with vaginally delivered newborns.
This emphasizes the potential problems in
using an adult exposure assessment protocol
for immunotoxicity to model the perinatal
immune changes surrounding birth.

In keeping with this idea, a recent study
demonstrated that human cord blood–derived
dendritic cells respond completely differently
than their adult counterparts when exposed to
dexamethasone (Mainali and Tew 2004).
Dexamethasone exposure of these immature
cells prevents their maturation to promote
TH1 responses and locks in the TH2 IgE-pro-
moting phenotype. The TH2 skewing effect
appears to be long-lasting (Mainali et al.
2005). This type of early-life-stage–restricted
immunotoxicity appears to contribute to an
increased risk of atopy and asthma. Andersson
et al. (2004) showed that maturation of new-
born immature dendritic cells with LPS
reduced the development of a TH2-associated
birch allergen response. In contrast, the lack 
of dendritic cell maturation from the fetal
immature stage was associated with children at

risk for type 1 diabetes (Skarsvik et al. 2004).
In addition to dexamethasone (Mainali and
Tew 2004), nicotine (Nouri-Shirazi and
Guinet 2003) has been reported to block den-
dritic cell maturation. Again, such toxicant-
induced perinatal alterations cannot be
examined with adult-only exposure because
extensive dendritic cell maturation would have
occurred after birth and before adult exposure
to the test xenobiotic.

Shifting TH balance for later life. Beyond
dendritic cells, some xenobiotics such as the
heavy metals and tryptophan metabolites may
directly affect TH cells and contribute to
skewed immune responses in later life. Because
mammals are born with a TH2-skewed func-
tional capacity (Protonotariou et al. 2003),
perinatal versus adult exposure assessment
actually measures two different alterations. In
the perinatal case, the issue is whether a xeno-
biotic locks in the already existing TH2 bias
among T lymphocytes, thereby preventing the
genetically influenced adult balance to be
achieved postnatally. This would allow as the
default an increased risk of neonatal TH2-
associated diseases (Holt and Sly 2002). In
contrast, under the best circumstances adult
exposure assessment could measure only
whether a xenobiotic selectively impaired TH1
cells in an already balanced system. At physio-
logic levels of exposure, many more environ-
mental factors may be capable of delaying or
reducing the efficiency of perinatal TH1 matu-
ration (thereby perpetuating the fetal imbal-
ance) than can clinically alter adult TH balance.

Surfactant modulation of macrophages.
Beyond the gestational seeding of macrophages
to different tissues and initial maturation
in situ, there is a special perinatal maturation of
macrophages (particularly alveolar) that enables
them to acquire increasing host defense capa-
bilities (phagocytosis, chemotaxis, tumor
necrosis factor-α production, antibody-
dependent cellular cytotoxicity) with increased
postnatal age (Goldman et al. 2004). Hence,
perinatal exposure to chemicals and drugs
would target functionally immature cells in a
manner unlike the fully functional population
in exposed adults. Among the critical factors in
this perinatal macrophage maturation is expo-
sure to various factors known as “collectins”
(surfactant proteins).

Although collectins can be immuno-
modulatory for adult alveolar macrophages
(Hickling et al. 2004), they seem to provide
important maturational signals for perinatal
macrophages that go well beyond defense of
the lung (Mendelson and Condon 2005).
Palaniyar et al. (2005) discussed the role of
surfactant protein D in enhancing macrophage
clearance of DNA and in minimizing
anti-DNA antibody production. Additionally,
Brinker et al. (2001) demonstrated that
surfactant interactions with macrophages and
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dendritic cells help to shift responses from
purely innate to acquired immune responses.
Surfactant protein A signals amniotic fluid
macrophages to migrate to the uterus and initi-
ate the parturition process (Condon et al. 2004;
Mendelson and Condon 2005). Complicating
the age issue is the fact that surfactant content
varies with age (Egberts et al. 1992). Obviously,
such perinatal alterations in macrophage activi-
ties are difficult to evaluate using adult-only
exposure to potential immunotoxicants.

Although these developmental immune
events illustrate the biological problem with
modeling immunotoxicologic risk using adult
exposures, the resulting underestimation of
perinatal sensitivity can take several forms.
These are described in the following section.

