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Personal Exposure to Ultrafine Particles and Oxidative DNA Damage
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Exposure to ultrafine particles (UFPs) from vehicle exhaust has been related to risk of cardiovascu-
lar and pulmonary disease and cancer, even though exposure assessment is difficult. We studied
personal exposure in terms of number concentrations of UFPs in the breathing zone, using portable
instruments in six 18-hr periods in 15 healthy nonsmoking subjects. Exposure contrasts of outdoor
pollution were achieved by bicycling in traffic for 5 days and in the laboratory for 1 day. Oxidative
DNA damage was assessed as strand breaks and oxidized purines in mononuclear cells isolated from
venous blood the morning after exposure measurement. Cumulated outdoor and cumulated indoor
exposures to UFPs each were independent significant predictors of the level of purine oxidation in
DNA but not of strand breaks. Ambient air concentrations of particulate matter with an aero-
dynamic diameter of <10 pm (PMy), nitrous oxide, nitrogen dioxide, carbon monoxide, and/or
number concentration of UFPs at urban background or busy street monitoring stations was not a
significant predictor of DNA damage, although personal UFP exposure was correlated with urban
background concentrations of CO and NO,, particularly during bicycling in traffic. The results
indicate that biologic effects of UFPs occur at modest exposure, such as that occurring in traffic,
which supports the relationship of UFPs and the adverse health effects of air pollution. Key words:
comet assay, exposure, oxidative DNA damage, personal, traffic, ultrafine particles. Environ
Health Perspect 113:1485-1490 (2005). doi:10.1289/ehp.7562 available via http://dx.doi.org/
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Epidemiologic studies have associated expo-
sure to ambient air particulate matter (PM)
with pulmonary and cardiovascular diseases
and cancer (Brunekreef and Holgate 2002;
Pope et al. 2002). To date, the majority of
studies have dealt with the relationship
between health outcomes and the ambient
levels of PM; and PM, 5, which are the mass
of particles with a aerodynamic diameters
<10 and 2.5 pm, respectively. Recently, how-
ever, interest has focused on the ultrafine par-
ticle (UFP) fraction with a diameter
< 100 nm, which are abundant in numbers
but contribute little to particle mass.
Mechanistically, UFPs are important because
of the adverse health effects caused by their
high alveolar deposition fraction, large surface
area, chemical composition, ability to induce
inflammation, and potential to translocate to
the circulation (Donaldson et al. 2001;
Donaldson and Tran 2002; Nemmar et al.
2002, 2004; Schins et al. 2004). Vehicle
emissions, particularly those related to diesel
engines, are a major source of ambient UFPs,
which penetrate to the indoor environment
(Franck et al. 2003; Levy et al. 2002).

A few epidemiologic studies have associ-
ated daily changes in number concentrations
of UFPs measured at a single urban back-
ground monitoring station with daily cardio-
vascular and pulmonary mortality as well as
lung function or use of medicine among
patients with asthma (Ibald-Mulli et al. 2002;
Penttinen et al. 2001; Peters et al. 1997;
von Klot et al. 2002; Wichmann et al. 2000).

However, the relationship between number
concentrations in urban background and per-
sonal exposure to UFPs is not known, and
direct links between ambient UFPs and
health effects have not been established.
Because people spend around 90% of their
time indoors (Jenkins et al. 1992), it is widely
recognized that a significant proportion of
personal exposure to particles occurs in the
indoor environment. Indoor UFPs consist of
a combination of ambient particles that read-
ily penetrate buildings and infiltrate indoor
air (Franck et al. 2003; Levy et al. 2002;
Long et al. 2001a; Ozkaynak et al. 1996) and
nonambient particles generated indoors dur-
ing the daily activities of home occupants.
Major indoor sources of UFPs include smok-
ing, cooking, candle burning, and other com-
bustion-related processes as well as chemical
reactions between, for example, terpenes and
ozone (Abt et al. 2000; Dennekamp et al.
2001; Levy et al. 2000; Long et al. 2000;
Ozkaynak et al. 1996).

