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Allergy is a TH2-mediated immunologic
phenomenon that is the most significant risk
factor for development of childhood asthma.
In the airway, the innate immune response to
environmental agents gives rise to inflamma-
tion, enhancement of antigen presentation,
and development of the primary (acquired)
immune response. The inflammatory response
results from the coordinated action of mono-
cytes and macrophages, but it also involves
responses of other cell types such as epithelial
cells and neurons. Thus, while the immune
response is central to the development of
allergy, nonimmune structures also participate
in this complex process.

A number of environmental factors have
been reported to affect the development and
severity of asthma, including outdoor air pol-
lutants (e.g., particulates, ozone), indoor irri-
tants, and agents such as environmental
tobacco smoke. However, it can be argued
that the most significant inhaled agents that
modulate the development of respiratory
allergy and asthma are biologics. Indeed, one
important aspect of innate immunity involves
the response of monocytes and macrophages,
which is mediated by receptors whose primary
ligands arise from various microorganisms.
Furthermore, many pathogens, especially
viruses, target epithelial cells, and the resulting
responses of epithelial cells and surrounding
monocytes greatly affect the host response to
those pathogens.

It has been suggested that the primary
acquired immune response to a given antigen
is influenced by the nature of the innate
immune system (and its associated cytokine
response). Thus, products of innate responses

to microbes that are more effectively cleared by
IgG and TH1 inflammation might be expected
to promote TH1-acquired responses. In the
absence of such inflammation, TH2 responses
can dominate, especially if inhaled bioaerosols
contain agents that derive from multicellular
organisms (which may mimic parasites).
Ultimately, it is the total exposure and
immune experience of an individual, coupled
with genetic factors that control their innate
and acquired immune responses, that deter-
mine if allergy develops in the airway. Central
to TH1/TH2 balance is the composition of
contaminants that derive from microbes.
Hence, in this review we examine the biology
of response to allergens, viruses, and bacterial
products (primarily endotoxin) in the context
of development of allergy and asthma.

Cockroach, Dust Mite, Mold,
Rodent, and Pet Allergens and
the Induction of Asthma
The question of asthma induction usually
brings to mind infants who experience asthma
for the first time; however, at least two other
examples illustrate the importance of allergen
exposure to asthma incidence in adults. The
first example is occupational asthma, especially
that caused by laboratory animal allergy, where
25–30% of workers who are sensitized to labo-
ratory animal allergens develop symptoms
within 1 year of beginning work (Bush et al.
1998). About 25% of symptomatic workers
have asthma symptoms, thereby making labo-
ratory animal allergens a relatively common
cause of incident asthma associated with a new
allergen exposure in adults (Bush et al. 1998).
A second example is the report of markedly

increased rates of asthma in primitive villagers
from the New Guinea highlands. In the 1980s
adult men in these villages developed severe
asthma, and 91% were sensitive to many aller-
gens, including house dust mites (Dowse et al.
1985). Cotton blankets that had been donated
by Western charities were found to be heavily
contaminated with dust mites, thus suggesting
that they had been presented with a new,
unique exposure that led to sensitization and
incident asthma (Dowse et al. 1985).

Children who develop asthma typically
have symptoms by the age of 4–5 years, and a
significant portion of them develop persistent
asthma (Stein and Martinez 2004). Data from
birth cohort studies suggest that atopy (defined
by family history, other allergic manifestations
such as eczema, elevated IgE, or sensitization)
is a major risk factor for the development of
childhood asthma (Lowe et al. 2002; Martinez
et al. 1995; Platts-Mills et al. 1997; Wahn
et al. 1997). In asthmatic children age 6 years
and older, sensitization to airborne environ-
mental allergens is very common (80–90% of
cases), and the combination of sensitization
and exposure is strongly associated with more
severe disease (Rosenstreich et al. 1997).

Allergens and their sources. A number of
allergen sources have been identified in the
indoor environment (Table 1). House dust
mites thrive in humid environments and live
on human skin scales. Fecal particles, which
contain the allergens, do not remain airborne
for more than a few minutes after disturbance.
Thus, the source has limited mobility, and
exposure is limited primarily to bedding,

This article is part of the mini-monograph
“Environmental Influences on the Induction and
Incidence of Asthma.”

Address correspondence to D.C. Zeldin, NIEHS,
111 T.W. Alexander Dr., Bldg. 101, Rm. D236,
Research Triangle Park, NC 27709 USA. Telephone:
(919) 541-1169. Fax: (919) 541-4133. E-mail:
zeldin@niehs.nih.gov

The authors thank S. London, S. Kleeberger, and
M.J. Selgrade for helpful suggestions during prepara-
tion of this article.

This research was supported by the Intramural
Research Program of the NIH, NIEHS (D.C.Z), NIH
P01 ES09606 (P.E.), NIH R44 ES011920 (M.C.),
NIH R01 HL61007 (G.P.), EU-QLK4-CT-2001-
00250 (H.R.), and NIH R01 ES012706 (D.P.).