Nature of Increased Perinatal
Immunotoxic Sensitivity
Dose sensitivity. The increased sensitivity of the
developing versus the adult immune system 
to immunotoxic alteration can take several
forms. First, early-life stages have increased
dose sensitivity to most toxicants. There are
several examples suggesting that the developing
immune system is altered by significantly lower
doses of toxicants than those required to

produce effects in the adult. Such comparisons
were recently reviewed in Luebke et al. (2006).
Lead (Chen et al. 2004; Heo et al. 1996;
McCabe et al. 1999; Miller et al. 1998; Snyder
et al. 2000) appears to differ across ages for
immunotoxic end points ranging from 3- to
12-fold in lowest observed adverse effect levels
(LOAELS). Similarly, mercury appears to have
age-based differences (Havarinasab et al. 2004;
Hultman and Hansson-Georgiadis 1999; Silva
et al. 2005). With TCDD the age-based range
in LOAELS appears to be even greater (Gehrs
and Smialowicz 1997, 1999; Gehrs et al. 1997;
Smialowicz et al. 1994; Walker et al. 2004; see
also Table 2).

Range and severity of effects. A second
measure of differential age-based sensitivity to
immunotoxicants concerns the spectrum and
severity of effects. Not surprisingly, immuno-
toxicants frequently produce a different and
unpredictable array of alterations when the
exposure occurs in utero or in the early neonate
versus the adult. Among those immunotoxi-
cants that produce different ranges or severities
of outcomes depending upon age of exposure
are lead (Bunn et al. 2001b; Lee et al. 2001),
methoxychlor (White et al. 2005), T-2 toxin
(Holladay et al. 1993b), benzo[a]pyrene

(Holladay and Smith 1994; Rodriguez et al.
1999), chlordane (Barnett et al. 1985), 7,12-
dimethylbenz[a]anthracene (Cooray and
Jonsson 1990; Holladay and Smith 1994;
Holladay et al. 1995), ethanol (Giberson and
Weinberg 1995, 1997; Giberson et al. 1997),
nonylphenol (Karrow et al. 2004), tributyltins
(Smialowicz et al. 1989; Tryphonas et al. 2004;
Vos et al. 1990), and genistein (Guo et al.
2002).

For example, with methoxychlor exposure
of rats, F1 males had significantly elevated lev-
els of splenic antibody-forming cells, unlike
their exposed mothers, whereas F1 females had
a significantly reduced percentage of CD8+

T cells (at all doses examined) with no corre-
sponding effect in the exposed dams (White
et al. 2005). Likewise with genistein exposure,
exposed F0 rat dams displayed altered natural
killer (NK) activity, whereas their daughters
exposed in utero had altered antibody-forming
cell activity but no change in NK activity (Guo
et al. 2002). With TCDD exposure in rats to
assess persistent effects, exposed offspring had a
significant reduction in contact hypersensitivity
with no effect in the exposed dams (Walker
et al. 2004). These examples illustrate that
adult exposure assessment is inherently ineffec-
tive in predicting the range of likely immuno-
toxic effects after in utero exposure.

Persistence of effects. Another feature of
developmental immunotoxicity is that alter-
ations after early exposure are frequently persis-
tent and last long after exposure, frequently into
adulthood of the exposed offspring. Examples
where early xenobiotic exposure results in a
greater persistence of effects than would be pre-
dicted from adult exposure assessment are
found with diethylstilbestrol (DES) (Fenaux
et al. 2004; Holladay et al. 1993a; Kalland and
Forsberg 1978; Luster et al. 1979, 1980) and
cyclosporin A (Hussain et al. 2005b).

Latency. Finally, one of the anomalies of
early exposure is that a sublethal exposure to a
toxicant may produce an unrecognizable
immunotoxic alteration until the postnatal
immune system is placed under subsequent
stress. This hidden or cryptic state is referred to
as “latency.” A classic example exists for early
exposure to DES (Fenaux et al. 2004). In this
case, an apparently innocuous early exposure to
DES alters the immune system in such a man-
ner that it responds to a second adult estrogenic
exposure (which of itself has no effect) with a
completely aberrant cytokine production pro-
file. The in utero exposure to DES primes the
immune system for postnatal unpredictable
responses. A similar example has been seen after
low-level exposure to lead where postnatal viral
infection resulted in unpredictable alterations in
leukocyte mobilization (Lee et al. 2002).
Obviously, adult exposure assessment affords
no opportunity to examine this phenomenon
of embryonic-induced immune latency.
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Table 2. Examples of perinatal-induced immune outcomes not predicted by standard adult-exposure
assessment.

Chemical/drug Nature of age-based difference Reference(s)

Benzo[a]pyrene Severity of effects (e.g., impact Holladay and Smith 1994; Lummus 
of fetalthymic atrophy) and Henningsen 1995; Rodriguez et al.

1999; Wolisi et al. 2001
Chlordane Dose sensitivity, spectrum of Barnett et al. 1985; Blaylock et al.

effects 1990; Spyker-Cranmer et al. 1982;
Theus et al. 1992

Cyclosporin A Persistence of effects Hussain et al. 2005b
Dexamethasone Dose sensitivity Dietert et al. 2003; Mainali and Tew  

Spectrum of effects 2004
Diazepam Dose sensitivity Descotes et al. 1982; Schlumpf et al.

