
Continued reporting of outbreaks of disease
from consumption of drinking water (Barwick
et al. 2000; Lee et al. 2002; Levy et al. 1998;
Yoder et al. 2004) in the United States has
fueled the need for regulatory action through
risk assessments as mandated by the Safe
Drinking Water Act (SDWA 1996). Risk
assessments historically have been used to
evaluate the health risks of properly treated
drinking water because of the general belief
that drinking water risks were too low to be
detected through epidemiology studies.
Recent drinking water intervention trials,
however, have begun to question the assump-
tion that there is little or no risk of infectious
gastrointestinal (GI) illness attributable to the
consumption of drinking water when water
treatment systems are functioning properly
(Payment et al. 1991, 1997). In contrast,
other trials have suggested that there is little or
no risk (Colford et al. 2005; Hellard et al.
2001). Based on these findings and in
response to the 1996 Congressional amend-
ment to the SDWA that emphasizes the need
for sound science and risk-based standard set-
tings [U.S. Environmental Protection Agency
(EPA) 1989], there has been increased interest
in evaluating methodologies to help estimate
the risk of GI illness attributable to drinking
water in communities. In the present study we

compare and contrast two approaches for the
assessment of risk of diarrhea caused by drink-
ing water—a microbial risk assessment and a
randomized intervention trial design.

Using data collected in Davenport, Iowa
(Colford et al. 2005), we compared the two
techniques to estimate the risk from waterborne
pathogens due to exposure to drinking water.
For this study, risk assessment is based on the
integration of several independent sources of
exposure information to estimate dose (i.e.,
water quality, drinking water treatment plant
efficiency, and tap water consumption pat-
terns). We then used the dose information in a
health effects model to predict the risk of illness
due to drinking tap water. The randomized
intervention trial directly measures the impact
of drinking water on diarrhea and compares the
incidence of GI illness between intervention
and control subjects.

Both approaches have wide appeal. The
randomized trial is considered the “gold stan-
dard” for providing unconfounded causal risk
estimates associated with a particular expo-
sure. When lacking these direct estimates of
risk, quantitative risk assessment is the pre-
ferred method for attaining risk estimates and
is used by the U.S. EPA, U.S. Food and
Drug Administration, World Health Organi-
zation, and other stakeholders for regulatory 

and operational purposes. Although these
approaches are widely accepted, they also have
many limitations. Low sensitivity because of
sample size constraints, and biases due to both
exposure and outcome misclassification must
be acknowledged when interpreting random-
ized trial results. Similarly, risk assessments are
model-based estimates and rely on water qual-
ity data as input, and so must be interpreted in
this context. Both approaches have their
strengths and weaknesses. In the present study
our goal was to compare and contrast the two
approaches for obtaining estimates of drinking
water risk when coincident data are available.

Several authors have proposed methods for
estimating the risk of drinking water (Haas
et al. 1993; Messner et al. 2001; Regli et al.
1999). Our study differs from these previous
studies in that we incorporated additional
detailed local information relevant to risk
assessment, including measurements of
pathogen levels in the source water over a
1-year period, pathogen removal efficiency of
the Davenport drinking water treatment plant
(which uses sedimentation, filtration, and
chlorine disinfection), and data on local tap
water consumption.

