
Prenatal exposure to mercury through maternal
consumption of fish has been associated with
reduced performance on tests of neurologic
function in children, including tests of cogni-
tive development, attention and behavior, and
motor skills. A comprehensive review of the
mercury literature conducted by the National
Research Council (NRC) Committee on the
Toxicological Effects of Methylmercury con-
cluded that, based on the evidence available,
“neurodevelopmental deficits are the most
sensitive, well-documented effects” of expo-
sure to mercury (NRC 2000).

The NRC committee’s conclusion was
based primarily on its review of epidemiologic
studies conducted in the Faroe Islands
(Grandjean et al. 1997), New Zealand (Crump
et al. 1998; Kjellstrom et al. 1989), and the
Seychelles Islands (Davidson et al. 1998;
Myers et al. 2003). These three populations
were selected for study in large part because
fish consumption was known to be relatively
high; human methylmercury exposure is
largely attributable to intake of methyl-
mercury that has accumulated in fish tissue.

All three studies measured prenatal expo-
sure to mercury and neurodevelopmental end
points in the children, though there were

differences in the tests used to measure poten-
tial neurodevelopmental deficits. The Faroe
Islands and New Zealand studies found a sta-
tistically significant relationship between
higher prenatal mercury exposure and poorer
scores on tests of neurologic function, but the
Seychelles study did not. The NRC committee
determined that “each of the studies was well
designed and carefully conducted, and each
examined prenatal MeHg [methylmercury]
exposures within the range of the general U.S.
population exposures” (NRC 2000). 

The U.S. Environmental Protection
Agency (EPA) developed a reference dose
(RfD) for methylmercury that draws on the
NRC analysis of data from all three epidemio-
logic studies. An RfD is an estimate of a daily
exposure to the human population (including
sensitive subgroups) that is likely to be with-
out an appreciable risk of deleterious effects
during a lifetime. However, the U.S. EPA’s
review also indicates that “no evidence of a
threshold arose for methylmercury-related
neurotoxicity within the range of exposures in
the Faroe Islands study” (U.S. EPA 2001). In
addition, the RfD does not provide informa-
tion about the dose–response relationship
between prenatal mercury exposure and

related neurologic effects, because it focuses
on a single exposure level and does not iden-
tify the risk associated with that level. A
dose–response model is needed to estimate the
potential risk of neurodevelopmental effects in
the population and the benefits of any efforts
to reduce mercury exposure. 

We applied a Bayesian hierarchical
model to integrate the findings from the
three epidemiologic studies and estimate a
dose–response relationship between maternal
mercury body burden and subsequent child-
hood decrements in intelligence quotient (IQ).
We selected IQ for dose–response modeling
because data related to IQ were available from
all three studies, and because methods for eco-
nomic valuation of IQ decrements are well
established, as applied in the U.S. EPA’s previ-
ous benefits analyses for lead (U.S. EPA 1997). 

Methods

Selection of end points and coefficients. All
cognitive end points reported in the Faroe
Islands (testing at 7 years of age), New Zealand
(6 years of age) and Seychelles (9 years of age)
studies were considered for inclusion in the
hierarchical model. Neurodevelopmental
tests conducted in each of the three studies at
these ages are listed in the Supplemental
Material (online at http://www.ehponline.
org/docs/2007/9303/suppl.pdf), and those
selected for our statistical model are shown in
Table 1. For this analysis, we assumed a linear
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BACKGROUND: Prenatal exposure to mercury has been associated with adverse childhood neurologic
outcomes in epidemiologic studies. Dose–response information for this relationship is useful for
estimating benefits of reduced mercury exposure. 

OBJECTIVES: We estimated a dose–response relationship between maternal mercury body burden
and subsequent childhood decrements in intelligence quotient (IQ), using a Bayesian hierarchical
model to integrate data from three epidemiologic studies. 

METHODS: Inputs to the model consist of dose–response coefficients from studies conducted in the
Faroe Islands, New Zealand, and the Seychelles Islands. IQ coefficients were available from previ-
ous work for the latter two studies, and a coefficient for the Faroe Islands study was estimated from
three IQ subtests. Other tests of cognition/achievement were included in the hierarchical model to
obtain more accurate estimates of study-to-study and end point–to–end point variability. 

RESULTS: We find a central estimate of –0.18 IQ points (95% confidence interval, –0.378 to
–0.009) for each parts per million increase of maternal hair mercury, similar to the estimates for
both the Faroe Islands and Seychelles studies, and lower in magnitude than the estimate for the
New Zealand study. Sensitivity analyses produce similar results, with the IQ coefficient central esti-
mate ranging from –0.13 to –0.25. 

