
Spatial statistical methods are commonly used
to examine associations between two variables
that demonstrate spatial variability, with con-
cordance between the patterns of spatial vari-
ation providing evidence of an association
between these two variables (Ferrándiz et al.
1999). For example, Pope et al. (2002)
demonstrated a strong concordance between
ambient levels of fine particulate matter and
mortality in large U.S. cities. In a later
reanalysis of these data, Krewski et al. (2000)
examined a number of different statistical
methods designed to assess concordance in
spatial patterns between urban air pollution
and mortality, taking into account spatial
autocorrelation at different levels of geo-
graphic scale. Both analyses have demon-
strated significant associations between
(principally cardiopulmonary) mortality and
both fine particulate matter and sulfate parti-
cles. Robust associations between the gaseous
copollutant sulfur dioxide were also found.

Although the reanalysis made progress
toward understanding the influence of spatial
autocorrelation on the effects of sulfate parti-
cles on mortality, the analytic methods did
not allow for the possibility that the relation-
ship between air pollution and mortality may
display nonstationarity over space, with the
air pollution effect constrained to be the same
at different locations within the United
States. A more flexible modeling strategy is
needed to assess nonstationary relationships.
Also, reliance on a single autocorrelation
parameter may have effectively filtered vari-
ables that operate at a broad regional scale,
such as sulfate, but may not have controlled
autocorrelation from pollutants such as sulfur
dioxide, which exhibits a more spatially con-
centrated or local distribution (Krewski et al.
2000). Preliminary work with more advanced

spatial models has been conducted by Burnett
et al. (2001) and Cakmak et al. (In press).

The spatial analysis technique introduced
by Burnett et al. (2001) and Cakmak et al. (In
press) is based on a semiparametric generalized
additive model (GAM). Dominici et al. (2002)
have recently shown that S-Plus (Insightful,
Seattle, WA, USA), a widely used statistical
software package, can produce biased estimates
of the linear parameters in semiparametric
GAMs, and they have proposed two methods
for avoiding this bias. Ramsay et al. (2003)
have shown that the estimated standard errors
produced by S-Plus can systematically underes-
timate the true variability of fitted linear para-
meters in semiparametric GAMs.

Dominici et al. (2003) addressed the
problem of biased standard error estimates by
showing that an alternative estimator of stan-
dard error, proposed by Hastie and Tibshirani
(1990), is asymptotically unbiased. Further-
more, they have implemented in S-Plus a
function called “gam.exact” that fits GAMs
and uses this alternative method to estimate
standard errors for the fitted parameters.

In this article, we present the results of
two simulation studies designed to explore
the impact of concurvity on a particular data
set taken from the literature (Burnett et al.
2001). The results suggest that, even with the
stringent convergence criteria suggested by
Dominici et al. (2002), increased concurvity
in the data used to fit a semiparametric spatial
GAM leads directly to increased downward
bias in the estimated standard error of the fit-
ted linear parameter and, consequently, to
inflated type I error in the standard signifi-
cance test of this effect. This result is true
both for the S-Plus standard error estimate
and for the asymptotically unbiased alternative
estimate.

The Generalized Additive Model 
Suppose that y is a vector of observed
responses and that x1 … xp are p vectors of
independent variables. The GAM (Hastie and
Tibshirani 1990) postulates that the response
is additively related to the independent vari-
ables via the equation

[1]

where the function g is called the link func-
tion and ε is a random error term. Each func-
tion fi is assumed to be in some predefined
space of functions �i. The function spaces
most commonly chosen for �i are linear
functions and nonparametric functions
defined by smoothers such as loess (locally
estimated polynomial regression) or smooth-
ing splines.

Because of the flexibility provided by
allowing the fi to be nonparametric functions,
as well as the fact that it is easy to fit these
models using standard statistical software
such as S-Plus, the GAM has gained favor as
a powerful analytical tool. One popular form
of the GAM is the semiparametric model in
which one function, f1, is chosen to be linear.
This form of the model can be expressed as

[2]

Because of the ease of interpretation of a lin-
ear parameter, the semiparametric model is
particularly attractive when x1 is the primary
variable of interest and x2 … xp are included
to control for the effects of various nuisance
variables. S-Plus provides a variance estimate
for β, thus allowing the use of a standard
t-test for the significance of the effect of x1.