Materials and Methods

Attributable risk from intervention trial
(Davenport, Iowa). The study design of the
intervention trial in Davenport is similar to
those of previously published drinking water
intervention trials (Colford et al. 2002;
Hellard et al. 2001; Payment et al. 1991,
1997). Unlike prior randomized trials, how-
ever, a crossover design was used where, for
each intervention period (~ 6 months), half the
enrolled cohort had a water treatment device
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Risk assessments and intervention trials have been used by the U.S. Environmental Protection Agency
to estimate drinking water health risks. Seldom are both methods used concurrently. Between 2001
and 2003, illness data from a trial were collected simultaneously with exposure data, providing a
unique opportunity to compare direct risk estimates of waterborne disease from the intervention trial
with indirect estimates from a risk assessment. Comparing the group with water treatment (active)
with that without water treatment (sham), the estimated annual attributable disease rate (cases per
10,000 persons per year) from the trial provided no evidence of a significantly elevated drinking water
risk [attributable risk = –365 cases/year, sham minus active; 95% confidence interval (CI), –2,555 to
1,825]. The predicted mean rate of disease per 10,000 persons per person-year from the risk assess-
ment was 13.9 (2.5, 97.5 percentiles: 1.6, 37.7) assuming 4 log removal due to viral disinfection and
5.5 (2.5, 97.5 percentiles: 1.4, 19.2) assuming 6 log removal. Risk assessments are important under
conditions of low risk when estimates are difficult to attain from trials. In particular, this assessment
pointed toward the importance of attaining site-specific treatment data and the clear need for a better
understanding of viral removal by disinfection. Trials provide direct risk estimates, and the upper confi-
dence limit estimates, even if not statistically significant, are informative about possible upper estimates
of likely risk. These differences suggest that conclusions about waterborne disease risk may be
strengthened by the joint use of these two approaches. Key words: drinking water, gastrointestinal,
intervention trial, microbial risk assessment, waterborne pathogens. Environ Health Perspect
114:1199–1204 (2006). doi:10.1289/ehp.8682 available via http://dx.doi.org/ [Online 4 April 2006]
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installed at their kitchen faucet and half had a
sham device installed that resembled the real
device but provided no water treatment. At the
end of the first treatment period, the device in
each subject’s household was switched to the
opposite type, and illness was monitored for
another 6 months. Participants were blinded
throughout the study to their specific device
type, and they recorded their daily occurrence
of GI symptoms (e.g., diarrhea, nausea, vomit-
ing, cramps) in a personal health diary. The
study resulted in treatment assignment and ill-
ness data for 1,296 subjects in 456 households.
For further details of the Davenport interven-
tion trial, see Colford et al. (2005). As part of
the Davenport intervention study, a separate
random digit dial (RDD) telephone survey was
conducted in the Davenport area. The goal of
the survey was to obtain population-based esti-
mates of the use of various home water treat-
ments, water consumption, and the monthly
occurrence of GI illnesses (Wade et al. 2004).

We define attributable risk (AR) for the
trial subjects as the estimated risk difference in

daily rates of highly credible GI illness (HCGI)
(Colford et al. 2005) among the subjects with
the treatment device versus those with the sham
device. HCGI is defined as the presence of any
one of the following syndromic manifestations
of GI illness: vomiting, watery diarrhea, soft
diarrhea with abdominal cramps, and nausea
with abdominal cramps. The AR was estimated
using a linear model with binomial errors and
accounting for correlation using a generalized
estimating equation (Zeger et al. 1988).

Risk assessment model. The risk assessment
was conducted without knowledge of the
results of the Davenport trial. Figure 1 is a
schematic of the general model for generating
GI illness cases due to drinking water.
Methods used to derive the model parameters
are discussed later in this article. The model
uses a population of 10,000 and a risk period
of 1 year (365 days). The model is a simple
linear process and works as described below.

A concentration of the specific source
water distribution of pathogens (e.g., Giardia,
Cryptosporidium, and culturable viruses) is

randomly sampled for the day. On the basis of
previous studies and goodness-of-fit tests of the
source water data collected in Davenport, we
assumed that the average concentrations of
source water for a day followed a lognormal
distribution (LeChevallier et al. 2003b). This
distribution was estimated using the constant
recovery rates shown in Table 1.

We assumed that treatment efficiency due
to sedimentation and filtration remained con-
stant during the day but itself was a random
draw from a Weibull distribution (Ross 1985).
Similarly, the disinfection due to chlorine for
Giardia and viruses was a random draw from a
Weibull distribution. The Weibull distribution
provided the needed flexibility to fit the various
treatment data.

The concentration of pathogens in the
resulting drinking water, Di, for day i, was

Di = SiTiCi, [1]

where Si, Ti, and Ci are the (daily) randomly
drawn source water concentration, treatment
efficiency, and disinfection, respectively.

For each day i, for each of 10,000 individ-
uals j, we randomly drew a volume of water
consumption, Vij, from a lognormal distribu-
tion (Rosebury and Burmaster 1992) based on
data from the RDD telephone survey in
Davenport (Wade et al. 2004).

A random number of pathogens, Pij,
ingested for each subject i, on each day j, was
generated from a Poisson distribution with
mean, Vij ×Di. We generated a random (yes/no)
indicator of illness, Iij, based on the number of
pathogens and the probability of illness given
Pij. This probability was derived from separate
dose–response curves (probability of infection
for a given ingested pathogen dose) and mor-
bidity ratios (the ratio of those who become ill
to those who are infected) for each pathogen,
which were based on published dose–response
data (DuPont et al. 1995; Rendtroff 1954;
Teunis et al. 1986; Ward et al. 1986).