CONCLUSIONS: IQ is a useful end point for estimating neurodevelopmental effects, but may not
fully represent cognitive deficits associated with mercury exposure, and does not represent deficits
related to attention and motor skills. Nevertheless, the integrated IQ coefficient provides a more
robust description of the dose–response relationship for prenatal mercury exposure and cognitive
functioning than results of any single study. 
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relationship between mercury body burdens
and neurodevelopmental outcomes, in keep-
ing with the recommendation of the NRC
committee (NRC 2000). In the New Zealand
and Seychelles studies, all information neces-
sary for our model was obtained from the
published papers, including linear regression
coefficients (Crump et al. 1998; Myers et al.
2003). The Faroe Islands publications, how-
ever, reported results with cord blood and
maternal hair mercury transformed to the log
scale and provided no results of linear models
(Grandjean et al. 1997, 1999). A report by the
Faroe Islands investigators (Budtz-Jorgensen
et al. 2005) prepared at our request provides
the additional details needed for our analysis.

For the New Zealand study, two sets of
dose–response coefficients were reported
(Crump et al. 1998): one with the complete
cohort, and the other for which one very influ-
ential observation, with unusually high mater-
nal hair mercury, was excluded. The NRC
committee reviewed the influence of the one
observation and determined that exclusion of

this outlier was reasonable and appropriate
(NRC 2000). Our primary analysis used the
coefficients from the regression in which the
outlier child was excluded; coefficients for the
case in which this child is included were con-
sidered in a sensitivity analysis.

For several tests and end points, results for
multiple scores were reported. To avoid over-
representing any particular test and to avoid
adding additional complexity to our modeling,
we chose only one score for a test in such cases.
For example, the Faroe Islands study presents
regression coefficients for the effect of mercury
on four tasks of the California Verbal Learning
Test, and the Seychelles study provides results
for two of these. We selected the short delay
recall task, which was common to both studies. 

Rescaling. Our next step was to rescale all
the estimated regression coefficients and stan-
dard errors so that they correspond to test
scores with the same distribution as Full-Scale
IQ (that is, an SD of 15). This rescaling allows
all inputs and outputs of our model to be
expressed in terms of the decrement in IQ

associated with a one-unit increase in mercury.
Rescaling involves multiplication by a factor
inversely proportional to the observed stan-
dard deviation of the score for each test.
Details are provided in the Supplemental
Material (online at http://www.ehponline.
org/docs/2007/9303/suppl.pdf). 

We also rescaled to adjust for differences in
mercury biomarkers used in the studies. The
New Zealand and Seychelles studies report
results in terms of parts per million hair mer-
cury, whereas results of the Faroe Islands study
with the linear coefficients required for this
study are reported in terms of parts per billion
cord blood mercury. To combine results across
studies, we converted the Faroe Islands results
to their equivalents in units of hair mercury
using the reported median ratio of mercury in
hair to mercury in cord blood in the Faroe
Islands study population, which was approxi-
mately 200 (Budtz-Jorgensen et al. 2004a). 

IQ tests in the three studies and IQ coeffi-
cient for Faroe Islands study. The Wechsler
Intelligence Scales for Children (WISC) is a
standard test of childhood IQ that was used
in each of the three studies. The version of
the test administered in the Seychelles Islands
(3rd ed.; WISC-III) was different from the
earlier version used in New Zealand and the
Faroe Islands (revised ed.; WISC-R). In a
sample of approximately 200 children, the
correlation between the Full-Scale IQ scores
for the two versions was 0.89; thus the
WISC-R and WISC-III appear to measure
the same constructs and generate scores with
similar dispersion (Wechsler 1991).

The WISC-R includes 10 core subtests
and three supplementary subtests. For the
Faroe Islands study, the investigators adminis-
tered only three subtests of the WISC-R: Digit
Span and Similarities (core subtests) and Block
Design (a supplementary subtest). We used
data for these three subtests to estimate an
IQ–mercury coefficient for the Faroe Islands
cohort. This approach is supported by the
findings of Sattler (1988), who identified the
combinations of the 10 core subtests that pro-
vide the most valid estimates of Full-Scale IQ.
Of the 45 possible combinations of two core
subtests (i.e., 10 subtests taken two at a time),
the combination of Similarities and Block
Design ranked third in the magnitude of the
validity coefficient (0.885). It is reasonable to
expect that adding the information about Full-
Scale IQ conveyed by the Digit Span score
would produce an even higher validity coeffi-
cient. This indicates that combining the scores
of the Faroese children on Similarities, Block
Design, and Digit Span will provide valid esti-
mates of their Full-Scale IQ scores.

Regression coefficients and standardized
coefficients (coefficient as percent of corre-
sponding response standard deviation) for the
three subtests are shown in Table 2. At our
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Table 1. Cognitive tests included in the primary mercury–IQ dose–response analysis model.