The back-fitting algorithm used by statis-
tical software such as S-Plus to fit GAMs is
iterative and uses several convergence parame-
ters to determine when it terminates.
Dominici et al. (2002) have recently shown
that using the default convergence parameters
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in S-Plus may lead to biased parameter esti-
mates. This problem, they suggest, can be cor-
rected either by using stricter convergence
criteria or by substituting parametric functions
for the nonparametric smoothers in the GAM
definition. We (Ramsay et al. 2003) have
shown that the S-Plus estimate of standard
error for the linear parameter of a semipara-
metric model can be biased, thus invalidating
the results of the corresponding significance
test. This bias may also be avoided by using
parametric, rather than nonparametric,
smoothers.

The term “concurvity” refers to the pres-
ence of a specific type of (approximate) addi-
tive dependence among the independent
variables in a GAM. For the general GAM in
Equation 1, an additive dependence of the
form

[3]

constitutes concurvity if each hi is a function of
the type specified by the preselected function
space �i. This implies that concurvity is highly
dependent on the particular GAM being con-
sidered. The approximate equality (≈) in
Equation 3 indicates that the two sides of the
equation are positively correlated.

Because multicollinearity can be defined as
the existence of a relation of the form

concurvity is really just the nonparametric
analogue of multicollinearity in regression
analysis. In the case of the semiparametric
model (Equation 2), a concurvity relation
involving x1 can be simplified to

[4] 

An exact concurvity relation causes the GAM
to be unidentifiable (Ramsay et al. 2003).

As with linear models and multicollinear-
ity, concurvity leads to variance inflation for
the fitted parameters in a GAM. This effect
differs from that of multicollinearity, however,
in that the variance inflation is not reflected in
the standard error estimates produced by S-
Plus. Furthermore, the S-Plus gam function
does not provide any diagnostic tests for
assessing the presence of concurvity. A conse-
quence of this inability to detect concurvity is
that using the S-Plus standard error estimate
to test the significance of a fitted linear para-
meter can result in inflated type I error.

In theory, for any GAM in which the
back-fitting algorithm converges, there exists
a matrix R such that the fitted values µ̂ are
given by the relation µ̂ = Rz, where z = g(y) is
the vector of observations transformed by the
link function. In addition, for each additive

component of the model, there is a matrix Ri
such that the fitted additive component f̂ i(xi)
can be expressed as f̂ i(xi) = Riz. Unfortunately,
the back-fitting algorithm does not produce
these matrices, and they are therefore not
available for estimating the standard error of
the fitted additive components.

Hastie and Tibshirani’s (1990) mono-
graph on GAMs proposed a method for esti-
mating the matrices R and R i, but this
algorithm was considered too computationally
expensive to be implemented in the S-Plus
gam function. Instead, the gam function uses
an approximation to this variance (Chambers
and Hastie 1992); this approximation appears
to perform well in the absence of concurvity,
but it systematically overestimates the preci-
sion when concurvity is present.

In the wake of the discovery of the impact
of concurvity on the standard error estimates of
the gam functions, Dominici et al. (2003) have
developed a new S-Plus function, gam.exact,
which fits univariate GAMs and uses Hastie
and Tibshirani’s (1990) approximations to
the matrices R and Ri to estimate the stan-
dard errors of the fitted parameters. They
show that the standard error estimates pro-
duced by the gam function are asymptotically
biased, but that those produced by gam.exact
are not. The gam.exact function software is
available on the Internet (Internet-based
Health & Air Pollution Surveillance System
2002). Unfortunately, the current implemen-
tation of gam.exact will not fit GAMs con-
taining functions of more than one variable.

Ramsay et al. (2003) suggest that in
GAMs for time-series data, the standard error
bias of GAMs may be avoided by using fully
parametric smoothers in place of nonparamet-
ric smoothers. This solution is somewhat diffi-
cult to apply to spatial GAMs, unfortunately,
because the gam function provides no para-
metric method for smoothing two variables
(the x- and y-coordinates) simultaneously.
Also, it is our experience that bivariate para-
metric smoothers often require substantially
more degrees of freedom than do bivariate
nonparametric smoothers.

