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Cadmium, a widespread environmental
pollutant, remains a threat to human health
because there is little or no margin between
existing exposure levels and the level that
causes the first signs of tubular damage in
the general population (1). Recent work
shows a possible role for cadmium in the
development of osteoporosis (2). The intesti-
nal absorption of cadmium increases when
iron stores are depleted but the mechanism
of cadmium uptake is not known (3,4). 

Both the size of the iron stores and the
rate of erythropoiesis determine the intesti-
nal iron absorption (5). The mechanisms
behind this regulation, as well as those
behind the inappropriately increased mucos-
al iron transfer in the iron-loading disorder
hereditary hemochromatosis (HH), have
largely remained unknown. During the last
3 years, however, two important discoveries,
a transmembrane iron transporter (DMT1)
(6,7) and the gene responsible for HH,
known as HFE (8), have led to significant
progress. Nevertheless, the complexity of iron
homeostasis leaves much of the intestinal iron
absorption in both health and disease obscure.

DMT1 (9), previously called Nramp2
(6,10–13) or DCT1 (7), is a duodenal metal
transporter with affinity for several divalent
cations. It is present in the brush border
membrane at the site where most of the iron
is absorbed (7). DMT1 is up regulated by
iron deficiency (7,11,14) and may be
responsible for the increased absorption of
iron and cadmium observed at depleted iron
stores. The HFE protein is involved in the

down regulation of iron absorption that nor-
mally occurs with increasing iron status
(9,11,15–22). The HFE gene has a mutation
with cysteine substituted by tyrosine at
amino acid position 282 (C282Y) in approx-
imately 85% of the about 0.5% Caucasians
affected by HH (9,23). The loss of normal
HFE function may impair transferrin-recep-
tor-mediated uptake of transferrin-bound
serum iron in the intestinal crypt cells, lead-
ing to iron-deficient cells and increased
expression of DMT1 in mature villus ente-
rocytes (14,24). If this is the case, increased
cadmium absorption could be expected in
HH, as was previously shown for lead (25),
and we tested this hypothesis.

Materials and Methods

We determined cadmium and lead in blood
and iron status markers in 21 nonsmoking
subjects with HH (18 men and 3 women)
and conducted blood sampling in parallel
with phlebotomies. We compared the results
to those for 21 nonsmoking healthy controls
matched for age (± 8 years) and sex. 

HH diagnosis was based on family his-
tory, increased serum ferritin and transferrin
saturation, and liver histology. We conduct-
ed genetic testing for the HFE mutations; 17
of 21 subjects were homozygous for the
C282Y mutation, and 1 was homozygous
for the H63D mutation (histidine changed
to aspartate at amino acid position 63) (26).
None of the patients had any history of pre-
vious blood transfusion, alcohol overcon-
sumption (> 30 g ethanol/day), or dietary

iron supplementation. Serologic tests for
hepatitis B and C infection were negative in
all of the patients. Of the 21 subjects, 3 were
recently diagnosed cases in whom intensive
phlebotomy treatment had not yet started or
had just begun, and the remaining 18
patients were under maintenance treatment
with two to six phlebotomies per year. The
aim of the treatment was to maintain serum
ferritin at 30–60 µg/L. Phlebotomy treat-
ment totaled 0–10 years (mean 6 years), the
total number of phlebotomies was 0–75
(mean 38), and 0–34 L blood was removed
(mean 17 L). 

Cadmium and lead in blood were used as
measures of absorbed dose (27,28). They
were determined by graphite furnace atomic
absorption spectrometry with appropriate
quality control (29). We used the Wilcoxon
signed-ranks test for paired differences, and
cadmium and lead concentrations were
logarithmically transformed in the linear
regression analysis (SPSS version 9; SPSS Inc.,
Chicago, IL). We obtained protocol approval
from the ethical committee at Huddinge
University Hospital (Huddinge, Sweden). 

Results 

The significantly higher hemoglobin and
transferrin saturation in subjects with HH as
compared to controls agrees with the labora-
tory manifestations of the disease (Table 1).
Serum ferritin was lower in the phle-
botomized group because of the treatment.
The phlebotomized subjects were not con-
sidered to have depleted iron stores or iron
deficiency anemia at the time of blood
sampling. Although two subjects on a main-
tenance phlebotomy treatment had serum
ferritin < 20 µg/L (14 and 16 µg/L), they
had hemoglobin within the reference inter-
val. The blood concentrations of cadmium
and lead in the healthy controls were similar
to those of middle-aged Swedes (Table 1)
(30). Blood cadmium concentration, but not
lead, was significantly higher in the subjects
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The intestinal absorption of the nephrotoxic environmental pollutant cadmium increases marked-
ly when iron stores are depleted. This may be mediated by an up regulation of the recently identi-
fied mucosal transporter DMT1 (Nramp2 or DCT1) for divalent cations. We tested whether the
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cadmium and the number of years of phlebotomy treatment. Blood lead showed a similar but less
pronounced consequence of treatment. All HH subjects with lower blood cadmium than the cor-
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with HH on maintenance phlebotomy treat-
ment than in the paired controls (Table 1).
In the three nonphlebotomized subjects
both cadmium and lead concentrations were
lower than in paired controls, but we did not
perform statistical testing for differences
because of the small number of samples. 