M.C is president and owner of Indoor
Biotechnologies, Inc. The remaining authors declare
they have no competing financial interests.

Received 3 June 2005; accepted 13 October 2005.

How Exposures to Biologics Influence the Induction and Incidence of Asthma

Darryl C. Zeldin,1 Peyton Eggleston,2 Martin Chapman,3 Giovanni Piedimonte,4 Harard Renz,5 and David Peden6

1Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of
Health and Human Services, Research Triangle Park, North Carolina, USA; 2Department of Pediatrics, Johns Hopkins University,
Baltimore, Maryland, USA; 3Department of Medicine, University of Virginia, Charlottesville, Virginia, USA; 4Department of Pediatrics,
West Virginia University, Morgantown, West Virginia, USA; 5Department of Clinical Chemistry, University of Marburg, Marburg,
Germany; 6Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA

A number of environmental factors can affect the development and severity of allergy and asthma;
however, it can be argued that the most significant inhaled agents that modulate the development
of these conditions are biologics. Sensitization to environmental allergens is an important risk fac-
tor for the development of asthma. Innate immune responses are often mediated by receptors on
mononuclear cells whose primary ligands arise from microorganisms. Many pathogens, especially
viruses, target epithelial cells and affect the host immune response to those pathogens. The acquired
immune response to an allergen is influenced by the nature of the innate immune system. Products
of innate immune responses to microbes promote TH1-acquired responses. In the absence of TH1
responses, TH2 responses can dominate. Central to TH1/TH2 balance is the composition of conta-
minants that derive from microbes. In this review we examine the biology of the response to aller-
gens, viruses, and bacterial products in the context of the development of allergy and asthma.
Key words: asthma, allergy, allergens, endotoxin, respiratory virus, immunoglobulins, tolerance,
leukotrienes, neurotrophins. Environ Health Perspect 114:620–626 (2006). doi:10.1289/ehp.8379
available via http://dx.doi.org/ [Online 26 January 2006]



carpeting, and upholstered furniture (Arlian
and Platts-Mills 2001). Cockroaches cluster in
narrow hiding places, coming out only to for-
age for food and water. The particles that con-
tain the allergen are generally large, but the
source is mobile so it is widespread in settled
dust and, in many cases, accumulates in places
inaccessible to cleaning (Eggleston and Arruda
2001). Rodents hide within walls and crevices,
and leave high concentrations of allergen in
inaccessible places. The allergens are found in
urine and bodily secretions and are carried on
small particles that remain airborne for
extended periods of time. House dust is heavily
contaminated, but removal is difficult because
of the inaccessible reservoirs (Chapman and
Wood 2001; Phipatanakul et al. 2004). Pets
with fur produce allergens in their saliva and
sebaceous secretions. Air sampling studies have
shown that approximately 20–30% of airborne
animal allergens are present on small particles of
1–5 µm diameter, in contrast to mite and cock-
roach allergens, which are carried on large parti-
cles of 10–40 µm diameter (Custovic et al.
1997; Luczynska et al. 1990). The animal aller-
gens remain airborne for extended periods of
time and are passively carried throughout the
home as well as into public buildings and
homes that have never housed a pet. After
removal of a pet, household settled dust aller-
gen levels decline over a period of 4–8 months
(Wood et al. 1989). Air cleaners have been
reported to reduce airborne pet allergen levels,
but they have minimal effect on settled-dust
allergen levels (Wood et al. 1998). The ecology
of fungal allergen exposure is perhaps the least
understood of all indoor allergens. Atopic per-
sons are frequently sensitized, and fungi can
easily be cultured from indoor dust and air.
Fungal spores originate in the soil and are ubiq-
uitous in the outdoor environment. The vari-
ous fungal species and the levels of these spores
fluctuate dramatically throughout the various
seasons. These mold spores infiltrate the
indoors via openings such as doors, windows,
cracks and crevices. They are also transported
inside by people and pets. Allergenic proteins
have been isolated from fungi, but these aller-
gens are not typically present in indoor environ-
ments. Recent data suggest that the allergens
are only found in association with germinating
fungal spores (Mitakakis et al. 2001).

Exposure estimates. In general, an exposure
dose is determined by two factors: the exposure
concentration (in the case of asthma, the air-
way or nasal concentration), and the exposure
time. For allergens, the exposure concentration
is uncertain. For simple sources, such as the
house dust mite, allergen particles contaminate
infested fabrics and then become airborne with
disturbance (Platts-Mills and Chapman 1987).
Particles are cleared by settling, but some are
also absorbed onto walls, furniture, and other
reservoirs (Platts-Mills and Chapman 1987).

Reservoirs are in equilibrium with the air,
regenerating airborne particles by physical dis-
turbance or by air currents. Air concentrations
are also influenced by ventilation and dilution
by outside air. Finally, particles can be brought
into the indoor environment by foot traffic or
on clothing, generally adding to the reservoir
dust and potentially adding to airborne parti-
cles that might be inhaled and contribute to an
exposure dose.