Exploring the Impact of
Concurvity
The simulation studies presented in this sec-
tion were designed to explore the impact of
concurvity on a particular spatial data set pre-
viously analyzed by our research team (Burnett
et al. 2001) as the second stage of a two-stage
analysis relating air pollution to mortality. In
the first stage of the analysis, survival data
from a cohort of more than 500,000 subjects
in 144 U.S. metropolitan statistical areas were
fit, via a Cox proportional hazards model, to a
collection of both individual-level and com-
munity-level variables. The fitted values
consisted of the log-relative risk of mortality,

along with a variance estimate, for each of the
144 cities. The second stage employed a spa-
tial GAM to relate mortality to air pollution
by modeling the log-relative risks as the sum
of a nonparametric function of location and a
linear function of (average) airborne sulfate
particle concentration.

The model used was

[5]

where (x,y) was the spatial location of a given
city, r was the associated log-relative risk of
mortality, and p was the average concentration
of airborne sulfate particles. The parameter of
interest, β, reflects the effect of air pollution
on mortality. The function f was included to
control for unknown confounding effects that
vary smoothly over space. In a simple linear
regression model, these confounding effects
produced autocorrelated residuals. The first of
the two components of variance, η, was
assumed to have mean zero and variance θ.
The error due to estimating the relative risks
from the stage 1 model, ε, was assumed to
have mean zero and variance ν. The variance
parameter θ was estimated from the data, but
ν was taken to be the model-based variance
estimate of r̂ obtained from the fitted Cox
proportional hazards model.

Burnett et al. (2001) used the gam func-
tion in S-Plus to fit a smooth function f and a
linear parameter β̂ = 0.0087 to the data, with
an estimated standard error of 0.00277. The
fitted parameter β̂ represents the estimated
increase in log-relative risk due to increasing
the concentration of airborne sulfate particles
by 1 µg/cm3. The estimation procedure was
iterative, with a Newton-Raphson update of
the unknown variance parameter θ computed
at each iteration.

To test for concurvity, as defined in
Equation 4, we fit the model p = h(x,y) to
these data, with h modeled as a loess function.
The fitted function ĥ was highly significant,
with a squared correlation coefficient of 0.57
between p and ĥ(x,y). This value, which we
refer to as the concurvity R2 statistic for p in
Equation 5, indicates that 57% of the varia-
tion in p can be explained by a smooth func-
tion of location and thus tells us that there is
a moderate degree of concurvity in the data.
In fact, because common sense tells us that air
pollution varies smoothly over space, some
degree of concurvity is to be expected in these
data relative to Equation 5.

Methodology: simulated air pollution data.
Both of our simulation studies investigate the
effect of unknown concurvity by fitting a
slightly simplified version of Equation 5 to a
large number of simulated data sets with ran-
dom concurvity. Because the mechanical details
of the two studies are similar, we begin by giv-
ing the details of our method for simulating
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GAM models and data sets with random con-
curvity. Although we focus exclusively on the
data analyzed by Burnett et al. (2001), this
method could easily be modified to suit data for
any nonparametric GAM.

The simulation procedure consists of five
distinct steps: steps 1–3 generate independent
variables with concurvity, and steps 4 and 5
generate response data.

Step 1 generates 144 random locations
(x̃ i,ỹ i), for i = 1, … 144, to represent the cities.

Step 2 generates a set of completely ran-
dom air pollution variables, p̃i, and a smooth
function h̃ . The p̃i are mutually independent
pollution values for the 144 cities and hence
display no concurvity. The function h̃ , gener-
ated using the random surface generation
algorithm given in the Appendix, defines a set
h̃ (x̃ i,ỹ i) of spatially dependent air pollution
values with extreme concurvity.

Step 3 combines the two sets of pollution
variables into a single set of new pollution val-
ues p̃ij. This step depends on the value of the
concurvity parameter j to determine the
degree of concurvity in the simulated data.
After assigning j a value between 0 and 1, the
p̃ij are defined by the relation

[6]

Setting j = 0 implies that p̃ij = p̃i and, hence,
that the p̃ ij are concurvity-free. Conversely,
when j = 1, the function h̃ explains 100% of
the variation in the p̃ij. The smooth function
h̃ is not a loess surface of the sort used to fit f
in Equation 5, because this would imply per-
fect concurvity and an unidentifiable model.
However, setting j = 1 still results in a data set
with extreme concurvity (on average, R2 =
0.94). The definition in Equation 6 is moti-
vated by the observation that the p̃ ij lie on a
smooth surface whose spatial autocorrelation
function is equal to j times that of h̃ .

Step 4 prepares to generate log-relative
risks by randomly generating a function f˜,
again using the algorithm in the Appendix.