Test Domain assessed

Faroe Islands study (917 children tested at 7 years of age)
WISC-R (Full-Scale IQa) General intelligence
CVLT (short term) Verbal learning and memory
Bender-Gestalt Test (errors on copying) Visual–motor integration
BNT (no cues) Confrontational naming

New Zealand study (237 children tested at 6 years of age)
WISC-R (Full-Scale IQ) General intelligence
WISC-R (Performance IQ) General intelligence
MCC (Perceptual) General development
TOLD (spoken language quotient) General verbal skills

Seychelles study (643 children tested at 9 years of age)
WISC-III (Full-Scale IQ) General intelligence
CVLT (short term) Verbal learning and memory
VMI Visual–motor integration
BNT (total score) Confrontational naming
WRAML (design memory) Visual memory

Abbreviations: BNT, Boston Naming Test; CVLT, California Verbal Learning Test; MCC, McCarthy Scales of Children’s
Abilities; TOLD, Test of Language Development; VMI, Developmental Test of Visual–Motor Integration; WISC-R, Wechsler
Intelligence Scales for Children, Revised; WISC-III, Wechsler Intelligence Scales for Children, 3rd ed.; WRAML, Wide
Range Assessment of Memory and Learning.
aEffect of prenatal mercury exposure on Full-Scale IQ, as derived from a structural equation model of the three WISC-R
subtests conducted in the Faroe Islands study (Digit Span, Similarities, Block Design).

Table 2. Estimated regression coefficients for the three WISC-R subtests conducted in the Faroe Islands
study, and SEM-derived estimates of Full-Scale IQ. 

Response Standardized
End point β (SE)a SDb coefficientc

WISC-R subtests
Digit Span –0.025 (0.018) 1.45 –1.72
Similarities –0.039 (0.050) 3.86 –1.01
Block Design –0.175 (0.098) 8.92 –1.94

SEM estimates of WISC-R Full-Scale IQ
Estimate A –0.024 (0.011) 1.45 –1.65
Estimate B –0.024 (0.011) 0.586 –4.10

Abbreviations: SEM, structural equation model. 
aEffect per 10-ppb increase in cord blood mercury, as reported by Budtz-Jorgensen et al. (2005). bThe response SD for the
three WISC-R subtests is the SD for the Faroe Islands cohort for each subtest. For the SEM estimates, two choices are
available: Estimate A assumes that the response SD for Digit Span applies to the SEM estimate, because the SEM latent
variable representing IQ was estimated under the assumption that it has the same scale as the Digit Span end point.
Estimate B uses the SD of the SEM latent variable itself, obtained as part of the SEM estimation procedure. Estimate A is
used in the primary analysis, and Estimate B is applied in a sensitivity analysis. cThe standardized coefficient is the esti-
mated coefficient (β) as a percentage of the response SD.



request, the Faroe Islands investigators fit data
for these three subtests in a structural equa-
tion model (SEM) to estimate a standardized
coefficient for a hypothetical Full-Scale IQ
(Budtz-Jorgensen et al. 2005). Structural
equation modeling allows the combination of
multiple exposures and responses via the use
of latent variables (Budtz-Jorgensen et al.
2002). In the SEM analysis of IQ, the three
WISC-R subtests are viewed as representative
of an underlying latent IQ variable. 

When fitting an SEM, it is necessary to
specify the scaling of any latent variables
involved in the model. The Faroe Islands
investigators assumed that the IQ latent vari-
able was on the same scale as Digit Span. The
analysis estimated a coefficient of –0.024 and
a standard error of 0.011 for the effect of each
10 ppb of cord blood mercury on latent Full-
Scale IQ, with a p-value of 0.031 (Budtz-
Jorgensen et al. 2005). 

As with the general case discussed above,
the coefficient of the SEM latent variable also
requires rescaling so that it is comparable to
Full-Scale IQ. In this particular case, there are
two possible approaches to rescaling (Table 2):
One uses the standard deviation for Digit
Span (because the latent variable is assumed to
be on the same scale as Digit Span), whereas
the second uses the estimated standard devia-
tion of the latent variable itself, obtained as
part of the SEM fitting procedure. Our pri-
mary approach uses the IQ estimate derived
with the Digit Span standard deviation.
However, the estimate derived with the stan-
dard deviation of the SEM latent variable may
also be valid, so we used this estimate in a sen-
sitivity analysis. The standard deviation for the
SEM latent variable is considerably smaller
than the Digit Span standard deviation, result-
ing in a larger estimated impact of mercury
exposure on IQ for the Faroe Islands cohort. 

Statistical modeling. To estimate the associ-
ation between mercury and IQ using infor-
mation from the three studies, we used a
hierarchical random-effects model that includes
study-to-study as well as end point–to–end
point variability. Such models are commonly
used in settings where the goal is to combine
related information from several different
sources. For example, Dominici et al. (2000)
used such a model to combine dose–response
data related to particulate matter from different
U.S. cities. The approach used here extends the
Dominici work by including random effects
that reflect two levels of variability. Our model
is similar to the one described by Coull et al.
(2000) in their response to Dominici et al. [see
also Coull et al. (2003)].