Most studies of exposure have measured
allergen levels in settled dust; only rarely have
airborne concentrations been assessed. Settled
dust and airborne dust mite allergen con-
centrations are highly variable, with reported
coefficients of variation of 30% or more
(Platts-Mills and Chapman 1987). Airborne
concentrations of cat and other animal aller-
gens are even more variable. Indeed, recent
studies have shown that allergen concentra-
tions in samples collected from the same home
can vary by more than 3 orders of magnitude
(Bollinger et al. 1996). This degree of un-
certainty makes it difficult to determine the
exposure dose that might be related to incident
asthma. In general, airborne allergen concen-
trations do not correlate well with settled dust
allergen concentrations (Swanson et al. 1989).

Birth cohort studies of incident asthma.
Several birth cohort studies have reported a rela-
tionship between exposure and incident asthma.
The Multicentre Allergy Study, a prospective
study of 1,318 infants born in five German
cities, was the first to describe the “allergic
march” whereby children became sensitized first
to food allergens (especially egg), then to
inhalant allergens (such as dust mite and cat) up
to 3 years later (Lau et al. 2000). Those who
became allergic to foods were at greater risk for
development of later sensitization to inhalant
allergens. Incident sensitization was related in a
dose-response fashion to dust mite and cat aller-
gen exposure. Children who were sensitized to
indoor allergens were at risk for incident asthma,
but settled dust exposure doses were not directly
related to incident asthma (Lau et al. 2000). In
another prospective birth cohort study of
505 children in Boston, Massachusetts, expo-
sure to cockroach allergen was found to be a risk
factor for wheezing respiratory illness but not
diagnosed asthma (Gold et al. 1999). This
group also found that settled dust endotoxin
concentrations were related to incident asthma
(Park et al. 2001). In contrast, the Dutch
PIAMA (Prevention and Incidence of Asthma

and Mite Allergy) study found no relationship
between settled dust exposures and incident
asthma (Brunekreef et al. 2002).

Preventing incident asthma. To date, the
results of two primary prevention trials have
been reported. Arshad and Hide randomized a
birth cohort of 124 mothers and their high
risk infants to receive active or control envi-
ronmental intervention. The active intervention
included food avoidance measures during preg-
nancy and continued avoidance during breast-
feeding. In addition, the child’s mattress was
fitted with an allergen impervious cover. Asthma
and sensitization were decreased in the first year
of life in the active group, but the asthma effect
was no longer statistically significant at 2, 4 and
8 years; however, a trend toward protection was
consistent and was associated with p-values
ranging from 0.10–0.06 (Arshad et al. 1992,
2003; Hide et al. 1994, 1996). A second inter-
vention study was carried out in Manchester,
United Kingdom, with 251 mothers and their
newborn infants. The intervention included fit-
ted mattress and pillow covers to the parent’s
and child’s bed, laundry of bedding, and acari-
cide treatment of rugs and upholstered furni-
ture. The intervention was successful in
reducing mite allergen in the child’s bed and
carpets by over 90% (Custovic et al. 2000). A
recent article from this group reported signifi-
cantly reduced airway resistance and a trend
toward improved asthma symptoms in infants
in the intervention group at 3 years of age
(Woodcock et al. 2004).

What Makes an Allergen
an Allergen?
A number of epidemiologic studies carried
out over the past 25 years have shown that 
IgE-mediated sensitization to indoor allergens
(including those that derive from house dust
mites, cats, dogs, rodents, cockroaches, and
fungi) is a risk factor for the subsequent devel-
opment of asthma (Platts-Mills et al. 1997).
These studies include case–control studies,
prospective studies, and allergen avoidance
trials. Indeed, a recent longitudinal general
population survey that followed over 600 chil-
dren from the onset of asthma to age 26 years
showed that sensitization to house dust mite
was one of the strongest risk factors for
persistence of asthma [odds ratio (OR) 2.41;
95% confidence interval (CI), 1.42–4.09] and
also for predicting asthma relapses (OR 2.18;
95% CI, 1.18–4.00] (Sears et al. 2003).

Exposure to biologics and asthma induction
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Table 1. Indoor allergen sources.

Allergen Animal source Household source Particle size (µm) Distribution

Cockroach Secretions Mobile, hiding places 5–35 Dust, fabrics
Dust mite Feces Immobile, fastidious 5–35 Fabrics, beds
Rodent Secretions, urine Mobile, hiding places 1–15 Air, surfaces, fabrics
Pet Secretions Mobile, furniture 1–5 Air, widespread
Mold NA Moist surfaces, materials 5–10 Unknown

NA, not applicable.