Step 5 generates a set of independent,
normally distributed random errors ε̃i with
mean zero. These random errors are com-
bined with the function f˜, pollution variables
p̃ij, and a constant slope β̃ to define log-rela-
tive risks via the model

[7]

Note that Equation 7 is a simplification of
Equation 5: it is missing the second variance
component η.

The end result is a randomly generated
data set with a specified degree of concurvity,
for which the true value of each of the parame-
ters in Equation 7 is known. For convenience,
we will refer to the combination {h̃ ,x̃ i,ỹ i,p̃ i}
used to generate air pollution values with

concurvity as the preconcurvity data set, to the
combination {f˜,x̃ i,ỹ i,p̃ij} used to generate the
responses as the simulation data set, and to the
combination {r̃ i,x̃ i,ỹ i,p̃ij} of variables used to fit
the model as the simulated data set. This dis-
tinction will be important when we describe
the second simulation study.

All of the randomly generated quantities
in this procedure were sampled from distribu-
tions that approximately mirrored the distrib-
utions of the original variables. In step 1, the
locations (x̃ i,ỹ i) were chosen to be indepen-
dently and uniformly distributed over the
range of the 144 city locations. In step 2, the
independent pollution measurements were
uniformly distributed over the range of the
observed pollution values, and the function h̃
was scaled so that the range of the h̃ (x̃ i,ỹ i)
coincided with the range of the observed pol-
lution values. The final pollution values p̃ ij
were again scaled so that their range was the
same as that of the observed pollution. The
fitted model from Burnett et al. (2001) is
used to define the surface f˜ and errors ε̃i in
steps 4 and 5. The function f˜ was scaled to
have the same range as the fitted surface f .̃
The variance of the random errors of step 5
was set to be the sum of the fitted variance
parameters ν + θ̂.

First simulation study: standard error.
Although we have previously shown that the
S-Plus standard error estimates can be biased
(Ramsay et al. 2003), we did not clearly show
that this bias is affected by the degree of con-
curvity in the data. The first simulation study
was conducted to verify that increased con-
curvity does result in increased standard error
bias and, therefore, to inflated type I error. For
each j in the set {0,0.1,0.2, … ,1}, we inde-
pendently generated 1,000 simulated data sets
in which the true value of β was zero. By fit-
ting Equation 7 to each data set and testing
the null hypothesis that β = 0, we obtained an
estimate of the type I error as a function of j.

The results of this set of simulations are
presented in Figure 1. The x-axis in both
Figure 1A and Figure 1B is the concurvity
parameter j from Equation 6. The type I
errors in Figure 1A were obtained by testing
the significance of β using the S-Plus standard
error estimate at the 0.05 level of significance;
the type I error increases dramatically with
the degree of concurvity. Interestingly
enough, the observed type I error at j = 0 was
0.081, which, viewed as a binomial statistic
(n = 1,000, p = 0.05), corresponds to a
p-value of about 10–5. This indicates that the
type I error is somewhat inflated even when
there is no concurvity in the data.

In Figure 1A, 95% of the observed con-
curvity statistics fell within the interval defined
by the error bars. Recall that the concurvity
statistic is the squared correlation between the
{p̂ ij } and the p̃ ij, where the p̂ ij are the fitted

values obtained by modeling the p̃ij as a loess
function of the (x̃i,ỹ i). It should be noted that
although both the type I error and the con-
curvity R2 statistic are measured on a scale of 0
to 1, the two curves in Figure 1A do not mea-
sure the same thing. We include them in the
same graph to suggest that the concurvity R2

statistic may be a useful, albeit imperfect, tool
in assessing the presence of concurvity in data.

One argument that the R2 statistic shows
significant concurvity in the data is as follows.
The mean observed value of R2 in those mod-
els for which j = 0 was 0.08, with a largest
observed value of slightly less than 0.2.
Because the R2 statistic for the data of Burnett
et al. (2001) exceeded 0.2, it is unlikely that
these data were concurvity-free.

In Figure 1B, the sample standard devia-
tion in β̂ as a function of the concurvity coef-
ficient is in contrast to the S-Plus estimate of
the standard deviation of β̂, and indicates that
the true (empirical) standard error of the esti-
mate of β increases substantially with increas-
ing concurvity, whereas the estimated
standard error produced by the S-Plus gam
function is increased by comparatively little.
Again, the error bars include 95% of the
observed standard error estimates. When the
degree of concurvity was high, the S-Plus gam
function dramatically underestimated the true
standard error.