Personal monitors can be used to measure
individual exposure. By means of biomarkers
based on putative mechanisms of action,
exposure can be related to biologic effects,
allowing substantiation of causal relationships
and identification of relevant sources and
exposure scenarios. The mechanisms of action
of adverse health effects of PM are based on
experimental studies thought to involve
induction of inflammation and oxidative stress
(Donaldson et al. 2001; Donaldson and Tran
2002; Knaapen et al. 2004; Schins et al.
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2004). The generation of oxidative stress may
involve radicals and soluble transition metals
on the surface of UFPs and activation of pro-
duction of reactive oxygen species in macro-
phages, granulocytes, and target cells as well as
redox cycling of quinone metabolites of pol-
yaromatic hydrocarbons. In this context UFPs
appear more potent than fine or coarse parti-
cles per unit mass (Brown et al. 2000, 2001).
Experimental studies 7 vivo and in vitro point
to DNA oxidation as an important target of
UFPs and fine-fraction PM (Brown et al.
2000, 2001; Dybdahl et al. 2003; Knaapen
et al. 2004; Risom et al. 2003a; Schins et al.
2002). Recently, we have shown significant
relationships between individual exposure to
PM, 5, assessed as mass collected on filters over
48 hr, and biomarkers of oxidative damage to
DNA bases in terms of 8-oxodeoxyguanosine
(8-0x0dG), proteins, and lipids among healthy
subjects (Sorensen et al. 2003a, 2003b,
2003c). However, this exposure measurement
cannot discriminate between indoor and out-
door exposure, and ambient PM, 5 mass is
influenced by long-range transport of nitrate-
and sulfate-based fine particles (Ruuskanen
etal. 2001).

Because UFPs are ubiquitous, even in
indoor environments, exposure is unavoid-
able, and only levels of exposure can be com-
pared. In the present cross-over study,
time-resolved personal exposure to traffic-
and indoor-related UFPs was assessed by
portable equipment and related to oxidative
DNA damage in mononuclear blood cells on
6 different days in 15 subjects after low-
intensity bicycling exercise in traffic or
indoors. Measurements with outdoor bicy-
cling were repeated on 5 days in order to have
variation in outdoor exposure for each indi-
vidual due to differences in traffic density and
meteorologic conditions. The control of out-
door exposure and the wide gradient for each
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subject allowed study of dose-response rela-
tionship and comparison of the contribution
of outdoor exposure and indoor exposure. We
also assessed personal exposure and DNA
damage in relation to ambient concentrations
of air pollutants measured at two curbside
monitoring stations on busy streets and at one
urban background station.

Materials and Methods

Personal monitoring. Fifteen healthy non-
smoking subjects, 10 males (25.3 + 3.5 mean
years of age, + SD) and 5 females (25.4 + 1.5
years) participated in the study after giving
informed consent. The local ethics committee
approved the study. In a cross-over design
with subjects serving as their own control, per-
sonal exposure to UFPs was measured for
18 hr on weekdays six times for each person in
the period from March through June 2003.
Two subjects were studied simultaneously on
each occasion. Condensation particle counters
(TSI 3007; TSI, St. Paul, MN, USA) with
continuous measurement of the number con-
centrations of UFPs (10-100 nm) were car-
ried in backpacks with the inlet tube placed in
the breathing zone. The instruments were
equipped with external batteries, and the sub-
jects were trained to supply them with
2-propanol every 8 hr. The instruments count
particles optically after they have grown in size
in an atmosphere saturated with 2-propanol,
which must be supplied at 8-hr intervals.
Time series of 1 min average concentrations
were logged during each day. For practical
reasons the sampling was interrupted during
the night. Two data sets were lost because of
technical errors. Exposure was referred to as
number concentration of UFPs per milliliter.
Cumulated exposure was defined as average
concentration multiplied by time with minute
as time unit; that is, the unit of cumulated
exposure was minutes X UFPs per milliliter
(for convenience, tables and figures display
units of 10° minutes X UFPs/mL). The parti-
cle counters were validated by showing strong
correlations in measurements (both instru-
ments: 7> 0.999, n = 13) when compared
with a TSI 3010 stationary particle counter
(TSI) on aerosols of NaCl in 10-20 nm size
ranges from 20 to 200 nm and the regression
lines going through the origin. Comparison of
the two employed TSI 3007 instruments
showed a constant difference in counting effi-
ciency of 8.9%, which was corrected for. With
this correction the two instruments also gave
identical results when carried by different

subjects that bicycled the exposure route
together (data not shown).

