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Assessment of Myelotoxicity Caused
by Environmental Chemicals

by G. A. Boorman,*t M. . Luster,* J. H. Dean* and

M. L. Campbell*

Potential antineoplastic agents must be screened for the delayed toxicity that occurs in many
cases of drug-induced bone martow aplasia. Jn titro clonal assays for hematopoietic progenitor
cells have heen developed to assess the degree of myelotoxicity, This adverse side effect is often
the limiting factor in the development of new cancer chemotherapeutics. In addition, many
environmental chemicals are cytotoxic to rapidly proliferating cells, but a systematic assessment
of their myelotoxicity has not been performed. We have used clonal marrow assays to investigate
a panel of chemicals including 2,3,7,8-tetrachlorodibenzo-p-dioxin, polybrominated biphenyls,
diethylstilbestrol, benzo(a)pyrene and indomethacin. All were immunotoxic, some to pleuripotent
hemopoetic stem cells and others to granulocyte-macrophage progenitors, and at concentrations
below those causing other toxic manifestations. This shows that these bone marrow clonal
assays, and hopefully future ones for erythroid, B- and T-lymphocytes, and megakaryocytes, will
provide the specificity and sensitivity necessary to delineate the myelotoxicity of a broad

spectrum of environmental chemicals,

Introduction

As one of the most rapidly renewing cell popula-
tions, hemopoietic cells have proven very sensitive
to eytotoxic agents (7-5). Bone marvow failure is g
significant complication of eancer chemotherapy and
has also been implicated as a result of exposure to
numerous drugs (6-9) and environmental agents
(10-12). During the past decade, a variety of semi-
solid in vitro culture technigques have been devel-
oped for most of the hemopoietic cell lines.
Examination of colony formation of the hemopoietic
cells following exposure to various agents has prov-
en to be a sensitive indicator of toxicity as well as a
means for mechanistic study of the toxicity of various
drugs (9).
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Murine pleuripotent hemopoietic stem cells can
be detected by injecting bone marrow cells into
irradiated recipients and counting the number of
colonies that form in 8 days (13). More differentiat-
ed committed progenitor cells can be induced to
form colonies in semisolid media by adding appro-
priate stimulating factors. Currently, clonal assay
procedures exist (Fig. 1) for B- and T-lymphocytes,
macrophage-granulocyte progenitors, megakaryo-
cytes, eosinophils and erythroid precursors (14,15).
Colonies arise from proliferation of individual cells
and the number of colony forming cells are aitered
under abnormal physiological econditions following
treatment with certain drugs, and in certain dis-
ease states such as chronic myelogenous leukemia
and polycythemia rubra vera (15).

Hemopoietic stem cells appear to have a limited
capacity for division. This can be demonstrated by
serial passage of bone marrow cells into irradiated
recipients (16). Serial transfer of the donor cells will
permit the marrow tissue to survive beyond the
normal life expectancy and shows that bone mar-
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Figure 1. Model of hematopoiesis as determined by in vitro

and in vivo clonal assays. CFU-S, colony-forming unit-
spleen; CFU-TL and CFU-BL, colony-forming unit-T and
B-lymphocyte, respectively; BFU-E, burst-forming unit-
erythroid; CFU-E, colony-forming unit-erythroid; CFU-GM,
colony-forming unit-granuloeyte-macrophage; CFU-M, colony-
forming unit-megakaryocyte; CFU-Eo, colony-forming unit-
eosinophil.

row would not be a limiting factor in aging of the
mouse. Fetal or embryonic hemopoietic tissue has a
greater capacity for serial transfer than from adult
mice. However, serial transfer capacity changes
very little with aging, suggesting the stem cell
compartment is minimally used during adult life
(18). Several studies have shown that exposure to a
toxic agent such as busulfan can induce a perma-
nent stem cell defect that persists throughout the
life of the animal without any evidence of recovery
(19,20). Animals with permanent stem cell defect
may have normal bone marrow cellularity and pe-
ripheral bload counts, but the residual injury can be
demonstrated by increased sensitivity to irradia-
tion (19), decreased erythropoietic response follow-
ing anemia stress (21), decreased proliferative
capacity of bone marrow or after serial transplanta-
tion (22) and decreased antibody response (20).
These animals will eventually die of chronic aplastic
marrow failure (23).