The average concurvity R2 statistic for j =
0.3 was 0.56, about the same as that observed
in the data analyzed by Burnett et al. (2001).
For the 1,000 data sets simulated with j = 0.3,
the type I error was 0.246, the sample stan-
dard deviation was about 0.0063, the average
estimated standard error estimate was about
0.0036, and 95% of the standard error esti-
mates were < 0.0052. For the entire set of
11,000 fitted models, the estimated number
of degrees of freedom used to fit the model
ranged from 8.3 to 9.5 (nonparametric mod-
els can use fractional degrees of freedom), so
overfitting was unlikely to have been an issue.

Second simulation study: bias. The results
of the second simulation study revealed three
important features of the effect of simulated
concurvity. First, the bias in β̂ varied greatly
with the parameters used to generate the
response. Second, the alternative standard
error estimator, although better than the
default estimate provided by S-Plus, still did
not provide a satisfactory estimate of the stan-
dard deviation of β̂. Third, most of the vari-
ance observed in β̂ in the first simulation
study was due to bias.

This simulation study can be viewed as
(roughly) following a two-way factorial design,
with one factor consisting of 30 different pre-
concurvity models and the other consisting of
11 different degrees of concurvity. The precise
design is as follows. First, we executed steps 1
and 2 of the simulation procedure (described

˜ ˜ ˜ , ˜ ˜ ˜ ˜ .r f x y pi i i ij i= ( ) + +β ε
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above) 30 times. Then, for each of these 30
preconcurvity data sets, we executed the third
step 11 times (once for each j in the set
{0,0.1,0.2, … ,1}), and executed step 4 once.
This resulted in 11 simulation data sets for
each preconcurvity data set, differing only in
the value of the concurvity parameter used to
construct the air pollution values. Then, for
each of the 330 resulting simulation data sets,
we executed the fifth step 100 times, to pro-
duce 100 different simulated data sets. This
time, we used the fitted value of 0.00887 from
the original analysis for the slope β̂.

Besides the fact that β̂ is not zero, this
simulation study differs from the previous
one in that the first simulation did not repli-
cate response data for a given set of simula-
tion data. In other words, the first simulation
generated one set of responses from each sim-
ulation data set, whereas the second simula-
tion generated 100 different data sets from
each simulation data set. As a result, we were
able to explore how the bias in β̂ changed
with different patterns of concurvity as well as
with different degrees of concurvity. In addi-
tion to the fitted slope and standard error, we
also computed the alternative standard error
estimate (Hastie and Tibshirani 1990) for
each of the 33,000 fitted models. The results
of this simulation are summarized in Figures
2 and 3. The small points represent one hun-
dred replications from a single simulation.
Simulation data sets constructed from the
same preconcurvity data set are connected by
lines, and the large blue points in Figure 3
represent the overall type I error for a single
value of the concurvity parameter.

Figure 2 shows the observed relative bias
for each of the 30 models at each of the 11
levels of concurvity. The variance of the bias
increases with concurvity and the direction of
the bias can be positive or negative.

Figure 3 shows the type I errors observed
when using t-tests based on the S-Plus estimate
and the alternative estimate, respectively, to
test the true null hypothesis that β = 0.0087 at
the 0.05 level of significance. The performance
of the alternative standard error estimate was
superior to that of the estimate provided by the
S-Plus gam function; at each level of con-
curvity, the test based on the S-Plus estimator
resulted in a larger overall type I error. One
interesting feature of these results is that using
the S-Plus estimator to test the significance of
the pollution effect resulted in an inflated over-
all type I error even when there was no con-
curvity. The alternative estimator, on the other
hand, performed as expected when there was
no concurvity in the data. At each level of con-
curvity, there were some estimators for which
the alternative estimator did not inflate the
type I error rate; for several of the models the
type I error was not inflated at any level of con-
curvity. We conclude that, although the alter-
native estimator was better than the S-Plus
estimator, neither estimator was reliable in the
presence of concurvity.