Five of the 6 days of exposure meas-
urement included bicycling in central
Copenhagen on a 20-km predefined route
during morning and/or afternoon rush hours.
The mean bicycling time was 93 + 15 min.
This allowed study of dose—response relation-
ships associated with variations in outdoor
exposure for each individual due to differ-
ences in traffic density and meteorologic con-
ditions. One exposure measurement day
included the same workload at the same
intensity on an ergometer bicycle in a room at
the Panum Institute (Copenhagen, Denmark)
with air intake away from streets and minimal
number concentrations of UFPs.

The relationship between heart rate and
workload was established for each subject
from an ergometer bicycle test, and the aver-
age workloads during traffic bicycling on each
of the 5 days were calculated from the average
heart rates measured during traffic bicycling.
Increased pulmonary ventilation will increase
the deposition possibility of UFPs dependent
on the breathing pattern (Daigle et al. 2003).
A conservative estimate is achieved by assum-
ing proportionality between increased pul-
monary ventilation and increased deposition
(D) of UFPs. Because pulmonary ventilation
during moderate dynamic exercise increases
linearly with work intensity (), the increased
UFP deposition during traffic bicycling com-
pared with UFP deposition during rest or
light exercise (2= 60 W) can be found as:

D(uaffic bicyding)  P(traffic bicyding)
D(6OW) 60 W '

Individual values of increased pulmonary
deposition of UFPs during traffic bicycling
were estimated, and cumulated personal traf-
fic exposure was adjusted. The average esti-
mated increase in deposition was a factor of
1.43 £ 0.37) (n = 67). The subjects kept a
diary for recording periods of bicycling, other
outdoor activities, and indoor time and activi-
ties, including exposure to cooking fumes,
burning candles, and environmental tobacco
smoke. The subjects were asked to keep the
latter exposures at the lowest possible level.
The distribution of time spent on outdoor
and indoor activities is shown in Table 1.

Determination of oxidative DNA damage.
In the morning after each exposure measure-
ment day, mononuclear blood cells were
isolated from venous blood samples in

Table 1. Distribution of time (min) as mean + SD spent in traffic, outdoors, and indoors on six occasions in

each of 15 healthy subjects.

Time bicycling on Time bicycling Time outdoors
Bicycling (days) designated route elsewhere not bicycling Time indoors
In traffic (n=74) 93+15 7+21 62 + 66 751 £65
Indoors (n=14) — 22+21 59 + 59 837 + 62
1486