The concept of residual marrow injury may prove
to be very important in toxicology testing. Current-
ly toxicological assessment devotes little effort to
understanding myelotoxicity and the usual screen-
ing programs would not detect residual stem cell
injury since these animals may appear clinically
normal. Chronic aplastic marrow failure, frequent-
ly a fatal syndrome, has a history of drug or chemi-
cal exposure in approximately 50% of the cases (23).
Although marrow failure is rare, the studies cited
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Ficure 2. Scheme of testing for myelotoxicity. Following ex-

posure to a chemical a single cell suspension is made of
femoral marrow. Following enumeration of nucleated mar-
row cells they are injected into irradiated recipients to mea-
sure colony-forming units-spleen (CFU-8) and plated in in
vitro cultures to which has been added colony-stimulating
factor (CSF), erythropoietin (EPQ) or pokeweed stimulated
lymphocyte culture medium (PSLCM} which will allow the
proliferation of granulocyte-macrophage progenitors (CFU-GM),
erythroid progenitors (BFU-E and CFU-E) and megakaryo-
cytes (CFU-M), respectively.

above suggest a much larger population may exist
with undetected residual stem cell injury following
chemical exposure. This population would show
decreased ability to respond to situations requiring
increased hemopoaietic cell production and may be
more susceptible to other cytotoxic drugs. While
the model of induced stem cell defect and marrow
failure was developed in mice, it would appear
relevant to man, since it has been shown that
patients exposed to chemotherapy show a prolenged
decrease in bone marrow colony-forming cells in
spite of normal peripheral blood counts, and it has
been suggested that the marrow is more fragile in
these patients (24). Based on the mouse model,
these patients would be expected to have less bone
marrew reserve when extra hematopoietic cells are
needed (Fig. 2).

Assessment of Bone Marrow
Capacity by Use of
Clonal Assays

Pleuripotent Stem Cells (CFU-S)

Till and McCulloch (18) showed that when mouse
marrow cells were injected into heavily irradiated
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recipients, discrete nodules of hemopoietic cells
would form in the spleen of the recipients in 8 or 9
days. The nodules, called spleen colonies, contained
pure or mixed populations of various hemopoietic
cell lines (25) and were shown by chromosomal
markers (25) to arise from individual cells which
have been called colony-forming unit-spleen (CFU-S),
or pleuripotent stem cells.

When igolated, made into a suspension and
reinjected into an irradiated recipient, a stem cell
colony containing cells of one hemopoietic cell line
would give rise to new colonies of all cell lines,
demonstrating both the self-renewal capacity and
pleuripotentiality of the CFU-S. The relationship of
the CFU-S to lymphocytes, an area of controversy,
now appears to be resolved with the CFU-S and
lymphoid progenitors being derived from a com-
mon, more primitive, stem cell (15,26). Most CFU-S
have a long generation time or remain longer in the
Gy cell eyele phase. When marrow depletion occurs,
CFU-3 respond by more rapid proliferation and
differentiation. As mentioned earlier, CFU-S have
a finite self-replication capacity which under normal
circumstances exceeds the life span of the mouse.
Chemotherapy or irradiation can damage the repli-
cative capacity of CFU-S with bone marrow failure
as a late sequela.

Granulocyte-Macrophage Progenitors
(CFU-GM)

Shortly after the development of the CFU-S
assay, Bradley and Metcalf (27) as well as Pluznik
and Sachs (28) demonstrated that bone marrow
cells would, with appropriate stimuli, form discrete
colonies in semisolid media in vitro. These colonies
arose from individual cells, and the cells giving rise
to these colonies were designated colony-forming
units in culture or CFU-C. The proliferation of
these cells requires the presence of a colony-
stimulating activity (CSF), and in 7 days colonies
contalning both granulocytes and monocyte-
macrophages are formed. A single cell can give rise
to both granulocytes and macrophages (29), and
this cell has subsequently been renamed CFU-GM
for colony-forming unit, granulocyte-maerophage.
The CFU-GM is a separate cell population from the
CFU-S, has a relatively high proliferation rate and
little capacity for self-renewal (15). Conditions that
demand granulopoiesis result in increased serum
and tissue CSF levels as well as increased marrow
CFU-GM numbers while eytotoxic agents cause
decreased CFU-GM numbers (30). The CFU-GM
assay is available for most mammalian species in-
cluding man and has led to the identification of
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factors having both positive and negative effects on
granulopoiesis.