The final step, after generating data for
10,000 subjects and 365 days, is to count the
number of events and divide by the time at
risk to derive an estimate of disease incidence
due to exposure to the specific pathogen in
drinking water for the year:

. [2]

Parameter estimates in risk assessment
model. Each step of the above model relies on
parameter estimates. We derived almost all of
these estimates from site-specific (Davenport)
data. When site-specific data were not avail-
able, we used data from the literature.

Source water concentration. Water quality
data from the source water serving the study
area came from the Davenport intervention
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Table 1. Values used for risk assessment models for the different pathogens. 

Model
Model component Cryptosporidium Giardia Viruses
Source water 

Concentration (organisms/L, mean ± SD)a 1.06 ± 2.24 2.68 ± 24.20 0.93 ± 3.00
Recovery rateb 0.40 0.40 0.48

Treatment efficiency (log removal)
Sedimentation and filtration (mean ± SD)a 3.84 ± 0.59 3.84 ± 0.59 1.99 ± 0.52
Chlorination (mean ± SD)a 0 3.5 ± 2.93 4 ± 2.93

Water consumption (L/day, mean ± SD)c 1.2 ± 1.2 1.2 ± 1.2 1.2 ± 1.2
Dose responsed λ = 0.004078 λ = 0.01982 α, β‚ = 0.26, 0.42
Morbidity ratioe 0.39 0.40 0.57

Sample mean ± SD values are reported. 
aWhere λ was estimated using data from DuPont et al. (1995) and Rendtroff (1954), respectively. Estimates using data col-
lected in Davenport (LeChevallier et al. 2003b). All source water data were modeled using a lognormal distribution. A Weibull
distribution was used for all treatment data. Disinfection for Cryptosporidium was assumed to be zero. bWhere α and β were
estimated using data from Ward et al. (1986). Fraction of pathogens recovered. Data were from the Information Collection Rule
Supplemental Survey (U.S. EPA 2001) after eliminating extreme observations (i.e., some samples reported a recovery rate >
100% or < 0%). cConsumption of untreated water based on data from an RDD survey conducted in parallel with the trial. All
pathogen models used the same lognormal distribution. dThe Cryptosporidium and Giardia dose–response models used an
exponential function [Pr(D|X) = 1 – exp(–λX)] where λ was identified using data from DuPont et al. (1995) and Rendtroff et al.
(1954), respectively. The rotavirus dose–response model used a beta-Poisson function [Pr(D|X) = 1 – [1 + (X/β)]–α] where α and
β were identified using data from Ward et al. (1986). D is disease, and X is dose. eThe ratio of those who become ill to those
who are infected: Cryptosporidium (DuPont et al. 1995), Giardia (Nash et al. 1987), and viruses (Ward et al. 1986).

Source water
Lognormal distribution source water
concentrations estimated from local data

Treatment efficiency
• Filtration, sedimentation were modeled

using a Weibull based on surrogate
markers (Bacillus subtilis for
Cryptosporidium and Giardia, and
somatic coliphage for enteric viruses)

• Chlorination was assumed to have no
effect on Cryptosporidium, and local
data were used to model the chlorination
effects on Giardia and the viruses

Dose response
Used dosing
trials of healthy
volunteers

Tap water consumption
Lognormal distribution
estimated from local survey
data

Pathogens in tap water
Number of pathogens in water is
Poisson distributed with mean
determined by source water and
treatment efficiency

Figure 1. Schematic of risk model.



study. These included approximately weekly
measurements of Cryptosporidium and Giardia
concentrations, as well as monthly measure-
ments of culturable viruses (LeChevallier et al.
2003b).

Figure 2 shows the raw data for both
Giardia and Cryptosporidium, Xk , collected at
different days, k, and Figure 3 shows similar
data for the culturable viruses. These represent
counts of pathogens in a fixed volume, Q, of
sampled source water with assumed recovery
rate, R. We assume that the counts of
pathogens, Xk , are derived from an underlying
Poisson distribution with mean Sk ×Q × R,
where Sk is the average source water concen-
tration for day k. We assumed that Sk follows
a lognormal distribution, suggesting that a
marginal likelihood of X is

, [3]

where φ represents the standard normal den-
sity, and μs and σs are the underlying mean and
standard deviation, respectively, of the log(S)
distribution. Equation 3 represents the likeli-
hood contribution of one observation of the
raw counts, Xk ; the parameters of interest, μs
and σs, are estimated by maximizing the likeli-
hood. The estimates of all parameters in the
model are presented in Table 1.