Vacutainer CPT tubes with sodium heparin
tubes (Becton Dickinson and Company,
Rutherford, NJ, USA) and centrifuged at
1,650 X g for 20 min at room temperature.
The cell layer was obtained and washed in
cold RPMI medium from Gibco (Grand
Island, NY, USA) and centrifuged at 400 X ¢
for 15 min at 4°C. Most of the supernatant
was removed, and the pellet was resuspended
in cold preservation medium with volume-
percent as follows: 40% RPMI, 50% fetal
bovine serum (Gibco), and 10% dimethyl sul-
foxide (AppliChem, Darmstadt, Germany).
The samples were stored at —80°C for later
analysis. Oxidative DNA damage was deter-
mined by single-cell gel electrophoresis (comet
assay) as strand breaks and base damage in
terms of sites sensitive to formamidopyrimi-
dine glycosylase (FPG), which cleaves DNA at
sites of oxidized purines and mainly detects
8-0x0dG (Collins et al. 1997; Serensen et al.
2003d). Briefly, cells were thawed on ice,
embedded in 0.75% low-melting-point
agarose (Sigma, Copenhagen, Denmark) on
Gelbond films (BioWhittaker Molecular
Applications, Rockland, ME, USA), and lysed
for a minimum of 1 hr at 4°C (2.5 M NaCl;
0.1 M EDTA; 10 mM Tris, base pH 10; 1%
Triton X-100). The gel-embedded nuclei were
washed 3 X 5 min in cold buffer (40 mM
HEPES, 0.1 M KCI, 0.5 mM EDTA,
0.2 mg/mL bovine serum albumin, pH 8) to
remove the lysis solution. The FPG-sensitive
sites were detected by incubation of the
agarose-embedded nuclei with 1 pg/mL FPG
protein (kindly provided by A. Collins,
University of Olso, Oslo, Sweden) for 45 min
at 37°C. The nuclei were subsequently treated
in alkaline solution (300 mM NaOH, 1 mM
EDTA, pH > 13) for 40 min and elec-
trophoresed in the same solution at 4°C for
20 min at 25 V and 300 mA. The level of
DNA damage in each sample was scored in
100 nuclei according to a five-class system
(range of score is 0-400). The net level of
FPG-sensitive sites was obtained as the differ-
ence in score between samples incubated with
FPG protein and buffer. This score was trans-
lated into lesions per 10° base pairs (bp) by
means of a calibration curve based on induc-
tion of strand breaks by X ray, which has a
known yield [European Standards Committee
on Oxidative DNA Damage (ESCODD)
2003; Moller et al. 2004a]. We have used a
conversion factor of 0.056 Gy equivalents per
score, or 0.011 lesions/10° bp per score
(assuming that a human diploid cell contains
4 % 102 Da DNA, corresponding to 6 X 107
bp). All samples from a subject were coded
and analyzed simultaneously in duplicate,
minimizing effects of interassay variation. The
method has been validated in interlaboratory
trials and is believed to be free from artifactual
oxidation problems (ESCODD 2003).
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Fixed station monitoring. Ambient concen-
trations of air pollutants were measured on all
exposure days at two curbside busy street sta-
tions along the bicycling route and at one urban
background station on a rooftop at 20 m height
approximately 500 m from the start and end of
the bicycling route. Ambient air concentrations
of nitric oxide, nitrogen dioxide, carbon mon-
oxide, and PM; were measured continuously
with a 1-hr time resolution by standard meth-
ods at all stations under the Danish Air Quality
Monitoring Programme (Kemp and Palmgren
2004). The instruments used for PM;, mea-
surements were the tapered element oscillating
microbalance (series 1400a ambient particulate
monitor; Rupprecht & Patashnick, East
Greenbush, NY, USA). The instrument was
approved by the U.S. Environmental
Protection Agency for PM |, ambient particu-
late monitoring. The mass measurements were
performed at 50°C to stabilize the water con-
tent of the particles, but at the same time other
volatile compounds, for example, ammonium
nitrate and organic volatiles, will be lost. One
street station also measured size-fractionated
number concentrations of UFPs by a scanning
mobility particle sizer (Palmgren et al. 2003).
Temperature, relative humidity, and wind
speed were recorded at the urban background
station.

Statistical analysis. Statistical analysis of
DNA damage was carried out by means of
mixed-effects models, which allow both ran-
dom and fixed effects. The subject level was a
random factor, and cumulated exposure to
UFPs occurring during bicycling, remaining
time outdoors and indoors, and monitoring
station values were tested as potential predic-
tor variables with fixed effects. The effect of
bicycling indoors or outdoors on total expo-
sure to UFPs and DNA damage was also
assessed by two-factorial analysis of variance,
including subject as factor. The DNA damage
and personal exposure variables were cubic
root transformed before analysis to achieve
normal distributions. Similarly, in another
analysis the relationship between personal log-
transformed exposure occurring outdoors dur-
ing bicycling and other activities, or indoors,
and 24-hr average monitoring station log-
transformed measurements was analyzed by
linear mixed-effects models with subject level
as random factor. SPSS (version 11.0; SPSS
Inc., Chicago, IL, USA) was used for analysis.

Results

Typical 18-hr personal exposure profiles are
shown in Figure 1. Peak concentration of
indoor UFPs usually coincided with presence
of indoor sources such as cooking, burning
candles, or environmental tobacco smoke
recorded in the subjects’ diaries. The exposure
during bicycling in traffic was significantly
inversely correlated with air temperature and
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wind speed as well as directly correlated with
the measured concentrations of ambient pollu-
tants at both background and street monitor-
ing stations (Table 2). Weaker but significant
correlations were found between indoor UFP
exposure and air temperature (inverse) and
concentrations of NO; (background station)
and CO (background station and street sta-
tion) and between UFP exposure during other
outdoor activities and air temperature and CO
concentrations (Table 2).

In linear mixed-effects models with
subjects as a random factor, background moni-
toring station measurements of ambient tem-
perature and CO concentration, and ambient
temperature and NO, concentration at one of
the street stations were the only significant pre-
dictors of UFP exposure during bicycling in
traffic (R? = 0.60 and R? = 0.74, respectively).