Our analysis can be described as follows:
Let b1, b2,….bL represent the set of L esti-
mated standardized regression coefficients
that we wish to analyze in a combined model.
Similarly, we index the associated standard

errors as s1, s2,….sL. Along with each bi we
assign a covariate studyi, which takes the value
1, 2 or 3 and indicates whether the coefficient
came from New Zealand, Seychelles, or the
Faroe Islands study, respectively. We also
assign another covariate endpointi that indi-
cates which particular developmental end
point the coefficient bi was based on. We then
fit the model

bi = β0 + δendpointi
+ ηstudyi

+ ei , [1]

where β0 is the overall mean, ei is a random
error term assumed to be normally distributed
with mean 0 and known variance s 2

i , ηstudyi
is

a study-specific random effect, assumed to be
normally distributed with mean 0 and vari-
ance σ2

study , and δendpointi
is an end point–spe-

cific normal random effect with mean 0 and
variance σ2

endpoint . 
Although it is technically feasible to fit

our model using maximum-likelihood estima-
tion, the limited data meant that there was lit-
tle information available to reliably estimate
the variance components. Instead we imple-
ment the model with a Bayesian approach.
Maximum-likelihood estimation is based on
so-called frequentist inference, which refers to
the properties of estimators and random vari-
ables under hypothetical replications of the
experiment that generated the data. For
example, a sample mean will hover around
the true but unknown population mean
under repeated sampling from the popula-
tion. Frequentist inference treats model para-
meters as fixed, albeit unknown, quantities to
be estimated. In contrast, a Bayesian approach
treats not only the data but also all unknown
model parameters as random variables. Thus,
Bayesian inference requires specification not
only of the probability distribution of the
data, but also the probability distributions
(priors) of model parameters. 

In recent years, advances in computational
tools for Bayesian modeling have led to vastly
increased usage of these methods. The most
widespread computational approach, Markov
Chain Monte Carlo, has been implemented in
the user-friendly package WinBUGS (Lunn
et al. 2000). WinBUGS has become popular
even among frequentist statisticians because,
when sample sizes are large and the assumed
distributions on unknown model parameters
are very broad (i.e., noninformative or “flat”
priors), Bayesian inference will provide results
very close to those obtained through a fre-
quentist approach (Carlin and Louis 2000).
WinBUGS is particularly useful for fitting
complex hierarchical models that would be
difficult to handle using a maximum-likeli-
hood approach, which was important to our
decision to fit our models with a Bayesian
approach. Additionally, as discussed below,
the approach allowed us to overcome some

computational problems through the use of
slightly informative priors. Our analysis used
WinBUGS version 1.4 (http://www.mrc-bsu.
cam.ac.uk/bugs/).

The Bayesian approach requires the speci-
fication of prior distributions for all model
parameters, including β0, σ2

study , and σ2
endpoint .

Data limitations in our setting precluded the
specification of fully noninformative priors on
the variance components. To address this
concern, we reparameterized to

σ2
study = Rσ2

endpoint , [2]

so that R is a ratio of study-to-study variabil-
ity relative to end point–to–end point vari-
ability. We then fitted the model for various
fixed, reasonable values of R. 

Although it is common for Bayesian mod-
elers to use an inverse gamma to specify a
prior distribution on a variance component,
we found this formulation to be unstable in
that our results were highly sensitive to the
gamma parameters. This finding is consistent
with a number of reports in the literature (e.g.,
Gelfand et al. 1995). Gelman (2006) argues
that more stable results can be obtained by
specifying priors directly on the variance com-
ponents or their square root. We used this
approach, with appropriate prior distributions
determined by examination of a profile likeli-
hood surface obtained by treating the parame-
ters R and σstudy as fixed and known. This
analysis found that although there was little
information in the data to estimate R, the
most likely values for σstudy ranged between 0
and 0.2. We therefore specified a uniform
prior on σstudy with this range.

All fitted models were checked for conver-
gence and refit with different starting values
to ensure that reliable estimates had been
obtained. These procedures yielded computa-
tionally stable results and allowed us to explic-
itly evaluate the sensitivity of our results to
the values of the variance components.
Sample code is provided in the Supplemental
Material (online at http://www.ehponline.
org/docs/2007/9303/suppl.pdf). 

In the frequentist approach to statistical
analysis, confidence intervals (CIs) are typi-
cally based on a normality assumption and, in
the case of a 95% confidence interval, corre-
spond to the estimated parameter ± 1.96 times
the standard error. A confidence interval is
based on the probability distribution of the
estimated parameter, and should not be inter-
preted as a probability statement about the
parameter of interest, which is assumed to be
fixed (nonrandom) but unknown. In contrast,
because a Bayesian approach treats model
parameters as random variables, the distribu-
tion of the unknown parameter of interest can
be computed. This distribution is known as
the posterior, and the highest posterior density
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(HPD) interval refers to the most probable
range of the parameter of interest, given the
observed data. In settings where sample sizes
are large and flat priors have been used, confi-
dence and HPD intervals will generally be
indistinguishable. Although our Bayesian
analysis yields HPD intervals, we refer to these
as confidence intervals to aid in the interpreta-
tion of our results.

Further discussion of our modeling process
may be found in a separate paper (Ryan LM,
in press). 

Sensitivity analyses. We conducted several
sensitivity analyses to examine the impacts of
alternate input data. The first sensitivity analysis

considers a model that includes only the IQ
dose–response coefficients estimated for the
three studies. Maximum-likelihood estimation
was straightforward in this case, because no end
point–to–end point variation was involved. 