Inhaled allergens are the most common
cause of IgE responses worldwide. Allergens
belong to distinct protein families with a diverse
array of biologic functions. They include
enzymes, ligand binding proteins (e.g., lipo-
calins), enzyme inhibitors, structural proteins,
and regulatory proteins (Chapman et al. 2000).
These proteins have been cloned, sequenced,
and produced in high-level expression vectors.
Purified recombinant allergens have immunore-
activity that is comparable to their natural
counterparts, and they are being used to
develop improved allergy diagnostics and vac-
cines. High-resolution crystal structures for the
most important allergens are now available,
including house dust mite (Der p 2), cat
(Fel d 1), and cockroach (Bla g 2) allergens
(Derewenda et al. 2002; Kaiser et al. 2003b;
Pomes et al. 2002). More than 20 allergen
structures have been resolved, and these mole-
cules constitute the most well-defined groups of
biomedically important proteins. Several data-
bases have been developed for comparing the
structure, biological function, and immuno-
logic properties of allergens. A partial listing of
available online databases is shown in Table 2.

Why do allergens induce IgE responses?
Two theories have been proposed to explain
why allergens induce IgE responses (“aller-
genicity”). The “enzyme hypothesis” was origi-
nally developed as an explanation for why most
dust mite allergens were proteolytic enzymes
(principally cysteine and serine proteases, and
chymotrypsin). Several lines of experimental
evidence support this hypothesis (Figure 1)
(Pomes et al. 2001; Sharma et al. 2003).
• Enzymatic activity directly promotes IgE

synthesis through cleavage of the low-affinity
IgE receptor (CD23) from activated B cells
and by cleavage of the α subunit of the IL-2
receptor (CD25) on T cells (Hewitt et al.
1995; Shakib et al. 1998).

• Mite proteinases (Der p 1, Der p 3, Der p 6,
and Der p 9) damage lung epithelium and
increase bronchial permeability by inducing
pulmonary epithelial cell detachment and
disruption of intercellular tight junctions
(Wan et al. 1999).

• Der p 1 induces production of proinflam-
matory cytokines in vitro [interleukin (IL)-8,

IL-6, granulocyte-macrophage colony-stimu-
lating factor] and induces IgE-independent
mast cell and basophil degranulation (King
et al. 1998).

This evidence also suggests that proteolytic
allergens could contribute to lung damage and
inflammation in asthma.

An alternative hypothesis is that the route
of administration, dose of allergen inhaled (or
ingested), and genetic predisposition are the
principal factors that affect allergen recogni-
tion and development of allergen-specific TH2
responses that ultimately lead to IgE produc-
tion. These factors apply to potent allergens,
regardless of whether they are proteolytic
enzymes. Recent structural studies have shown
that several potent allergens are not enzymes.
The group 2 mite allergens elicit IgE responses
in 90% of mite allergic patients (Smith et al.
2001). The crystal structure of Der p 2
revealed a hydrophobic pocket within the
molecule (Derewenda et al. 2002). Recent
studies show that Der p 2 has structural
homology to MD-2, a lipopolysaccharide
(LPS) binding protein, and to a cholesterol
binding protein C2 associated with Niemann-
Pick disease (Gruber et al. 2004). The crystal
structure of Fel d 1 revealed that the allergen
was homologous to uteroglobin and contained
an internal, asymmetric, amphipathic ligand
binding pocket (Kaiser et al. 2003a, 2003b).
Cockroach allergens are strongly associated
with asthma among lower socioeconomic
groups in inner-city, rural, and suburban
areas, yet none of the cockroach allergens
identified to date has proteolytic activity. The
most important allergen associated with IgE
responses, Bla g 2, belongs to a subgroup of
the aspartic proteinase family of enzymes that
is enzymatically inactive (Arruda et al. 2001;

Pomes et al. 2002). Attempts to render the
Bla g 2 enzymatically active by selected site-
directed mutagenesis of the active site catalytic
triads have been largely unsuccessful. The
high-resolution crystal structure of recombi-
nant Bla g 2 defined the structural features
that explain why the allergen is not an active
enzyme and also showed that the allergen is a
zinc binding protein (Pomes et al. 2002;
Gustchina et al. 2005).

Modified TH2 responses to allergens and
immunological tolerance. Dose-related effects
of allergen exposure on IgE responses have
been studied most extensively using cat aller-
gen (Fel d 1). Several recent studies have
reported that the prevalence of sensitization to
cat is reduced when children live with one or
more cats (Hesselmar et al. 1999). Moreover,
exposure to high levels of Fel d 1 (> 20 µg/g
dust) has been associated with a reduced
prevalence of IgE antibody responses to
Fel d 1 and an increase in IgG4 antibody
responses (Custovic et al. 2001; Platts-Mills
et al. 2001). At lower exposure levels
(1–10 µg/g dust), the prevalence of IgE
responses was increased. These studies have
further demonstrated a “modified” TH2
response among a subset of individuals who
develop IgG1 and IgG4 responses to Fel d 1,
without an IgE response. These individuals
appear to have a form of immunological toler-
ance to Fel d 1. In keeping with this, recent
studies have identified tolerogenic T-cell pep-
tides on Fel d 1 that are associated with the
production of IL-10 in vitro and that stimu-
late increased IL-10 production in patients
receiving allergen immunotherapy (Reefer
et al. 2004). T-cell mapping experiments have
identified peptides on Fel d 1 chain 1 that are
associated with IL-5 production in allergic
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Table 2. Online allergen databases.