Treatment efficiency. Direct estimates 
of treatment efficiency with respect to
Cryptosporidium species, Giardia species, and
culturable viruses were not possible from the
Davenport treatment facility because levels in
effluent water samples were uniformly below
detection across the study period. Estimates of
the efficiency of Bacillus subtilis treatment,
obtained from weekly measurements of source
water and plant effluent data (LeChevallier
et al. 2003b), were used as a surrogate for
Cryptosporidium and Giardia treatment effi-
ciency. Similarly, removal of somatic coliphage
from waters passing through the Davenport
facility was used to approximate a distribution of
treatment efficiency with respect to culturable
viruses.

The log removal for Cryptosporidium from
chlorine disinfection was assumed to be zero,
whereas the log removal for Giardia and enteric
viruses was estimated from chlorine concentra-
tion time (CT) values collected in Davenport.
The CT values were estimated for Giardia and
were therefore directly applied to estimate dis-
infection efficacy for Giardia. Because there
were no equivalent data for viruses, virus disin-
fection was assumed to have the same distribu-
tion as Giardia but a modulated mean value.
One way to establish specific viral log removal
values for the model is to rely on data presented
in a U.S. EPA guidance document (U.S. EPA
1991). Table E-7 in this guidance document
suggested that 4 log removal of viruses would

be achieved at 20°C, a pH of 6–9, and a CT
value of 3. This table was based on hepatitis A
data (Sobsey 1988) assuming both a 3-fold
safety factor and a 2-fold decrease in CT for
every 10°C increase in temperature. Using
Table E-4 from this same guidance document,
we can estimate that the CT value in Davenport
was approximately 13. Assuming a linear rela-
tionship between viral log removal and CT
would suggest that the log removal of viruses by
disinfection was > 12. This result assumes that
viruses are dispersed in chlorine-demand–free
water and is not valid for viruses that occur in
nature aggregated and associated with organic
particles. Given the uncertainties associated
with all of these assumptions, we chose to
examine a variety of viral log removal values
ranging from 4, the minimum required by the
U.S. EPA, to the 13 log removal treatment level
estimated above.

Water consumption. During the period of
the intervention trial, home tap water con-
sumption data were collected from the RDD
telephone survey. The estimate of the distribu-
tion of regular tap water consumption was

obtained from 4,756 interviews. The water
consumption distribution was assumed to be
lognormal (Rosebury and Burmaster 1992),
and we estimated the mean and standard devi-
ation of this distribution. The RDD survey
respondents were asked how much water was
consumed in discrete glasses: < 1, 1–2, 3–5,
and > 5. We took the number of respondents
in each of these categories, made the categories
contiguous (i.e., < 1, 1–2.5, 2.5–5, > 5), and
estimated the mean and standard deviation of
log consumption using maximum likelihood.

Probability of disease. The functions
used to generate a probability of disease given
a quantity of pathogen ingested (dose
response) were derived from dosing trials
where healthy volunteers were given known
quantities of pathogens. Specifically, DuPont
et al. (1995) published data for a sample of
healthy volunteers infected by known num-
bers of Cryptosporidium oocysts, Rendtroff
(1954) reported similar data for Giardia, and
Ward et al. (1986) for rotavirus, which we
used as a surrogate for culturable viruses
(Regli et al. 1991). Exponential functions
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Figure 2. Raw water measurements of Cryptosporidium and Giardia.
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Figure 3. Raw water concentrations of total culturable enteric viruses (most probable concentration of
viruses per liter).
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were used for Giardia and Cryptosporidium,
and a beta-Poisson function for culturable
enteric viruses (Teunis et al. 1996).