400,000

A

In contrast, air temperature was the only signif-
icant predictor of UFP exposure during other
outdoor activities (R* = 0.09), and background
concentration of CO was the only significant
predictor of indoor UFP exposure (R? = 0.11).
Bicycling in traffic increased the cumu-
lated exposure to UFPs significantly, although
indoor exposure contributed more because of
the much longer time spent indoors (Table 3).
After bicycling in traffic the level of
oxidative DNA base damage in terms of FPG-
sensitive sites was increased 4-fold (p < 0.001)
compared with the level measured after bicy-
cling indoors, but there was no effect on DNA
strand breaks (Table 3, Figure 2). The level of
FPG-sensitive sites (per 10 bp) was signifi-
cantly predicted by the personal cumulated
exposure to UFPs with independent contribu-
tions from outdoor and indoor observation
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Figure 1. Examples of personal UFP exposure profiles on a laboratory (A) and traffic (B) bicycling day.
Indoor and outdoor periods and activities are marked.

Table 2. Geometric means (GM) and geometric SDs (GSD) of air pollutants concentrations, and partial cor-
relation (subject controlled) between meteorologic conditions and ambient log-transformed concentra-
tions of air pollutants measured as 24-hr averages at monitoring stations against personal exposure to
UFPs for 15 subjects, each measured on five or six occasions.

Bicycling on Other outdoor
exposure route activities Indoors
Measure GM (GSD) n® (5 occasions) (6 occasions) (6 occasions)
UFPs (personal exposure)
GM (GSD) n? — 32.4b(1.49) 74 19.62(1.78) 84 13.4b(1.96) 89
Correlations
Background station
Temperature — -0.619* —-0.300* -0.320*
Wind speed — —0.516* —0.145 -0.132
NOy 13.4¢(1.61) 73 0.439% 0.207 0.259
NO, 11.3¢(1.52) 73 0.454% 0.237 0.293%
co 273¢(1.35) 73 0.651% 0.317* 0.371%
PMyg 16.9¢(1.53) 75 0.290 0.126 0.193
Street station 1
UFPs 30.4°(1.38) 75 0.493* 0.179 0.255
NOy 72.4°(1.44) 72 0.486* 0.193 0.105
NO, 32.1¢(1.31) 72 0.394% 0.147 0.118
Street station 2
NOy 51.7¢(1.76) 74 0.444% 0.228 0.226
NO, 24.2¢(1.49) 74 0.415* 0.207 0.266
co 788¢(1.52) 74 0.556* 0.289* 0.311*
PM;q 23.5¢(1.48) 75 0.428* 0.198 0.249

NO,, nitrogen oxide.
aGM (GSD) number of measurements. /Data are expressed in units of 108 UFPs/mL. ®Data are expressed as pg/m°.
*Significant correlations at the 0.01% level (two-tailed).
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periods. The regression coefficients of the
mixed-effects model of level of DNA damage,
including both outdoor and indoor exposures,
with subjects as random factor, were estimated
as 1.50 x 1073 [95% confidence interval (CI),
0.59 X 1073 t0 2.42 X 1073; p = 0.002] for
cumulated outdoor exposure and 1.07 x 1073
(95% CI, 0.37 x 1073 t0 1.77 x 1073; p =
0.003) for cumulated indoor exposure.

The level of DNA damage and the cumu-
lated exposure were cubic root transformed
before the mixed-effects model analysis. The
model explained 50.3% (R?) of the variation,
and the residuals were randomly and normally
distributed as confirmed by nonparametric
tests (Runs test and Kolmogorov-Smirnov
test). The regression coefficient should in prin-
ciple describe the dose—response relationship,
although they are not easy to interpret in
absolute numbers because of the cubic root
transformations. The levels of DNA damage
were not significantly associated with any
24-hr average concentration of ambient air
pollutants measured at a monitoring station
(Pearson’s 7< 0.303).

Discussion

In this study oxidative DNA base damage in
circulating mononuclear blood cells was asso-
ciated with personal exposure to UFPs, and
short-term higher intensity exposure in traffic
was associated with elevated levels of damage.
Cumulated outdoor and indoor exposures
contributed independently to the association,
which showed clear dose-response relation-
ships. The level of damage was not associated
with ambient concentrations of air pollutants
at a monitoring station, although the concen-
trations of several of these were associated
with personal UFP exposure during bicycling,
in particular.