Concentrations of cadmium, but not
lead, increased with increasing age in both
controls and in phlebotomized HH subjects,
although the increase was more pronounced
in the latter group. To control for this
increase and for sex, the ratio between HH
subjects and controls was expressed in rela-
tion to phlebotomy and to HFE mutations
(Figure 1). On average, blood cadmium
concentrations were 2 times higher in phle-
botomized subjects than blood cadmium
concentrations in the controls, whereas non-
phlebotomized subjects had concentrations
that were 60% of that in the controls. The
phlebotomized subjects with substantially
lower blood cadmium concentrations than
the corresponding age- and sex-matched
control (cadmium ratio < 0.5 in Figure 1; n
= 3) had either no mutation in the HFE
gene (n = 1), or were phlebotomized for
short periods of time (< 1.7 years; n = 2). No
such pattern was seen for blood lead. 

In HH subjects, blood cadmium was
highly related to the number of years of
treatment by phlebotomy (Figure 2), the
total amount of blood removed by phleboto-
my, and the total number of phlebotomies.
When we controlled for covariance through
a stepwise multiple regression analysis, only
years of treatment (adjusted r2 = 0.48) and
age, but not the amount of blood loss or the
number of phlebotomies, were significantly
correlated to blood cadmium. The number
of years of phlebotomy and age together
explained > 70% of the variation in cadmium

concentrations (adjusted r2 = 0.71; p
< 0.001). In addition, lead in the blood was
significantly correlated to the total number
of years of treatment (adjusted r2 = 0.35; p =
0.03), but not to the total amount of blood
loss or to the number of phlebotomies.
Adjustment of cadmium and lead to differ-
ences in hemoglobin concentration did not
alter the results.

Discussion

To our knowledge, this is the first study of
cadmium in subjects with pathologically
increased iron absorption. Our main finding
was the marked increase in blood cadmium
concentrations with the increasing number of
years of treatment by phlebotomy in subjects
with HH. This increase occurred indepen-
dently of age and despite the approximately
5–10% reduction of the amount of cadmium
in blood with each phlebotomy treatment.
Thus, the treatment rather than the disease
caused the increase in blood cadmium in
these subjects as compared to controls. 

Blood lead showed a similar but less pro-
nounced consequence of treatment, but was
not higher in HH subjects than in controls.
This finding was in contrast with previously
reported higher lead concentrations in HH
patients than in healthy controls (25). Barton
et al. (25) found no difference in blood lead
between phlebotomized and nonphleboto-
mized subjects, and no correlation between
blood lead and the number of phlebotomies.
However, they did not investigate an associa-
tion between blood lead and the number of
years of treatment, which was the only associ-
ation with lead in the present study. 

The absorption of iron increases after
hemorrhage. The present results indicate
that the repeated withdrawal of blood also
led to enhanced absorption of cadmium and,

to some extent, also lead. Depleted iron
stores increase the cadmium absorption of
both a single dose of cadmium and of dietary
cadmium (3,4), whereas similar studies on
lead are inconsistent (31). In the present
study, where no subjects with HH were con-
sidered clinically iron deficient, it seems like-
ly that the prolonged elevated erythropoiesis,
perhaps in combination with temporarily
reduced iron stores immediately after the
phlebotomy, caused an elevated intestinal
absorption of cadmium and lead. The
increased absorption of cadmium and lead
may be mediated by up regulation of the
duodenal metal-transporter DMT1. We
found that the effect of phlebotomy was more
pronounced for cadmium than for lead,
which is in accordance with an indicated
higher affinity of cadmium than of lead for
the DMT1 protein (7). In the phlebotomized
group, one subject had none of the mutations
in the HFE gene and showed no signs of
increased absorption due to the phlebotomies
(Figure 1). Whether this reflects a different
absorption in subjects lacking a homozygote
mutation as compared to the homozygous
mutations needs to be proven.