Other sensitivity analyses used the Bayesian
approach to incorporate alternate input values.
We considered the use of coefficients from the
New Zealand study in which a single highly
exposed child is included. We also repeated the
analysis using the alternate estimate of the
rescaled IQ dose–response coefficient for the
Faroe Islands study, where the rescaled coeffi-
cient uses the standard deviation of the latent
variable from the SEM. 

Results
Primary analysis. Table 3 shows the cognitive
end points from each of the three studies used
in this analysis, the regression coefficients
reported in the three studies, and coefficients
rescaled so that they are all expressed in com-
parable terms (i.e., rescaled using the standard
deviation of IQ, and with exposure expressed
in terms of hair mercury). 

Using values of R (ratio of study-to-study
variability relative to end point–to–end point
variability) between 0.25 and 4 produced cen-
tral estimate dose–response coefficients rang-
ing from –0.15 (R = 0.25) to –0.19 (R = 4.0)
IQ points per parts per million of maternal
hair mercury, which were statistically signifi-
cant in all cases (Table 4). As R increases, the
study-to-study variance component also
increases (Table 4). Although there is not
enough information available to reliably esti-
mate both R and σstudy, visual inspection of
the data displayed in Figure 1 suggests that
there is likely to be more study-to-study than
end point–to–end point variation. Because
the results appear to stabilize at a value of R =
3.0 and because this value seems reasonable,
we use this value for all subsequent analysis
and as the basis of our main study findings. 

The integrated analysis produced a central
estimate of –0.18 (95% CI, –0.378 to –0.009)
IQ points for each part per million maternal
hair mercury, similar to the results found for
both the Faroe Islands and Seychelles studies,
and lower than the estimate found in the New
Zealand study (Figure 2). 

Sensitivity analyses. Our first sensitivity
analysis, using simple maximum-likelihood
analysis, includes only the IQ dose–response
coefficients from the three studies, and does
not include the other cognitive outcomes. We
find an overall mean dose–response coefficient
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Table 4. Estimates of an IQ–mercury dose–response coefficient from a hierarchical model, integrating
data from three epidemiologic studies, for different values of R = σ2

study /σ2
endpoint.

R σstudy (SE) βIQ (SE)a 95% CIb

4.0 0.118 (0.051) –0.188 (0.096) –0.398 to –0.010
3.5 0.116 (0.050) –0.182 (0.091) –0.390 to –0.007
3.0 0.112 (0.051) –0.180 (0.092) –0.378 to –0.009
2.5 0.110 (0.051) –0.183 (0.090) –0.384 to –0.017
2.0 0.107 (0.050) –0.178 (0.088) –0.371 to –0.012
1.5 0.095 (0.053) –0.168 (0.086) –0.360 to –0.003
1.0 0.086 (0.051) –0.165 (0.080) –0.338 to –0.015
0.5 0.068 (0.046) –0.160 (0.071) –0.321 to –0.026
0.25 0.049 (0.038) –0.151 (0.061) –0.283 to –0.033
aEstimated IQ decrement per part per million maternal hair mercury. The square root of the study-to-study variance com-
ponent, σstudy, is assumed to have a uniform distribution with a range of 0–0.2. bSee “Statistical modeling” for discussion
of how confidence intervals relate to highest posterior density intervals.

Table 3. Original and rescaled regression coefficients and associated standard errors for cognitive end
points from the Faroe Islands, New Zealand, and Seychelles studies of prenatal mercury exposure.

Scaling Original scale Rescaleda

Study End point factora β SE β SE

Primary analysis inputs
Faroe Islands Full-Scale IQb 5.17 –0.024 0.011 –0.124 0.057

(Budtz-Jorgensen et al. 2005) Benderc –1.42 0.073 0.059 –0.104 0.083
BNT 1.37 –0.190 0.063 –0.260 0.086
CVLT 2.91 –0.058 0.032 –0.169 0.093

New Zealand, outlier excludedd Full-Scale IQ 0.94 –0.53 0.285 –0.50 0.268
(Crump et al. 1998) Performance IQ 0.94 –0.54 0.330 –0.51 0.310

TOLD 0.94 –0.60 0.300 –0.56 0.282
MCC 1.5 –0.53 0.210 –0.80 0.315

Seychelles Full-Scale IQ 1.29 –0.13 0.10 –0.17 0.130
(Myers et al. 2003) CVLT 14.42 0.013 0.010 0.19 0.144

BNT 3.13 –0.012 0.046 –0.038 0.144
WRAML 5.17 –0.021 0.029 –0.109 0.150
VMI 1.28 –0.010 0.12 –0.013 0.150

Sensitivity analysis inputs
Faroe Islands, alternate IQ Full-Scale IQ 12.8 –0.024 0.011 –0.307 0.141

(Budtz-Jorgensen et al. 2005)
New Zealand, outlier includedd Full-Scale IQ 0.94 –0.18 0.155 –0.17 0.15

(Crump et al. 1998) Performance IQ 0.94 –0.12 0.165 –0.11 0.16
TOLD 0.94 –0.19 0.145 –0.18 0.14
MCC 1.5 –0.18 0.110 –0.27 0.17