Oxidative DNA damage is mutagenic and
carcinogenic per se and may be considered a
biomarker of oxidative stress, which is also
thought to be involved in cardiovascular and
pulmonary disease due to UFPs (Brown et al.
2001; Donaldson et al. 2001; Li et al. 2003;
Schins et al. 2004). After indoor bicycling the
level of DNA damage was very low and at a
level corresponding to well-nourished healthy
volunteers with minimum exposures (Moller
and Loft 2004). This low level could be assessed
with good precision by an X-ray—calibrated
visual scoring system, which we find more

sensitive than computer-based image analysis
(Moller et al. 2004a). The increase in FPG-
sensitive sites in DNA of median 0.06 per
10 bp in circulating mononuclear cells after
outdoor bicycling would require a radiation
dose of approximately 0.14 Gy to induce,
assuming a yield of 0.43 FPG sites per
10° bp/Gy, as found in mice iz vivo (Risom
et al. 2003b). However, radiation induces many
types of DNA damage, and this comparison
cannot be used for risk characterization. We
have previously found a significant association
between oxidative DNA base damage, without
changes in strand breaks, and personal exposure
to PM in terms of PM, 5 measured as mass over
48 hr in young healthy subjects in Copenhagen
(Serensen et al. 2003b). In that stcudy DNA
damage was assessed at the end of the monitor-
ing period, similar to the design in the present
study. The lack of measurable effects of PM on
DNA strand breaks may be due to the very
rapid repair by ligases, whereas guanine oxida-
tion is repaired relatively slowly by base excision
followed by strand nicking, insertion of
nucleotide(s) in the gap, and rejoining by lig-
ases (Hoeijmakers 2001; Risom et al. 2003b).
Indeed, DNA base oxidation has been found to
be much more sensitive than strand breaks to
environmental factors, including several types
of air pollution, smoking, and antioxidant
intervention (Avobge et al. 2005; Moller and
Loft 2002, 2004; Moller et al. 2004b; Serensen
et al. 2003d). In a mouse study the level of oxi-
dized guanine in lung DNA was increased,
whereas strand breaks were unchanged 1 and
24 hr after inhalation of diesel exhaust particles
(Risom et al. 2003a).

Similar to our findings for DNA base oxi-
dation in the present and a previous study
(Sorensen et al. 2003b), we have also found sig-
nificant associations between personal exposure
to black smoke, measured as reflectance of
material collected on PM, 5 filters, and oxida-
tion of plasma proteins, and a similar associa-
tion between the mass of the filter material and
lipid peroxidation in plasma, although the latter
was significant only among women (Serensen
et al. 2003¢). However, the cumulated exposure
measurement in the previous studies did not
allow assessment of effects of UFPs and distinc-
tion between outdoor and indoor sources
(Serensen et al. 2003b, 2003c¢). Staying out-
doors in traffic, particularly during bicycling,
provided higher intensity of exposure for

Table 3. Median and interquartile range of cumulated exposure to UFPs and oxidative DNA damage as
FPG lesions and strand breaks (SB) in 15 subjects bicycling in traffic or indoors, on six occasions.

Cumulated exposure to UFPs (108 min x UFPs/mL)

Remaining

Bicycling (days) Traffic bicycling time outdoors

DNA damage (per 108 bp)
Time indoors FPG SB

In traffic (n=74)  3.019(2.25-4.44)
Indoors (n=14) —

1.54%(0.68-3.28)
1.42(0.52-2.41)

10.59(5.86-16.7)  0.08°(0.04-0.12)  0.06(0.03-0.11)
9.20(6.15-13.1)  0.02 (0-0.04) 0.06 (0.02-0.12)

aTotal UFP exposure (sum) increased compared with day with indoor bicycling (p = 0.004). DNA damage increased com-