Results

The estimated attributable (annual) rate of
disease per 10,000 people from the Davenport
trial (expressed as the rate in the sham group
minus the rate in the active group) was –365
[95% confidence interval (CI), –2,555 to
1,825], which provided no evidence of a sig-
nificant association of the use of drinking
water with disease. The result was negative
because there were more cases reported from
the active than from the sham group. Based
on the upper value of the 95% CI, the trial
was statistically consistent with as many as
1,825 cases per 10,000 people per year
attributable to drinking water. These estimates
were calculated from a cohort of 1,296 per-
sons that reported 394 episodes of HCGI
while in the active group and 350 while in the
sham group (Colford et al. 2005).

Table 2 is a summary of the estimated
cases of illness from our risk assessment models
based on pathogens. Assuming a 4 log removal
of viruses from disinfection (U.S. EPA regula-
tory limit), the predicted risk was 13.9 (2.5,
97.5 percentiles: 1.6, 37.7) cases per 10,000
persons per year (due to Cryptosporidium,
Giardia, and culturable enteric viruses),
whereas assuming an 6 log removal, the pre-
dicted risk dropped to 5.5 (2.5, 97.5 per-
centiles: 1.4, 19.2) cases. At 6 log removal
there was less than 1 case associated with viral
exposure. Results from higher viral log removal
did not vary from the results using 6 log
removal. The width of the CI values from the
Davenport trial and risk assessment should not
be compared, as the former incorporates
sources of variation and uncertainty that are
not relevant in the latter.

We also examined the sensitivity of our
risk assessment results to alternative parame-
terizations of the model by conducting the fol-
lowing sensitivity analyses: a) instead of
assuming a Poisson distribution, we modeled
pathogen density using a negative binomial
distribution with different levels of aggrega-
tion; b) rather than using Davenport-specific
treatment efficiency values, we used published

values (Rachwal et al. 1996); c) rather than
using site-specific data from the RDD tele-
phone survey, we based the mean and standard
deviation of the estimated average daily water
consumption on reported U.S. EPA values
(U.S. EPA 2000); and d) we varied the two
dose–response parameters by a factor of 10.
Results based on the above variations increased
predicted Cryptosporidium cases to be as high as
25 cases per 10,000 persons per year, Giardia
cases to as high as 100, and culturable enteric
viruses to as high as 15. This brings the pre-
dicted risk to as high as 140 cases per
10,000 persons per year. There was little effect
from adding overdispersion to the pathogen
distribution using the negative binomial
model. The higher estimates were primarily
because of the use of non-Davenport-specific
treatment values.

Discussion

In this study, both risk assessments and inter-
vention trials are used to obtain health risk esti-
mates. The interpretation of the results
obtained from these two approaches, however,
can often differ. The data collected in
Davenport provided a unique opportunity to
compare and contrast these two approaches.
Even though there was no evidence of a signifi-
cant association in the Davenport analysis, the
upper bound risk estimate from the interven-
tion trial (based on the 95% CI) was higher
than the drinking water standards provided by
the U.S. EPA. Under these rigorous standards,
the Davenport analysis provides a useful upper
bound on the risk; however, a risk assessment
is needed to estimate the risk within the limits
set by regulatory agencies. Specifically for
Davenport, the trial estimated an upper-end
risk of 1,825 cases per 10,000 persons per
year, whereas the risk assessment predicted
5–14 cases per 10,000 persons per year
attributable to drinking water from Giardia,
Cryptosporidium, and culturable viruses. An
additional finding in our work was a difference
in the estimation of illnesses provided by risk
assessment when using site-specific water
quality data rather than generally available
estimates of treatment efficacies.

Because of the different approaches used by
risk assessments and intervention trials, the

analytic results from each approach often have
different interpretations. These differences in
the two approaches are summarized in Table 3
and discussed below.

Sensitivity. Historically, drinking water
regulations have been based on a tolerable
annual risk of 1 case per 10,000 persons, that
is, a goal of fewer than one case of infection
with a particular pathogen per 10,000 persons
attributable to drinking water (Regli et al.
1999). Although this value is not explicitly
used by the U.S. EPA, it is consistent with
their regulatory guidelines (Regli et al. 1999).
Epidemiologic studies, such as the interven-
tion trial conducted in Davenport, generally
cannot measure such low-magnitude risks.
The Davenport trial was powered to detect
approximately 1,100 illnesses per 10,000 per-
sons—a smaller risk difference than that
observed in previous studies (Payment et al.
1991). To illustrate this lack of sensitivity, we
estimated that to power the Davenport trial
to detect an AR of 20 cases per 10,000 per-
sons per year, a risk similar to that estimated
by the risk assessment, would require a sam-
ple size of 8 million individuals; to detect an
AR of 100 cases per 10,000 persons would
require 416,000 individuals. The intervention
trial, using traditional levels of statistical sig-
nificance, lacks the sensitivity to detect the
low number of cases predicted from the risk
assessment.