Abbreviations: BNT, Boston Naming Test; CVLT, California Verbal Learning Test; MCC, McCarthy Scales of Children’s
Abilities; TOLD, Test of Language Development; VMI, Developmental Test of Visual–Motor Integration; WRAML, Wide
Range Assessment of Memory and Learning.
aSee Supplemental Material (http://www.ehponline.org/docs/2007/9303/suppl.pdf) for derivation of scaling factors.
Rescaled coefficients are interpretable in the same scale as Full-Scale IQ. For the Faroe Islands study, rescaling also
converts the values from units of cord blood mercury to units of hair mercury, to be comparable with the New Zealand
and Seychelles exposure metrics. bFull-Scale IQ for the Faroe Islands is estimated with an SEM combining three WISC-R
subtests (Digit Span, Similarities, Block Design). The primary estimate is scaled using the response SD of Digit Span
(Table 2, Estimate A); the alternate estimate is scaled using the standard deviation of the SEM latent variable itself,
obtained as part of the SEM estimation procedure (Table 2, Estimate B). cThe scaling factor for Bender is negative
because higher scores on this test represent poorer performance. dThe primary analysis inputs for the New Zealand
study are derived with one highly exposed child excluded; the sensitivity analysis inputs are derived with that child
included. SEs for the New Zealand study are obtained by subtracting the reported regression coefficient from the
reported upper confidence limit and dividing by two.

Figure 1. Coefficients and 95% confidence intervals
for the dose–response relationship between neu-
rodevelopmental test scores and maternal hair
mercury from three epidemiologic studies. Solid
lines indicate coefficients for Full-Scale IQ, and
dashed lines indicate coefficients for other neu-
rodevelopmental tests included in the primary
analysis (see Table 3). Coefficients for end points
other than IQ are rescaled to be expressed in
equivalent terms.
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of –0.145 (95% CI, –0.259 to –0.047)
(Table 5). Note that the study-to-study vari-
ance component had an estimated value of 0
in this analysis. 

Using the New Zealand coefficients with
the outlier included in the hierarchical analy-
sis reduces the central estimate of the
dose–response coefficient, compared with the
primary analysis, to –0.125 (Table 5). The
study-to-study variance component was
reduced, and the precision associated with the
coefficient increased, with 95% CI of –0.236
to –0.007).

The Bayesian model was also rerun with
the alternate estimate of the IQ dose–response
coefficient for the Faroe Islands, where the IQ
coefficient from the SEM analysis was rescaled
using the estimated standard deviation of the
latent variable (0.586) rather than the stan-
dard deviation of the Digit Span subtest
(1.45). This produced a rescaled Faroe Islands
dose–response coefficient of –0.307, com-
pared with the rescaled coefficient of –0.124
used as input to the primary analysis. The
resulting integrated dose–response coefficient
for IQ increases in magnitude to –0.25 (95%
CI, –0.491 to –0.052) (Table 5). 

Discussion

Our analysis integrated data from three
epidemiologic studies to estimate a change in
childhood IQ of –0.18 IQ points (95% CI,
–0.378 to –0.009) for every part per million
mercury in maternal hair. This central estimate
is relatively close to the values for the Faroe
Islands and Seychelles studies, suggesting less
influence on the integrated value from the
larger coefficient estimated in the New Zealand
study. The smaller influence of the New
Zealand coefficient is attributed to the smaller
size of the cohort and the greater uncertainty in
the central estimate of the dose–response coef-
ficient, as depicted in Figure 2. 

Our analysis provides the ability to estimate
benefits from reductions in mercury exposure,

similar to previous analyses estimating benefits
of reducing childhood lead exposure. We
assume a linear, nonthreshold relationship
between prenatal mercury exposure and IQ
deficits in the children. The choice of a linear
nonthreshold dose–response model was based
on several considerations: the shape of the
dose–response in the range of the observed
data; the magnitude of the extrapolation below
the observed data; relevant biologic considera-
tions; and the available information for the
Seychelles and New Zealand studies, which
consisted of linear dose–response coefficients.
The NRC panel concluded that linear models
are most appropriate for dose–response model-
ing of mercury’s neurodevelopmental effects in
the absence of persuasive evidence supporting
an alternative functional form (NRC 2000). In
addition, the U.S. EPA has concluded that “no
evidence of a threshold arose for methylmer-
cury-related neurotoxicity within the range of
exposures in the Faroe Islands study” (U.S.
EPA 2001). 