Database Reference

WHO/IUIS Allergen Nomenclature IUIS 2004
Structural Database of Allergenic UTMB 2004

Proteins
Food Allergy Research and FARRP 2004

Resource Program
Protall Protall 2004
ALLERbase ALLERbase 2004
Allergome Allergome 2004
Central Science Laboratory CSL 2004

Abbreviations: IUIS, International Union of Immunological
Societies; UTMB, University of Texas Medical Branch;
WHO, World Health Organization.
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Figure 1. Biological effects of Der p 1. Reproduced with permission of Blackwell Publishing Ltd. (Sharma et al.
2003).



individuals and peptides associated with
immune tolerance in modified TH2 responders
(Platts-Mills et al. 2004; Reefer et al. 2004).

The induction of a form of immune toler-
ance following high-dose allergen exposure has
obvious implications for the development of
new vaccines to treat allergic diseases. New
approaches to immunotherapy are being devel-
oped that rely on increasing the dose of aller-
gen administered while reducing the potential
for adverse reactions (Chapman et al. 2000).
This effect has been achieved by generating
genetically engineered “hypoallergens” that
retain their ability to stimulate T cells but that
have reduced IgE antibody binding capacity.
Another approach has been the use of
deoxycytidyl–deoxyguanosine dinucleotide
(CpG)–coupled allergens, which demonstrate
reduced allergenicity and promote the develop-
ment of modified TH2 responses. An alterna-
tive strategy has been to use peptide-based
vaccines to induce T-cell anergy or tolerance.
Clinical trials are currently under way using
hypoallergens, CpG-coupled allergens, and
allergen peptides for immunotherapeutic pur-
poses. Successful clinical outcomes have been
reported in some of the initial trials using
hypoallergens and CpG vaccines to treat pollen
allergy (Chapman et al. 2000; Creticos et al.
2004; Niederberger et al. 2004). A recent
study has also reported significant improve-
ment in allergic symptoms using a vaccine con-
taining several purified recombinant timothy
pollen allergens (Jutel et al. 2005). It remains
to be established whether any of these
approaches will be effective for patients with
asthma, who tend to be more difficult to treat
with allergen immunotherapy. Nonetheless,
these approaches offer the possibility of design-
ing rational, safe, and more effective immuno-
logic treatments for allergic disease.

Viruses and Asthma
A number of studies have implicated viral lower
respiratory tract infections early in life as a risk
factor for the subsequent development of
asthma (Piedimonte and Simoes 2002). In par-
ticular, it has been suggested that respiratory
syncytial virus (RSV) infection may enhance
the development of “allergic” inflammatory
responses when the host is exposed to allergens
after an episode of bronchiolitis.

Although RSV infection is usually self-
limited and the virus is cleared from the respira-
tory tract of immune-competent children within
several weeks, there is growing evidence to sug-
gest that RSV infection may have long-term
sequelae in the developing respiratory system
(Piedimonte 2002). In fact, epidemiologic evi-
dence from several retrospective studies as well
as from more recent well-controlled prospective
studies supports the association between early
life RSV lower respiratory tract illness and recur-
rent episodes of wheezing and the development
of asthma during the first decade of life (Sigurs
et al. 2000; Stein et al. 1999). Indeed, RSV
bronchiolitis and asthma share several clinical
features (wheezing, increased work of breathing,
tachypnea, and reversible changes in pulmonary
function), but they also differ substantially in
terms of response to bronchodilator and anti-
inflammatory therapies. Despite extensive
research, the precise molecular mechanisms and
pathways by which RSV infection causes airway
inflammation and affects long-term control of
airway function subsequent to the initial insult
remain unclear.

Viral infection and neuroimmune inter-
actions. Compromised epithelial integrity, the
elaboration of local proinflammatory media-
tors, and dysfunction of neural pathways may
influence airway responses to environmental
stimuli. Some investigators postulate that infec-
tion with RSV or other viral pathogens can pre-
cipitate an imbalance in local cell-mediated
immune responses (Lemanske 1998). Others
hypothesize that infant bronchiolitis may result
in alterations to neuronal pathways that influ-
ence airway smooth muscle tone and airway
patency via the release of neurotransmitters
(Larsen and Colasurdo 1999). Piedimonte has
proposed that combined neuroimmune interac-
tions primed by the virus can initiate and prop-
agate a cascade of events leading to recurrent
cycles of airway inflammation and obstruction
(Figure 2) (Piedimonte 2001).