As mentioned above, the average R2 statis-
tic was about the same as that observed in the
real data when j = 0.3. The results for the 30
simulated models with j = 0.3, therefore, seem
likely to best represent the type of bias we
might expect to be present in the fitted GAM
produced from those data. The observed rela-
tive bias for those 30 models ranged from
–1.53 to 1.83; 21 of 30 had magnitude > 0.2,
and 12 had magnitude > 0.5. Two-thirds of
the relative biases were negative, and one-third
were positive (over all values of j, about 61%
were negative).

Using a set of 30 independent Kolmogorov-
Smirnov goodness-of-fit tests, we failed to
reject the null hypothesis that the fitted β̂ val-
ues were normally distributed for a given

model when j = 0.3 (only two were significant
at the 0.05 level, corresponding to a binomial
p-value of 0.19). We therefore assumed nor-
mality and tested the 30 biases for significance
using 30 separate t-tests. The null hypothesis
of no bias was rejected for 27 of the 30 models
at the 0.01 level of significance.

On average, when we executed the same
simulation using the standard convergence
criteria provided by S-Plus, the observed rela-
tive bias was about 40% larger than that
observed with the stricter convergence criteria
suggested by Dominici et al. (2002). This
suggests that if the bias is caused by a lack of
convergence, then the likelihood surface in
the neighborhood of the maximum likelihood
must be extremely flat.

Using the S-Plus standard error estimate to
test the true null hypothesis that β = 0.0087
resulted in an observed type I error rate > 0.05
(the expected value) for 24 of the 30 models
for which j = 0.3. For 13 of the models, the
observed error rate was > 0.2, and for 6 it was
at least 0.5; the overall type I error rate was
0.29. By contrast, when the alternative stan-
dard error estimate was used in place of that
provided by S-Plus, only 6 of the 30 models
had an observed error rate > 0.05 (five had
error rates > 0.2, and three were at least 0.5),
and the overall type I error was 0.12.

Interestingly enough, both the S-Plus and
the alternative standard error estimators
appeared to systematically overestimate the
standard deviation of β̂. On average, for the
30 models where j = 0.3, the S-Plus standard
error estimate was about 17% larger than the
sample standard deviation, and the alternative
estimate was about 100% larger.

At first glance, the observation that the
variability of β̂ was underestimated in the first
simulation study but overestimated in the sec-
ond may appear to be contradictory. The
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Figure 1. Results of first simulation study as function of concurvity. (A) Type I
error and concurvity statistic. (B) Empirical and estimated standard error. Error
bars indicate the interval containing 95% of the observations.

Figure 2. Relative bias, second simulation study. Points represent bias for one
simulation data set (100 replications). Lines connect simulation data sets con-
structed from the same preconcurvity data set.
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explanation is that, because of the bias in β̂,
the sample standard deviation of β̂ is measur-
ing different types of variability in the two
simulation studies. The standard deviations in
the second study represent the variability of β̂
conditional on the simulation model, whereas
the standard deviations in the first reflect the
variability in β̂ over all possible models.

The difference between the standard devi-
ations in the two simulations can perhaps be
more easily understood if we express the
unconditional variance of β̂ in terms of its
conditional distribution. Letting Θ denote the
set {f ,̃h̃ ,x̃ ,ỹ ,p̃ }, consisting of the simulation
data together with the concurvity relation-
ship, we can write

where V is variance and E is expectation. The
first term on the right-hand side of this expres-
sion is just the variance of the bias. The
observed variance in the first simulation study
was the unconditional variance V[β̂], whereas
the observed variance in the second simulation
study was V[ β̂|Θ]. 

Discussion

The results of our simulation studies depend
on the methodology we chose to generate the
artificial data. Although the surfaces produced
by our random surface algorithm represent
plausible patterns of spatial variation, there
are other equally plausible patterns that it
cannot reproduce. In the context of GAMs
for time-series data, Dominici et al. (2002)
found that the bias varied inversely with the

size of β. It is likely, therefore, that the bias in
spatial GAMs would be negligible if the true
effect of interest is large enough.

Nonetheless, we can still use these results
to draw some general conclusions about con-
curvity and spatial GAMs. Concurvity in the
data for a spatial GAM can lead to bias in the
fitted linear parameter; this bias, if it occurs,
probably depends on complex interrelation-
ships among the independent variables.
Because of the variability in the bias, the vari-
ance of the fitted linear parameter can be
inflated in the presence of concurvity.
Because this inflation is not properly captured
by either of the currently available standard
error estimators, the use of either estimate of
the standard error to perform a t-test of sig-
nificance on the fitted linear parameter can
result in an inflated type I error.