An important consideration in extrapolat-
ing below the observed data is the extent of
the extrapolation. The lowest exposure in the
Faroe Islands study is 0.9 ppb mercury in
cord blood, equivalent to 0.53 ppb mercury
in maternal blood [assuming a ratio of mer-
cury in cord blood to maternal blood equal to
1.7 (Stern and Smith 2003)]. More than 50%
of U.S. women had blood mercury concentra-
tions > 0.53 ppb in 1999–2002 (Centers for
Disease Control and Prevention 2004).
Although there is limited information on the
shape of the dose–response relationship at
lower exposure levels, it is reasonable to
assume that the linear dose–response relation-
ship recommended by the NRC for the
observed range of the data in the epidemio-
logic studies applies as well in extrapolating to
the range of the U.S. data. Scientific findings
suggest that the slope of the dose–response
curve may in fact be steeper at lower doses
(i.e., supralinear). A log-linear model was
found to provide the best fit between cord
blood mercury and cognitive effects in the
Faroe Islands study (Budtz-Jorgensen et al.
2000). Also, analyses of the relationship
between childhood lead exposure and IQ

have found a steeper response at exposures
< 10 µg/dL (Lanphear et al. 2005), and other
findings in the literature suggest the plausibil-
ity of supralinear dose–response relationships
(Castorina and Woodruff 2003; Thompson
and Myers 2006). If such a relationship
applies in the case of mercury and IQ, a linear
term will underestimate the effect. 

In addition, recent commentaries have
proposed using linear dose–response models
for noncancer end points (Clewell and
Crump 2005; Crawford and Wilson 1996).
The authors note that assuming linearity is a
reasonable approach, based on similar consid-
erations underpinning linear nonthreshold
dose–response models for carcinogens,
including the presence of background bio-
logic processes, background exposures to
other chemicals, and variability in human
response (Clewell and Crump 2005;
Crawford and Wilson 1996; Crump et al.
1976). Considering all of the available infor-
mation, the assumption of linearity in our
analysis is a reasonable approach.

Full-Scale IQ is a composite index that
averages a child’s performance across many
functional domains, providing an overall pic-
ture of cognitive health. IQ as measured at
school age has been shown to be predictive of
later outcomes such as academic and occupa-
tional success (Neisser et al. 1996). However,
if mercury affects only specific cognitive func-
tions, using Full-Scale IQ as the end point for
a benefits analysis will underestimate the neu-
rodevelopmental impacts on other targeted
functions. 

Moreover, there may be substantial
deficits in cognitive well-being even in indi-
viduals with normal or above average IQ. For
example, two of the most sensitive end points
in the Faroe Islands study were the Boston
Naming Test (BNT), which assesses word
retrieval, and the California Verbal Learning
Test (CVLT), which assesses the acquisition
and retention of information presented ver-
bally. A child who has deficits in either of
these skills could, depending on their severity,
be at a considerable disadvantage in the class-
room and at substantial educational risk.
Neither of these abilities is directly assessed by
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Table 5. Sensitivity analysis for estimation of integrated IQ dose–response coefficients. 

Analysis σstudy (SE) βIQ (SE) 95% CIa

Primary analysis 0.112 (0.051) –0.180 (0.092) –0.378 to –0.009
Use only IQ coefficientsb 0.0 (NAc) –0.145 (0.051) –0.259 to –0.047
Include New Zealand outlierd 0.056 (0.042) –0.125 (0.056) –0.236 to –0.007
Alternate Faroe Islands IQe 0.132 (0.044) –0.254 (0.112) –0.491 to –0.052

NA, not applicable. The value of R is set to 3.0.
aSee “Statistical modeling” for discussion of how confidence intervals relate to highest posterior density intervals.
bMaximum-likelihood estimation of integrated IQ dose–response coefficient considering only the IQ dose–response coef-
ficients from the three epidemiologic studies. cSE could not be estimated because the estimated value of σstudy was on
the boundary of the parameter space. dEstimation of integrated IQ dose–response coefficient with a Bayesian hierarchi-
cal model that incorporates all end points listed in Table 1, and using alternate values for New Zealand study shown in
Table 3. eEstimation of integrated IQ dose–response coefficient with a Bayesian hierarchical model that incorporates all
end points listed in Table 1, and using the alternate value for Full-Scale IQ for the Faroe Islands study shown in Table 3. 

Figure 2. Coefficients and 95% confidence intervals
for the dose–response relationship between IQ and
maternal hair mercury from the three epidemio-
logic studies and for the results of the integrated
analysis.
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the WISC IQ test, however, so they do not
explicitly contribute to a child’s IQ score.
Therefore, benefits calculations relying solely
on IQ decrements are likely to underestimate
the benefits to cognitive functioning of
reduced mercury exposures. In addition,
impacts on other neurologic domains (such as
motor skills and attention/behavior) are not
represented by IQ scores and thus are also
excluded from the analysis.

An earlier version of this work, included
in the technical documentation for the U.S.
EPA’s Clean Air Mercury Rule of March
2005, reported a central estimate of –0.13 for
the mercury–IQ coefficient (Bellinger 2005;
Ryan 2005; U.S. EPA 2005). A revised ver-
sion, reflecting corrections to the original
model code, was included in subsequent rule-
making documentation, and reports a central
estimate of –0.16 (U.S. EPA 2006). The cen-
tral estimate of –0.18 reported here reflects
revisions that adapt the recommendations of
Gelman (2006) for specification of prior
assumptions in Bayesian analysis, as discussed
above. 