In the airway, a dense network of sensory
nerve fibers is strategically placed just below the
epithelial surface, so that any change in the
bronchial environment may stimulate the
release of the proinflammatory neuropeptide
substance P (Piedimonte 1995). During RSV
infection, stimulation of these nerves causes a
marked increase in airway vascular permeability
and results in an increase in overall inflamma-
tory status (Piedimonte et al. 1999). Our work

has revealed that these changes are mediated
by the high affinity receptor for substance P
(NK1 receptor), the expression of which is
greatly increased by RSV (King et al. 2001;
Piedimonte et al. 1999). This up-regulation
presumably occurs at the pretranslational level
because NK1 receptor mRNA levels increase
substantially during RSV infection. We have
also shown that T-lymphocyte subpopulations,
predominantly CD4+ cells, within the
bronchial-associated lymphoid tissue (BALT) of
RSV-infected lungs express high levels of the
NK1 receptor (Auais et al. 2003). As a conse-
quence, stimulation of the sensory nerves by
airborne irritants has the potential to cause a
new inflammatory cycle that is mediated by the
attraction of NK1 receptor–expressing T-helper
lymphocytes and monocytes into the airway
and activated by substance P. This mechanism
may establish important neuroimmune interac-
tions that undergo long-term dysregulation fol-
lowing RSV infection and predispose to airway
inflammation and hyperreactivity.

Viral infection, mast cells, and leukotrienes.
RSV also dramatically affects the distribution
and function of mast cells in the airway mucosa
(Wedde-Beer et al. 2002). Histopathological
analysis with an antibody against tryptase iden-
tified numerous mast cells in sections from
RSV-infected lungs, with an approximately
7-fold increase compared with the lungs of
non-infected controls. In addition, most of
these mast cells were in close spatial association
with nerve fibers, suggesting functional mast
cell–nerve interactions similar to those previ-
ously reported in other organ systems, particu-
larly the skin, central nervous system, and
gastrointestinal tract (Bauer and Razin 2000).
Among the inflammatory mediators released
from mast cells, cysteinyl leukotrienes (cysLTs)
have been shown to cause airway inflammation
and airway smooth muscle contraction during
RSV infection, accounting for the wheezing
observed in bronchiolitis. Increased leukotriene
C4 (LTC4) levels were observed in nasopharyn-
geal secretions of children during the acute
phase of RSV infection, and their concentration
correlated with clinical severity, being higher in
patients with lower respiratory tract involve-
ment than in children with upper respiratory
illness alone (van Schaik et al. 1999; Volovitz
et al. 1988). Furthermore, cysLTs play critical
roles in the pathophysiology of asthma and
could represent an important component in the
link between RSV and asthma.

Time course analysis of infected lung tissues
indicated that the effect of RSV on 5-lipoxy-
genase (5-LO) gene expression is transient; levels
are maximal by 3 days postinoculation, already
reduced by 5 days, and resolved by 30 days
(Wedde-Beer et al. 2002). A similar profile was
observed for the concentration of cysLTs in the
same tissues, with almost complete return to
pathogen-free levels by 5 days postinoculation.

Exposure to biologics and asthma induction
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Figure 2. Viral infection and neuroimmune inter-
actions. Abbreviations: RSV, respiratory syncytial
virus; NGF, nerve growth factor; PPT-A, pre-
protachykinin A; NK1, neurokinin 1; TRPV, transient
receptor potential vanilloid.



These findings suggest that the exaggerated
neurogenic inflammation in the intrapulmonary
airways infected by RSV in early life involves the
concomitant release of cysLTs and activation of
the cysLT1 receptor, as manifested by the
potent inhibitory effect of the receptor antago-
nist montelukast on neurogenic-mediated vas-
cular leakage.

On the basis of these studies, we speculate
that following the early phase of the viral respi-
ratory infection, leukotriene production and
release rapidly return to baseline levels, but
they can be reactivated by stimulation of the
numerous mast cells still present in the lung
tissues, for example, by substance P released
upon stimulation of sensory nerve terminals.
Another implication of these data is that the
increased susceptibility of RSV-infected intra-
pulmonary airways to the inflammatory effects
of sensory nerves may be dependent, at least in
part, on increased neurostimulation of mucosal
mast cells, with consequent release of cysLTs.
This effect, in turn, can amplify the release of
tachykinins from sensory nerves, thereby form-
ing a local neuron-mast cell feedback loop.