In addition to a limited sample size, the
sensitivity of a trial may be decreased because
of biases caused by, for example, misclassifica-
tion of disease outcomes and exposure (i.e.,
people with disease are more or less likely to
change their drinking water patterns). Because
of randomization, most misclassification in the
trial was likely to be nondifferential; that is, if
subjects are underreporting disease, they are
likely to be doing so equally while in the both
the active treatment and the sham group.
Because nondifferential misclassification biases
the estimate of AR toward the null (Rothman
and Greenland 1998), estimates that do not
account for this misclassification (e.g., the esti-
mate in this study) would likely underestimate
the magnitude of these estimates. Adjusted risk
estimates would increase both point estimates
and the upper end of the 95% CI.
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Table 2. Illness risk estimates associated with
drinking water (cases per 10,000 persons per year)
predicted by the risk assessment model. 

Cases of illness
Pathogen Mean 2.5–97.5 Percentile range

Cryptosporidium 2.1 0.8–3.5
Giardia 3.4 0.6–15.5
Enteric virusesa 8.4 0.2–18.7
Enteric virusesb 0 0–0.2

The percentile reflects the variability of the predicted
mean estimate. 
aAssumes that disinfection results in a 4 log removal.
bAssumes that disinfection results in a 6 log removal.

Table 3. Comparison of methodologic considerations between drinking water risk assessment models and
intervention trials.

Methodologic considerations Risk assessment Intervention trials

Sensitivity Not relevant Low
Causal evidence Indirect Direct
Pathogen inclusion Few Many
Model specification Adds uncertainty Not relevant
Transmission processes Can be includeda Only in a limited way
Distribution system effects Can be includeda Was included
Examining alternative control strategies Yes No
Expense Low High
Time Fast Slow
aNot included in this study.
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Even if the sensitivity of the intervention
trial precludes us from making any inference
within the narrow range of regulatory limits,
the trial data do provide a rigorous direct esti-
mate of the upper bound to the risk from
drinking water. For example, previous drinking
water intervention trials in Canada showed
that up to 35% of GI illnesses were transmit-
ted through a public drinking water system
(Payment et al. 1991). The Davenport inter-
vention study was adequately powered to
detect differences considerably smaller than
this level and clearly demonstrates that the
drinking water risks estimated in Davenport
were below those observed by Payment (1991);
that is, the upper end of the 95% CI for the
percent AR reported by Colford et al. (2005)
was 10%, whereas the point estimate reported
by Payment et al. (1991) was 35%. For regula-
tory purposes the upper bound estimate from
Davenport can be interpreted as the largest risk
estimate that is still consistent with the inter-
vention trial results. As mentioned above, this
upper bound estimate is not only based on ran-
dom error, due to sample size, but also on sys-
tematic error in a trial, such as the biases due to
nondifferential misclassification.

Causal evidence and pathogen-specific
versus symptomatic outcomes. Risk assessment
methods also have limitations. For example,
risk estimates are model based and provide
indirect evidence of risk based on water quality
data, whereas the trials focus on direct esti-
mates of illness. Additionally, the risk estimates
include only a subset of the potential
pathogens, compared with the intervention
trial, which provides a risk estimate for diar-
rheal disease integrated over all pathogens as
well as nonpathogenic causes of diarrhea. In
this risk assessment we were able to provide
estimates for two protozoan pathogens,
Cryptosporidium and Giardia, as well as for cul-
turable viruses. The microbiologic methods,
however, identify all species of Cryptosporidium
and Giardia, not all of which cause illness.
Likewise, viruses that are culturable are only a
subset of known viral pathogens; for example,
noroviruses are a major cause of waterborne
viral infections but are not culturable. These
limitations can therefore lead to both under-
and overestimates of risk.