Erythroid Progenitors (CFU-E,
BFU-E)

More recently, it has been reported that the
addition of erythropoietin to bone marrow cultures
will stimulate the growth of colonies that contain
hemoglobulin (21). Further study has shown that
these erythroid colonies contain at least two classes
of stem cells, a more primitive erythroid burst-
forming unit (BFU-E) requiring long culture peri-
ods (10-14 days) with high erythropoietin levels and
a more differentiated colony-forming unit-erythroid
(CFU-E) requiring lower erythropoietin level and
only 2 days of culture (22,33). Marrow CFU-E
numbers follow a predictive pattern, increased fol-
lowing bleeding (34) and decreased during plethora
induced by red cell transfusions (35). Erythroid
progenitors as measured by clonal assays are sensi-
tive to cytostatic agents (30,36,87) and known mar-
row toxicicants such as benzene (38,39). Use of
these assays has revealed that some patients with
aplastic anemia possess a population of lympho-
cytes capable of suppressing in vitro erythroid-
coleny formation by normal human bone marrow
(40), whereas in congenital hypoplastic (Diamond-
Blackfan) anemia, lymphocytes are normal, and the
defect appears to reside in the erythroid progeni-
tors (41). Thus these assays allow not only study of
erythroid progenitor cell numbers but can also con-
tribute to our understanding of hormonal factors
and cell to cell interaction as may occur in disease
states. Another technique used to study erythro-
poiesis is *?Fe uptake in spleen and marrow which
provides a specific marker for hemoglobin synthesis
{15,36). In this assay, mice are killed 18 hr after
injection of the isotope and tissues collected for
counting. Further studies are needed, however, to
determine the correlation between **Fe uptake and
the clonal assays for erythroid precursors.

Other Clonal Bone Marrow Assays
(CFU-BL, CFU-TL, CFU-M)

Clonal marrow assays have been developed for
B-lymphocytes (CFU-BL), T-lymphoeytes (CFU-TL),
and megakaryocytes (CFU-M) by adding appropri-
ate stimuli to semi-solid marrow cultures (15,38-40).
These new model systems should allow further
understanding of granulopoiesis and may represent
sensitive indicators of toxicity but need to be fur-
ther examined.
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Effects of Environmental Agents
on Myelotoxicity

Benzene is one of the more widely known
myelotoxic agents where short term exposure will
induce profound pancytopenia and anemia (41-48).
Following benzene exposure, there is decreased
*Fe uptake by hematopoietic organs (41), but whether
this compound acts at the more primitive BFU-E or
the more mature CFU-E has not been defined,

Mercury has been reported to cause pancytope-
nia in man, In vitro studies have shown that mi-
cromolar concentrations of both inorganic and organic
mercury inhibited colony formation in primary cul-
ture of mouse bone marrow (46). Addition of a toxic
chemical to marrow cultures may suggest myelo-
toxicity but further confirmation by in vive studies
are necessary.

We have used a mouse model to investigate
immunotoxicity. Our general experimental design
employs the female B6C3F1 hybrid mouse exposed
to chemicals at sublethal concentrations and frac-
tions thereof. A series of cell and humoral mediated
immunoassays, in addition to clonal marrow assays
are performed. This review deals principally with
the latter by describing the effects of a variety of
environmental pollutants on the pleuripotent he-
mopoietic stem cell (CFU-8) and the granulocyte-
macrophage progenitor (CFU-GM).

Tetrachlorodibenzo-p-dioxin (TCDD) is an envi-
ronmental pollutant that is ubiquitous, persists in
the environment, and causes varying degrees of

marrow hypocellularity in all species of animals
gtudied to date (47). Mice were exposed to 0, 1.0,
5.0 or 15 pg/kg body weight of TCDD pre- and
postnatally by maternal dosing (48). As shown in
Table 1, both 5 and 15 pgrkg dosage groups showed
a significant reduction in marrow cellularity, CFU-S
and CFU-GM. Hematology profiles and blood smears
revealed a normoeytic anemia in these mice (48);
bone marrow toxicity was correlated with depressed
immunologic and host resistance responses.
Polybrominated biphenyls (PBB) were accidently
introduced in cattle and chicken feed in Michigan
and resulted in widespread human exposure (49).
Mice were exposed pre/postnatally by maternal dos-
ing at 0, 1, 3 and 10 mg/kg maternal body weight
(49). As shown in Table 1, there was no significant
decrease in marrow cellularity or CFU-GM. The
CFU-S in male mice at the highest dose was 80% of
controls but the difference was not significant (50).
At the 1 mg/kg level, the CFU-GM numbers were
significantly enhanced. In general the study showed
little or no marrow alterations and also only mini-
mal alterations in immunological function tests.
Benzo(a)pyrene, a constituent of petroleum com-
pounds and derivatives, has long been recognized
as a potent mutagen and carcinogen. Mice were
exposed to 50, 200 or 400 mg/kg benzo{a)pyrene by
subcutaneous injection for 10 doses over a 14-day
period. Bone marrow cellularity showed a significant
increase but there was a significant and dose re-
sponsive reduction in both marrow CFU-S and
CFU-GM (Table 1). These mice also showed a vari-