Although exploratory likelihood-based
analysis indicated a likely range for the prior
distribution on σstudy of 0–0.2, sensitivity of
the model to the uniform prior distribution
on σstudy was assessed by changing the specifi-
cation to a range of 0–0.3 or 0–0.4. Posterior
estimates of σstudy increased slightly. The esti-
mated dose–response coefficient remained
stable at approximately –0.18, and there was
some variation in width of the confidence
intervals, with upper confidence limits mar-
ginally exceeding zero with the broader priors. 

This analysis relies on use of summary sta-
tistics for each of the three studies. Original
data were not available for this analysis.
Although a lack of original data is a potential
limitation, its impact here is lessened for sev-
eral reasons. All three epidemiologic studies
had careful prospective designs and measured
a variety of important potential confounders.
The dose–response coefficients were derived
from well-documented regression models that
adjusted for age, maternal education, and
other important factors. Dominici et al.
(2000) took a similar approach for hierarchical
modeling of estimated dose–response coeffi-
cients extracted from separate studies.

We converted the Faroe Islands cord blood
mercury coefficients to hair mercury units
using the study’s median hair:cord blood ratio
of 200. However, this ratio is not constant over
the range of exposures (Budtz-Jorgensen et al.
2004a). To evaluate the impact of the varying
ratio, we conducted a simulation using para-
meters reported by Budtz-Jorgensen et al.
(2004a). The simulation produced multiple
paired estimates, each consisting of a direct
hair mercury–IQ coefficient and an indirect
hair mercury–IQ coefficient derived by

estimating a cord blood mercury–IQ coefficient
then dividing by the hair:cord blood ratio of
200. On average, the direct estimate of the
hair mercury–IQ coefficient was around 10%
smaller than the indirect estimate. Using a
constant ratio therefore had a small impact on
the estimated hair mercury–IQ coefficient for
the Faroe Islands study; the impact on the
integrated coefficient derived from all three
studies would be even smaller.

We focused the selection of outcomes for
this analysis on tests of cognitive functioning.
We did evaluate an alternative formulation of
the model that included tests of attention,
behavior, and motor skills (Ryan 2005). Not
surprisingly, the results of this model displayed
greater uncertainty than the primary analysis,
indicating that the overall signal is dampened if
we include end points unrelated to cognition. 

An advantage of our hierarchical modeling
approach is that it can produce separate
dose–response coefficients for each of the out-
comes included in the model, as well as a coef-
ficient integrating all outcomes. An important
reason for focusing on IQ was that methods
already exist for valuing this end point in eco-
nomic benefit–cost analysis. However, it would
be useful and appropriate for economic analy-
ses to consider a broader range of outcomes.
For example, in the primary analysis model,
the overall mean coefficient for the achieve-
ment/cognition domain is –0.19 (95% CI,
–0.394 to –0.021), and the coefficient for the
BNT is –0.21 (95% CI, –0.443 to –0.037).
These additional dose–response estimates
should be considered for use in expanded eco-
nomic analyses of neurodevelopmental effects;
this would require economic research on indi-
viduals’ willingness-to-pay for reducing risks of
neurodevelopmental effects. 

A recent article by Trasande et al. (2005)
used results from Budtz-Jorgensen et al.
(2005) to estimate a Faroe Islands IQ decre-
ment of 4–8% of a standard deviation for
each 10 ppb cord blood mercury. The com-
parable Faroe Islands estimate in our analysis
is either 1.65 or 4.10% of a standard devia-
tion (Table 2). The Trasande estimate is
based on the results for the BNT, the CVLT
(both tests of cognitive function), and the
Continuous Performance Test (test of atten-
tion/behavior, and which provided the upper
end of the range). Trasande et al. (2005) did
not consider the results of the WISC subtests
(for which the decrements generally equal
around 2% of a standard deviation), which
are most directly relevant to estimation of the
mercury–IQ relationship. Our estimate is
based on the SEM result that was derived
from the three WISC subtests. 

Finally, the integrated dose–response
analysis assumes that the exposures assigned to
each study subject are accurate representations
of true exposure. In reality, there is likely to be

some discrepancy between measured and
actual exposures—for example, due to varia-
tion in hair length. Alternatively, the true
exposure of interest may have occurred during
the first trimester of pregnancy, whereas mer-
cury in maternal hair samples only a few cen-
timeters in length collected at birth and in
cord blood samples reflect exposures later in
pregnancy. Presence of exposure measurement
error could introduce a bias in the results,
most likely toward the null (Budtz-Jorgensen
et al. 2004b). 

Using a statistical technique that accounts
for variability within and between studies, we
have produced an integrated estimate of the
dose–response relationship between prenatal
mercury exposure and IQ. IQ does not repre-
sent all neurodevelopmental deficits associ-
ated with mercury, so estimates of effects
using this relationship will understate the
overall impacts of prenatal mercury exposure.
Nevertheless, the estimated mercury–IQ rela-
tionship provides a broad-based measure of
effects on cognitive development and can be
readily applied to estimate benefits of reduc-
ing mercury exposures in the population.
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