Viral infection, nerve growth factor, and
neurotrophins. Recent studies show that RSV
infection promotes a large increase in the
expression of nerve growth factor (NGF) and
neurotrophin receptors (Hu et al. 2002). NGF
was the first discovered component of the neu-
rotrophin family (Levi-Montalcini 1987),
which includes the brain-derived neurotrophic
factor (BDNF) and the neurotrophins 3
(NT-3) and 4/5 (NT-4/5). Neurotrophins
modulate survival, differentiation and apopto-
sis of peripheral afferent and efferent neurons,
and specifically control the expression of genes
that encode the precursors of substance P and
other peptide neurotransmitters. These effects
are mediated by binding to high-affinity tyro-
sine kinase (trk) receptors (generally promoting
neuron survival and differentiation) or to the
low-affinity pan-neurotrophin receptor p75
(generally mediating apoptosis and death). The
high-affinity receptor for NGF is the trkA sub-
type (Kernie and Parada 2000). Neurotrophins
exert changes in the functional activity of
peripheral neurons in a number of ways that
collectively define “neuronal plasticity” (Renz
2001). Examples from studies in vitro and
in vivo include increased production of neuro-
transmitters, increased number of nerves that
produce specific neuropeptides, and increased
neurotransmitter release from nerve terminals
mediated by increased expression and function
of the vanilloid receptor TRPV1 (the capsaicin
receptor). NGF is also synthesized in several
nonneuronal cell types including epithelial 
and inflammatory cells (e.g., mast cells and
CD4+ T cells) that also express trk receptors
(Ehrhard et al. 1993; Leon et al. 1994; Nilsson
et al. 1997). This function may target the
innervation of specific tissues, but there is

growing evidence that NGF functions as a
potent and eclectic neuroimmunomodulator
that releases and is released by a variety of
inflammatory mediators. In particular, patients
with bronchial asthma and allergic rhinocon-
junctivitis display high serum levels of NGF,
thereby suggesting an important pathogenetic
role of neurotrophins in allergic disorders
(Braun et al. 1999).

Because NGF is released from airway
epithelial cells, increases the production and
release of substance P and other tachykinins
from adult sensory neurons, and induces sen-
sory hyperinnervation in the airways of trans-
genic mice, it represents an ideal link between
virus-infected respiratory epithelium and the
dense subepithelial network of unmyelinated
sensory fibers. RSV-induced release of NGF
may lead to short- and long-term changes in
the distribution and reactivity of sensory nerves
across the respiratory tract, thus participating
in exaggerated inflammatory reactions during
and after the infection. NGF and its receptors
may also amplify other immunologic and neu-
ronal pathways contributing to airway inflam-
mation and hyperreactivity. On the basis of
these observations, we postulate that changes of
neurotrophin expression in the respiratory tract
may coordinate a variety of interactions
between sensory afferent nerves and multiple
components of the immune system and
inflammatory pathways, thereby generating a
pathophysiological link between early-life viral
infections and childhood asthma.

The Role of Endotoxin in Asthma

Allergens—such as those that derive from
pollens, pets, rodents, cockroaches, house dust
mites, or foods—might be considered harmless
environmental antigens. Such antigens are rec-
ognized by the immune system, and the “nor-
mal” immune response is the development of
clinical tolerance. In allergy and asthma, such
antigens are recognized as “dangerous,” and the
immune systems mounts an inflammatory
response characterized by proliferation and acti-
vation of TH2 cells. Two key questions arise
from this concept. First, how is the develop-
ment of clinical tolerance regulated? Second,
why is the immune system of atopic individuals
not able to develop in this fashion?

Role of early-life exposures and the hygiene
hypothesis. Increasing evidence suggests that
prenatal and early postnatal environmental
determinants play an important role in the
development of allergy and asthma. Tolerance
programming starts in early life, even before
birth. Indeed, the presence of allergen-specific
T cells has been demonstrated in humans at
the time of birth, thus suggesting that specific
immune responses can develop in utero
(Prescott et al. 1999; Szepfalusi et al. 1997).
Moreover, transplacental allergen transfer has
been demonstrated in animals and humans

(Holloway et al. 2000). Maturation of the
fetal immune system occurs primarily during
the first two trimesters of pregnancy. The
development of clinical tolerance continues
after birth and the first 2 years of life seems to
be particularly important (Prescott et al. 1998;
Prescott et al. 1999). 

It is now well recognized that natural expo-
sure to microbes through mucosal surfaces in
the gastrointestinal tract, respiratory tract, and
skin are critical for the development of clinical
tolerance. These observations are directly
linked to the “hygiene hypothesis,” which
states that exposure to microbial antigens plays
an important role in immunoprotection and is
required for the development of clinical toler-
ance (Renz and Herz 2002). In fact, microbes
are now viewed as important immunoregula-
tors in addition to their role as pathogens.
How are these facts linked to the development
of allergy and asthma? Recent longitudinal and
cross-sectional cohort studies have found that
the traditional farming environment in the
European Alps protects against the develop-
ment of allergy and asthma (Braun-Fahrlander
et al. 2002; von Mutius et al. 2000). Two fac-
tors were identified that presumably transmit
this protection during the early postnatal
period (the first year of life): consumption of
raw (nonpasteurized) milk and daily exposure
to farm animals (Braun-Fahrlander et al. 2002;
von Mutius et al. 2000). To identify further
the microbial components involved in this pro-
tection, investigators collected dust samples
from over 800 families, and endotoxin (bacter-
ial lipopolysaccharide or LPS) measurements
were made. The results indicate a strong
inverse association between natural, chronic
exposure to endotoxin and the risk of allergic
sensitization and clinical manifestations of res-
piratory tract allergy and asthma (Braun-
Fahrlander et al. 2002).