Table 1. The effect of environmental chemicals on bone marrow.

Cell or colony numbers, % of controls

Marrow Pleuripotent stem Granuloeyte-macrophage
Chemical Dose, mg/kg cellularity cells (CFU-8) progenitors (CFU-GM)
TCDD 0.001 100" ND 121
0.005 83P 68° 90
0.015 61° ar 21°
FEB 1 91 ND 125"
3 95 ND 111
10 86 ND 108
B(a)P 50 115 80° 85
200 105 80¢ g2t
400 1200 51° a89¢
DES 0.2 34 97 16°
2 T4 88 65°
3 68 5Y¢ 63¢
IND 1 112 108 118
2 88 ND 122
4 96 81 120

“Percent of controls, 7 mice/group.
bP < (.05 vs. controls.
°P < 0.01 vs. controls.
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ety of immunological defeets, primarily of humoral
immunity (51).

Diethylstilbestrol (DES) was formerly prescribed
as a synthetic estrogen and also was used to fatten
cattle. Human residues accumulated from ingestion
of dairy and meat products have been found. Mice
were exposed by subcutaneous injection to 0.2, 2
and 8 mg/kg body weight for 5 consecutive days
(52). There was a dramatic decrease in marrow
cellularity, CFU-S and CFU-GM (Table 1). These
animals also exhibited highly enhanced sensitivity
to Listeria monocytogenes and other generalized
immunotexic responses (53).

Indomethacin (IND) is a potent anti-inflammatory
agent that appears to act by inhibiting prostaglan-
din synthetase. Mice were exposed to 0, 1, 2 and 4
mg/’kg by subcutaneous injection for six consecutive
days. In general there tended to be some enhance-
ment of CFU-GM with no significant alterations in
marrow cellularity or CFU-S (Table 1), These ani-
mals showed enhanced resistance to Listeria
monocytogenes (54).

Mice exposed to orthophenylp‘nenol or tris(2,3-
dichloropropyl) phosphate exhibited no alteration
in bone marrow cellularity or CFU-GM numbers
(55).

Conclusions

Clonal marrow assays have greatly aided our
understanding of hematopoiesis and factors control-
ling the production of blood cells, These assays are
currently finding widespread use in cancer chemo-
therapy centers as tools to understand and to moni-
tor myelotoxicity following antineoplastic therapy,
We have shown that some environmental pollutants
likewise have effects on marrow cellularity and
progenitor cells and that these effects are readily
detected by clonal marrow assays. It would appear
that wider application of these techniques can help
define myelotoxicity resulting from chemical expo-
sure.

Anemia is commonly reported in long term chronic
toxicity tests. This would suggest that myelotoxicity
assessment panels should also include assays for
erythroid progenitors. Erythropoiesis can also be
assessed by in vitro clonal assays or by *Fe uptake
M VLo,

Recently it has been shown that hemopoietic
stem cells have a limited renewal capacity and that
damage to these cells can induce a permanent de-
crease in their proliferative eapacity (20). This re-
sidual marrow damage would not be predicted by
parameters such as bone marrow cellularity, pe-
ripheral blood counts or even in some cases by
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CFU-8 numbers (20,36). However “stressors” such
as serial transfer of marrow (20), anemia (21) or
irradiation (29} have.revealed that these mice have
a more limited hemopoietic response than controls.
With the plethora of environmental chemicals it
gseems possible that exposure to one chemical may
induce residual marrow damage that would make
an individual more susceptible to a second chemical
insuit, although this hypothesis remains to be test-
ed.

The authors greatly appreciate the assistance of Ms. Beth
deBrito in the preparation of the manuseript.
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