Model specification and the inclusion of
other sources of risk. The specific model struc-
ture used in any risk assessment carries with it
many assumptions. For example, the model in
this study was based on risks associated with
source water contamination and did not con-
sider the potential contamination within the
distribution system (LeChevallier et al. 2003a).
Another assumption implicit in the model
structure is that secondary transmission is neg-
ligible (Eisenberg et al. 2002,  2003). Both of
these assumptions can lead to biased results. By
incorporating such processes, risk assessment

models can be made more complicated and
perhaps more accurate. Some environmental
processes, such as risk incurred by the distribu-
tion system, can be also captured by the inter-
vention trial and in fact was accounted for in
the Davenport trial. Other processes, such as
transmission processes, can be addressed only
in a limited way by observing within-house-
hold transmission. Specifically, the standard
intervention trial design is focused on individ-
ual-level risk, assuming that disease outcomes
of different individuals are independent and
therefore cannot capture population-level
processes such as secondary transmission. Risk
assessment models that incorporate disease
transmission processes are the only models that
account for these population-level conditions.
Increasing the complexity of the model, how-
ever, leads to additional uncertainty with
respect to model specification and potentially
parameter specification.

In general, it is impossible to account for
all sources of variation. Models often must rely
on estimates from small studies (e.g., dosing
trials conducted on healthy individuals) and on
very strong modeling assumptions. Sparse site-
specific data, such as with the source water
measurements of enteric viruses, increase the
uncertainty of model-based estimates.

Most of these limitations underestimate risk.
There are additional uncertainties that result in
overestimates of risk. For example, uncertainties
in treatment—Bacillus spores are considered
conservative indicators of Cryptosporidium
removal, and disinfection CT values are based
on half-lives, not the full integration of disinfec-
tion contact times.

Site-specific versus general estimates in
risk assessment. Our finding of a difference in
estimates of illness from using site-specific
rather than general U.S. EPA estimates for
treatment efficiencies highlights the impor-
tance of a clear definition for a risk assessment.
If the goal of a risk assessment is focused only
on risk within a specified community (or simi-
lar communities), then site-specific data may
be most appropriate and worth the additional
effort to obtain. If, however, the goal is to gen-
eralize about risk across multiple communities
or large areas, then the general parameter esti-
mates provided by the U.S. EPA are likely to
be more appropriate.

Examining alternative control strategies.
One advantage of a model-based risk assess-
ment is that alternative control strategies can be
examined. For example, the pathogen-specific
risk estimates from the risk assessment provided
additional information for focused waterborne
disease control strategies. Given that the viral
log removal by disinfection is on the order of 6
or more, the predicted risk above 1 in 10,000
persons comes from exposure to protozoan
species. Thus, if the risk levels presented in
Table 2 are of concern, control efforts should

be focused on treatment technologies that
address protozoa rather than virus removal. If,
on the other hand, viral log removal by disin-
fection is ≤ 4, control efforts should be focused
on treatment technologies that address viral
removal. Given the limited data to inform this
assumption, resources could be focused on col-
lecting more viral disinfection data.

Cost and time. An additional limitation of
intervention trials is that they are costly and
time-consuming to conduct. In contrast, risk
assessments are relatively inexpensive and quick
to conduct.

Conclusions

Risk assessment and intervention trials provide
complementary approaches to the estimation of
a community’s burden of disease attributable to
drinking water. Risk assessments can provide
estimates of low-risk situations; require data
that are neither difficult nor expensive to col-
lect; permit the evaluation of scenarios outside
the conditions under which the data were col-
lected and are therefore an attractive method
for characterizing both existing and potential
risk from contamination of drinking water; and
can capture population-level processes such as
secondary transmission. Intervention trials pro-
vide direct measures of AR within communities
and provide risk estimates based on all causes of
illness attributable to the drinking water. Even
when point estimates of risk are not significant,
these direct measures of risk can provide valu-
able upper bound estimates.

Given their expense, intervention trials
must be judiciously applied. Risk assessments
can be used to specify the conditions in which
future trials are justified; that is, they can be
used to identify high-risk conditions based on
demographics, magnitude and sources of envi-
ronmental contamination, and types of treat-
ment processes. Risk assessment can also
provide information on where are the impor-
tant data gaps. In particular, this assessment
pointed toward the importance of attaining
site-specific treatment data and the clear need
for a better understanding of viral removal by
disinfection. Ultimately, the choice of risk
assessment, intervention trials, or both meth-
ods used jointly to evaluate waterborne disease
risks depends upon specific research needs and
available funding.
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