Endotoxin and the immune system. The
system of LPS recognition is highly complex
and involves multiple components of the innate
immune system. Recently, several molecules
have been identified that play critical roles in
this context. The LPS binding protein (LBP)
acts as a carrier of LPS. This complex assembles
with soluble or membrane bound CD14 mole-
cules and allows recognition by the toll-like
receptor 4 (TLR4) on the surface of immune
cells such as macrophages. A schematic of this
complex recognition system is illustrated in
Figure 3.

To test further the concept that LPS
exposure is linked to protection against the
development of respiratory allergies, animal
studies were conducted. Exposure of adult 
mice to LPS suppressed IgE production, air-
way inflammation, and development of
bronchial hyperresponsiveness (Gerhold et al.
2003). LPS acted in a dose-dependent manner;
high-dose exposure (equivalent to 100 µg LPS
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intranasally) promoted TH1 immune responses,
and low-dose exposure (0.1 µg LPS intra-
nasally) had a proallergic effect (Eisenbarth
et al. 2002). To explore further the role of LPS
in this process, a murine model of prenatal
allergen exposure has been used. In this model
LPS was administered intranasally to pregnant
mice. Offspring were then sensitized to a con-
ventional allergen (ovalbumin, OVA) followed
by OVA aerosol challenges to induce experi-
mental asthma. At birth, mice from LPS-
exposed mothers had an elevated neonatal
IFN-γ response. When these mice were sensi-
tized to OVA, the development of anti-OVA
IgE and IgG1 antibodies was markedly sup-
pressed, whereas the levels of anti-OVA-IgG2a
antibodies remained unchanged (Blumer et al.
2005). Furthermore, splenic mononuclear cells
re-exposed in vitro to OVA produced signifi-
cantly less IL-5 and IL-13 but not IFN-γ, thus
indicating a selective suppression of the TH2
arm of the immune system. This effect was also
reflected in the analysis of bronchoalveolar
lavage fluid following OVA aerosol challenges.
The influx of eosinophils, macrophages, and
lymphocytes into the airways was also
markedly suppressed; however, these mice
remained hyperresponsive to metacholine.
Together, these data provide experimental evi-
dence that prenatal exposure to a microbial
component such as LPS can modify the
immune response to allergen exposure later in
life. Further experiments are now under way to
delineate the precise molecular mechanisms
responsible for this effect.

Other microbial components as immuno-
modulators. Bacterial LPS is not the only
microbial component that can act as an
immunomodulator. In the studies cited above
of European farmers, a polymorphism in the
TLR-2 promoter has been associated with
reduced allergic sensitization, asthma and hay
fever (Eder et al. 2004). TLR-2 recognizes,
among other things, peptidoglycans primarily
produced by gram-positive bacteria, lipoprotein
and zymosan, which is a component of yeast.
Furthermore, the level of muramic acid, a
major component of peptidoglycan that can be

considered a marker for exposure to gram-
positive bacteria, was inversely correlated with
wheezing and asthma regardless of farming and
endotoxin exposure (van Strien et al. 2004).

An updated hygiene hypothesis. Although it
is clear that the prenatal and early postnatal
environment influences the development of
allergy and asthma, the exact nature of this
influence is not completely understood. The
updated “hygiene hypothesis” states that
microbial load and chronic exposure to micro-
bial compounds play an important role in the
development of clinical tolerance and subse-
quently confer protection against allergic dis-
eases. Future studies will be necessary to define
precisely the components of this protective
microbial load. Timing and duration of expo-
sure seem to be critical. In terms of the dura-
tion, it is necessary to distinguish acute and
chronic events. Dosing also seems to be critical,
as experimental studies clearly indicate a differ-
ential effect of low- and high-dose exposures.
Furthermore, the route of exposure must be
considered. Nonmucosal LPS exposure is
clearly an unwanted phenomenon that triggers
an inflammatory response, whereas mucosal
LPS exposure seems to be of particular benefit.
Delineation of these and other aspects of the
biology of microbes as immunomodulators
might lead to the development of new
avenues of allergy prevention and treatment
in near future. 

Conclusion

In this article we have reviewed the role of aller-
gens, viruses, and endotoxin in the develop-
ment of allergy and asthma. While these agents
may appear to be ubiquitous, there are varia-
tions in exposure to them that may affect the
host. It seems likely that increasing endotoxin
exposure and decreasing allergen and viral expo-
sures would decrease development of allergic
airway responses. The importance of these
exposures cannot be overestimated, as they are
sources of stimulatory ligands for lymphocytes
and antigen-presenting cells. However, the
complex immune and inflammatory interac-
tions that result from exposure to these ligands
are still not completely understood. As our
understanding of the influence of these inter-
actions on the development of allergy improves,
novel interventions designed to modulate the
host response to these asthmagenic exposures
can be developed and implemented.
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