Spectrum/severity of effects 1989
DES Persistence of effects Fenaux et al. 2004; Kalland and

Latency Forsberg 1978; Luster et al. 1980 
7,12-Dimethybenz[a]anthracene Severity of effects (e.g., impact Holladay and Smith 1995

of fetal thymic atrophy)
Ethanol Latency, different developmental Giberson and Weinberg 1995, 1997;

window effects Giberson et al. 1997
Genistein Different spectrum of effects Guo et al. 2002
Lead Dose sensitivity Bunn et al. 2001a, 2001b, 2001c, Chen 

Differences in spectrum of effects et al. 2004; Faith et al. 1979; Heo et al.
Latency 1996; Lee et al. 2001, 2002; McCabe

et al. 1999; Miller et al. 1998; Snyder
et al. 2000

Methoxychlor Spectrum/severity of effects White et al. 2005
Mercury Dose sensitivity Havarinasab et al. 2004; Hultman and

Hansson-Georgiadis 1999; Silva et al.
2005

Nonylphenol Spectrum/severity of effects Karrow et al. 2004
Paracetamol Dose sensitivity Shaheen et al. 2005
T-2 toxin Severity of effects (e.g., impact Cooray and Jonsson 1990; Holladay

of fetal thymic atrophy) et al. 1993b; Holladay et al. 1995
TCDD Dose sensitivity Gehrs and Smialowicz 1997, 1999;

Gehrs et al. 1997; Smialowicz et al.
1994; Walker et al. 2004

Tributyltins Dose sensitivity Tryphonas et al. 2004; Vos et al. 1990; 
Spectrum/severity of effects Smialowicz et al. 1989



Sex Differences in 
Sensitivity Outcome
Differential immunotoxic effects between
sexes are neither universal after early exposure
(Voderstrasse et al. 2004) nor unique to
early-life stages. However, a surprising number
of examples exist in which males and females
have different immune outcomes after perinatal
xenobiotic exposure. Xenobiotics can have dif-
ferent effects on the developing immune system
based on the hormonal environment (Hussain
et al. 2005a). Among the chemicals listed in
Table 2, gender differences in developmental
immunotoxicity have been reported for lead
(Bunn et al. 2001a, 2001b, 2001c; Miller et al.
1998), mercury (Silva et al. 2005), genistein
(Guo et al. 2002), nonylphenol (Karrow et al.
2004), TCDD (Gehrs and Smialowicz 1999),
and methoxychlor (White et al. 2005).

Need for Nonadult 
Exposure Assessment
Table 2 lists examples of immunotoxicants
where age-based comparisons exist and adult
exposure assessment is not predictive of perina-
tal sensitivity to the xenobiotic. Although basic
hazard identification could be performed on
most of the toxicants listed using only adult
exposure data, there would be little guidance
for protecting early life stages from problematic
exposure of the developing immune system.
This is one reason that several recent reviews
have suggested the benefit of exposure regimes
that include all nonadult (conception, gesta-
tion, lactation, juvenile) stages of development
(Holsapple et al. 2003; Kimmel et al. 2005;
Luster et al. 2005). Recent findings of key mat-
uration events surrounding birth and of chemi-
cal- and drug-induced disruption of those
immune-associated events (Mainali and Tew
2004; Mainali et al. 2005; Shaheen et al. 2005)
are further indications that adult-only exposure
protocols are unlikely to accurately predict the
risk of perinatal immunotoxicity. Exposure
over the nonadult stages of immune develop-
ment is more likely to include those age-based
populations at greatest risk.

Conclusions

Many critical processes occurring during peri-
natal immune development are either non-
existent or comparatively unimportant in the
adult (e.g., Table 1). Therefore, when safety
limits are established on the basis of adult
immune exposure data, they likely have limited
use for predicting developmental immuno-
toxicity and protection of the nonadult. For
the chemicals and drugs compared across age
groups to date, the developing immune system
has a greater sensitivity than that of the fully
matured adult. Because this increased sensitiv-
ity can take different forms (e.g., Table 2), use
of magnitude safety factors is of limited benefit
in the absence of relevant exposure data.

Where adult exposure protocols are used as the
only yardstick of immunotoxic safety, consid-
eration should be given to replacing these pro-
tocols with exposure regimes extending
throughout the nonadult period of develop-
ment. Given the specific pattern of perinatal
immune alterations, it is likely that they
explain, in part, the increased incidence of such
human diseases as atopy, asthma, and certain
autoimmune manifestations.
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