pared with day with indoor bicycling (p = 0.0003).
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limited periods of time, whereas staying indoors
provided prolonged periods of generally low-
intensity exposure, although with some activity-
related peaks. Vehicle exhaust is the main
source of outdoor UFPs, which can penetrate
indoors where additional sources include envi-
ronmental tobacco smoke, cooking, burning of
candles, and chemical reactions (Abt et al.
2000; Dennckamp et al. 2001; Levy et al.
2000; Long et al. 2000; Ozkaynak et al. 1996).
The parameter estimate of the mixed-effects
model describing the level of DNA damage in
relation to exposure to UFPs was nominally
larger for outdoor than for indoor exposure.
This could suggest larger potency of the out-
door UFPs, compared with indoor UFPs, pos-
sibly by a factor of 3 considering the cubic root
transformations. The personal UFP monitors
we used would also measure liquid droplets in
the 10-100 nm size range, which could be par-
ticularly abundant during, for example, cooking
and could have limited toxicologic potential.
However, the 95% ClIs had considerable over-
lap, and no firm conclusion can be drawn.
Moreover, the particles we measured in num-
bers indoors or outdoors could not be charac-
terized in other aspects that could have
indicated causal components. Nevertheless,
diesel exhaust particles have consistently been
shown to induce 8-0x0dG in experimental ani-
mals and iz vitro (Brown et al. 2000, 2001;
Dybdahl et al. 2003; Knaapen et al. 2004;
Risom et al. 2003a; Schins et al. 2002).
Moreover, UFPs can be translocated to the
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Figure 2. Relationship between oxidative DNA base
damage as FPG lesions in mononuclear blood cells
on the morning after exposure and exposure to
UFPs during 5 days of bicycling in traffic (open cir-
cles) and 1 day of bicycling in the laboratory (solid
circles) in 15 healthy subjects. One data point at
(x, y) = (12 x 105, 0.62) is omitted from the figure to
limit the scale. Indoor and outdoor exposures to
UFPs were significant independent predictors of the
FPG lesions in a mixed-effects model (RZ = 0.503).
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circulation upon inhalation and may interact
directly with circulating mononuclear cells, pos-
sibly explaining the DNA base oxidation found
in the present study (Donaldson et al. 2001;
Donaldson and Tran 2002; Nemmar et al.
2002, 2004; Schins et al. 2004; Semmler et al.
2004). The toxicity of indoor particles has only
been assessed for PM, and coarse particles with
respect to inflammartory potential iz vitro, and
the potential for inducing DNA damage is
unknown, and indoor UFPs have yet to be
investigated (Long et al. 2001b; Monn and
Becker 1999; Roponen et al. 2003). Other
studies with exposure assessment based on resi-
dence or occupation in urban areas also point
to an association between ambient air pollution
and oxidative DNA damage, for example, in
nasal biopsies and leukocytes of subjects in
Mexico City or in urine from bus drivers in
Copenhagen (Calderon-Garciduenas et al.
1996, 1999; Fortoul et al. 2003, 2004; Loft
etal. 1999)

Our subjects performed modest exercise in
terms of bicycling at moderate speed. This
increases internal exposure to UFPs by increas-
ing both ventilation and probably lung deposi-
tion, as shown recently (Daigle et al. 2003).
We took into account the increased ventila-
tion in our exposure assessment by calcula-
tions based on the increases in heart rate at
fixed workloads. Without this correction out-
door UFPs would have appeared even more
potent with respect to induction of DNA base
damage. We did not take into account a possi-
ble increase in the fractional deposition during
outdoor bicycling caused by a change in the
breathing pattern. This may also explain the
possible higher potency of outdoor UFPs.

Personal exposure to UFPs when bicycling
in traffic was inversely related to temperature
and wind speed, which is consistent with
increased formation through condensation of
gases at low temperatures and dispersion by
wind. Ambient concentration of UFPs and
CO measured at street stations were the
strongest predictors of outdoor personal UFP
exposure during bicycling, which is consistent
with traffic as the major source (Palmgren
et al. 2003). Similarly, CO was the strongest
predictor measured in urban background. The
UFP exposure during other outdoor activities
and indoor exposure were less strongly associ-
ated with 24-hr monitoring station measure-
ments, and none of the monitoring station
measurements was significantly associated
with the level of oxidative DNA damage.
Compared with direct measurement of per-
sonal exposure, monitoring stations measure-
ments are poorer predictors of both exposure
and biologic effects. Nevertheless, the signifi-
cant association between CO concentrations
in urban background and personal exposure to
indoor UFPs supports that traffic emissions
have some contribution to indoor UFPs.

This study design, including direct mea-
surement of personal exposure and traffic-
related contrasts, has proved promising in
demonstrating association between UFPs and
biologic effects in terms of oxidative DNA
base damage. The results support the impor-
tance of UFPs in causing health effects related
to generation of oxidative stress by air pollu-
tants. Moreover, concern about the health
effects of even small high-intensity exposures
of UFPs in ambient air may be relevant.
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