Positive spatial autocorrelation in a vari-
able α implies that some of the variation in α
can be explained by modeling α as a smooth
function of location. If a linear function (or
any smooth function) of a spatially autocorre-
lated variable α and a smooth function of
location are both included as additive compo-
nents in a GAM, there will be some degree of
concurvity in the data. Because most epidemi-
ologic variables can be expected to exhibit
spatial autocorrelation, it follows that con-
curvity is a particular problem for spatial
GAMs using a smooth function of location to
account for autocorrelation in the residuals.

In our study, the data sets that seemed to
most resemble the data analyzed by Burnett et
al. (2001) were those in which the concurvity
parameter j had the value 0.3. For those simu-
lations, the relative bias ranged from –1.53 to

1.83, and the overall type I error when using
the S-Plus standard error estimate to test the
significance of β̂ (at the 0.05 level) was 0.25.
Using the alternative estimator of Hastie and
Tibshirani (1990) resulted in a type I error of
0.12. Because our model was a simplification
of that used in the original analysis, these
results may not accurately reflect the bias in
their fitted model. For example, more than
10% of the R2 statistics observed when j = 0.4
were less than the statistic for the original data.
For those models with j = 0.4, the relative bias
ranged from –2.2 to 2.7, the S-Plus type I

  
V V E E Vˆ ˆ ˆ ,β β β[ ] = ( )[ ] + ( )[ ]Θ Θ
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Figure 3. Type I error, second simulation study. (A) Default standard error versus concurvity. (B) Alternative
standard error versus concurvity. Blue data points represent overall type I error for a single value of the
concurvity parameter, and black points represent individual simulation data sets. 
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Appendix: Random Smooth
Surfaces
To generate spatial data with truly random
concurvity, it is necessary to generate ran-
dom surfaces. Although any method for
doing so can only generate a small subset of
all possible smooth surfaces, we believe that
the surfaces produced by the following
method are both realistic enough and varied
enough to provide good insight into the
effect of unknown concurvity on the GAM
estimation process.

The algorithm defines a random surface
as the sum of a number of gaussian “bump”
functions of the form

[8]

The parameter a determines the amplitude
of the bump and was sampled from the
uniform distribution on the union of the
intervals [0.5,1] and [–1,–0.5]. The para-
meter (c1,c2) determines where the bump is
centered and was sampled from the uni-
form distribution on the unit square. The
parameter (ν1,ν2) determines the ellipticity
of the bump, or how far the bump deviates
from being perfectly circular, and was sam-
pled from the uniform distribution on the
square [0.2,1] × [0.2,1]. Finally, the para-
meter h determines the width of the bump
and was sampled from the uniform distribu-
tion on the interval [0.05,1].

Each random surface was generated from
10 independent random bumps of the form
described in Equation 8. Each bump was
randomly rotated by an angle selected from
the uniform distribution on [0,2π], and the
resulting bumps were summed to make one
function. This function was evaluated on the
data by transforming the unit square to
cover the range of the (x̃i,ỹ i) values found in
the data and was then rescaled to have the
correct range. The rescaling step merely
involved multiplication by a constant.
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error was about 0.35, and the alternative type
I error was about 0.17.

Although S-Plus has figured prominently
in the discussions of Dominici et al. (2002,
2003) and Ramsay et al. (2003) concerning
bias in GAMs, there is no reason to believe
that these bias issues are specific to the S-Plus
software. Rather, we believe the bias problems
to be intrinsic features of nonparametric
GAMs fitted in the presence of concurvity. In
view of the conclusions of Dominici et al.
(2002)—that using parametric functions in
the time-series analyses of air pollution mini-
mizes the bias issue—one possible solution to
the bias problem in spatial GAMs is to devise
a way to use parametric functions of location.
This approach may turn out to be of limited
value, however, because we have found that
switching to parametric smoothers often
requires more degrees of freedom than may
be available in spatial data sets with relatively
few observations.

Another possible solution to the problem
might be to restructure the independent vari-
ables in some way to remove the concurvity.
This strategy, in the form of principal compo-
nents regression, has certainly proven useful
for dealing with multicollinearity in linear
and generalized linear models. Until such
time as a viable solution to concurvity-
induced bias in spatial GAMs is developed,
the present results suggest that the GAM is
not an appropriate method for dealing with
spatial autocorrelation in air pollution data.
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