Unfortunately, few nonphlebotomized
HH subjects were available in this study.
Still, the concentrations of cadmium and lead
in these three subjects were consistently lower
and close to one-half that of their respective
controls. These findings further support the
conclusion that the treatment rather than the
disease caused increased cadmium uptake.
Because of the limited number of nonphle-
botomized subjects, it is not possible to
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Table 1. Age, iron status markers, and cadmium and lead in blood in nonsmoking subjects with hereditary
hemochromatosis and in nonsmoking healthy controls matched for age and sex.

Hemochromatosis Controls
Subjecta Median (range) median (range) p-Value

Age All 58 (31–80) 53 (28–77) NS
Hemoglobin (g/L) All 155 (131–167) 147 (131–160) 0.006

Phlebotomized 156 (131–167) 149 (134–160) 0.021
Nonphlebotomized 142 (141–144) 138 (131–140) –

Serum ferritin (µg/L) All 54 (14–1,314) 129 (30–301) 0.039
Phlebotomized 44 (14–168) 104 (30–218) NS
Nonphlebotomized 1,030 (780–1,314) 262 (162–301) –

Transferrin All 78 (36–98) 29 (6–43) < 0.001
saturation (%) Phlebotomized 78 (36–98) 29 (6–43) < 0.001

Nonphlebotomized 89 (51–95) 22 (18–32) –
Blood cadmium (µg/L) All 0.31 (0.06–1.2) 0.26 (0.05–0.92) NS

Phlebotomized 0.34 (0.06–1.2) 0.25 (0.05–0.92) 0.020
Nonphlebotomized 0.15 (0.12–0.19) 0.26 (0.21–0.27) –

Blood lead (µg/L) All 25 (8–125) 26 (13–65) NS
Phlebotomized 26 (8–125) 26 (13–65) NS
Nonphlebotomized 13 (11–19) 31 (14–34) –

NS, not significant. 
aAll subjects (n = 21), phlebotomized subjects (n = 18), and nonphlebotomized subjects (n = 3). No statistical testing was
performed on the nonphlebotomized group because of the small number of samples.

Figure 1. The ratio between concentrations of
blood cadmium in subjects with HH and the con-
centrations in the age- and sex-matched paired
controls. Values above 1.0 (the dotted line) indicate
a higher value in subjects with HH than in controls,
whereas values below 1.0 indicate the opposite.
The ratio is calculated for phlebotomized subjects
(n = 18; mean = 2.0) and nonphlebotomized sub-
jects (n = 3; mean = 0.6), respectively. 
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evaluate whether the disease decreased cadmi-
um uptake. If this were the case, it does not
seem to be mediated by a down regulation of
DMT1. Recent studies showed increased
expression of DMT1 mRNA in both phle-
botomized and nonphlebotomized HH sub-
jects and in HFE knockout mice (14,32).

Thus, other mechanisms may explain our
results. The approximately 1,000 times high-
er iron concentration than cadmium and lead
concentrations in the intestine (3,29) speak
against a competition between the toxic met-
als and iron at the binding site of the trans-
porter. However, although both cadmium
and lead exist in the divalent form, which is
the form that binds to DMT1, Fe(III) is the
most abundant form of environmental iron
and requires reduction to Fe(II) for binding
(33,34). If there is not enough ferrous iron
available, it is possible for cadmium and lead
to bind to the transporter. Interestingly, there
is an increased reduction of ferric to ferrous
iron in the mucosal surface of both phle-
botomized and nonphlebotomized HH sub-
jects as compared to controls (34). Thus, it is
possible that both the iron reduction (34)
and the DMT1 expression are increased dur-
ing the untreated stage of the disease (14,32),
whereas the phlebotomy treatment increases
the DMT1 expression without any further
increase in the reduction of ferric iron. This
might cause a slight advantage for cadmium,
and maybe for lead, as compared to before
the phlebotomy, resulting in an increased
absorption of these toxic metals. 

Cadmium is accumulated in the kidney
with a half-life of 10–30 years. Even though

the concentration of cadmium in blood
mainly reflects recent exposure, it is also
influenced by the body burden (3,28).
Therefore, the observed increase in blood
cadmium after several years of treatment
most likely reflects an increase in body
burden. Thus, despite the fact that the con-
centration of cadmium in phlebotomized
subjects in this study was relatively low, it is
apparent that repeated phlebotomy over a
long period of time leads to substantially
increased cadmium body burden. 
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Figure 2. Blood cadmium in relation to the number
of years of treatment (phlebotomy) of hereditary
hemochromatosis. The median age of the sub-
jects younger than 50 years of age = 38 years of
age; the median age of the subjects older than 50
years of age = 64 years of age. The median and
(range) of blood cadmium in controls were 0.20
(0.05–0.30) and 0.28 (0.09–0.92) µg/L for those
below and above 50 years of age, respectively.
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