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In Utero and Lactational Exposures to Low Doses of Polybrominated
Diphenyl Ether-47 Alter the Reproductive System and Thyroid Gland
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BACKGROUND: Polybrominated diphenyl ethers (PBDEs) are capable of disrupting thyroid hormone
homeostasis. PBDE-47 (2,2’,4,4’-tetrabromodiphenyl ether) is one of the most abundant congeners
found in human breast adipose tissue and maternal milk samples.

OBJECTIVES: We evaluated the effects of developmental exposure to low doses of PBDE-47 on the
female reproductive system.

METHODS: Pregnant Wistar rats were administered vehicle (peanut oil) or PBDE-47 [140 or
700 pg/kg body weight (bw)] on gestation day (GD) 6, or 5 mg 6-n-propyl-2-thiouracil (PTU)/L in
the drinking water from GD7 through postnatal day (PND) 21.

RESULTS: In female offspring sacrificed on PND38, there was a significant decrease in ovarian
weight after exposure to PTU or 140 pg/kg PBDE-47. Alterations in folliculogenesis were appar-
ent: we observed a decrease in tertiary follicles and serum estradiol concentrations in the offspring
exposed to either PTU or 700 pg/kg PBDE-47. PTU exposure also resulted in a decrease in pri-
mordial follicles. On PND100, persistent effects on the thyroid glands included histologic and
morphometric changes after exposure to either PTU or PBDE-47. No relevant changes in repro-

ductive indices were observed after mating the exposed F; females with nontreated males.

CONCLUSIONS: Administration of PBDE-47 at doses relevant to human exposure led to changes in
the rat female reproductive system and thyroid gland.
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In vivo, polybrominated diphenyl ethers
(PBDEs) have been shown to alter thyroid
hormone homeostasis (Ellis-Hutchings et al.
2006; Fowles et al. 1994; Hallgren et al.
2001; Stoker et al. 2004; Zhou et al. 2001,
2002) and neurobehavior (Dufault et al.
2005; Eriksson et al. 2001, 2002; Kuriyama
et al. 2005; Sand et al. 2004; Viberg et al.
2003, 2004, 2006), as well as to influence
both male and female reproductive systems
(Ceccatelli et al. 2006; Kuriyama et al. 2005;
Lilienthal et al. 2006; Stoker et al. 2004,
2005; Talsness et al. 2005; Tseng et al.
2006). PBDE:s are used as flame retardants in
a wide variety of consumer products includ-
ing plastics (e.g., computer housings, small
motor appliances, textiles, furniture foam,
electronic and wire insulation). Their ubiqui-
tous use, lipophilic nature, and ability to per-
sist in the environment has resulted in their
accumulation in wildlife (Hale et al. 2001;
Jacobs et al. 2002; Lindberg et al. 2004; Rice
et al. 2002; Zenegg et al. 2003). In addition,
PBDEs have been found in sentinel animals
from different trophic levels of the North Sea
food web, at increasing levels moving up the
food chain (Boon et al. 2002).

Of particular concern is the presence of
considerable amounts of these flame retardants
in human breast milk. Swedish researchers
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were the first to report an alarming increase
(60-fold) in PBDEs in maternal milk over a
25-year period, which was equivalent to a dou-
bling of the concentration every 5 years
(Meironyte et al. 1999). Later publications
have shown that PBDE concentrations are
even higher in North Americans (Johnson-
Restrepo et al. 2005; Mazdai et al. 2003;
Petreas et al. 2003; Schecter et al. 2003), and it
appears that the concentrations in breast milk
of Japanese women are somewhat lower than
that found in European countries (Eslami et al.
2006; Hites 2004). The possible routes of
exposure include consumption of contami-
nated food sources (both animal and plant),
indoor air, outdoor air, ingestion of dust
(Jones-Otazo et al. 2005), as well as direct der-
mal exposure (e.g., through contact with
polyurethane-foam) (Hites 2004).

Because PBDEs have structural similarities
with other halogenated aromatic pollutants, it
was postulated that they may be able to induce
dioxin-like toxicity. Although interaction of
PBDE:s with cytosolic aryl hydrocarbon recep-
tor (AhR) has been shown (Chen et al. 2001)
and high doses of commercial mixtures induce
ethoxy-resorufin- O-deethylase activity (Zhou
et al. 2001), quantitative polymerase chain
reaction has indicated that up-regulation of
cytochrome P450 1A1 (CYP1AI) by the

commercial DE-71 formulation was weak
compared with the dioxin-like polychlorinated
biphenyl (PCB)-126 (Sanders et al. 2005). In
addition, results from experiments analyzing
the influence of different PBDE congeners or
mixtures on various steps of the AhR signal-
transduction pathway leading to CYP1AL1, led
to suggestions that the contribution of PBDEs
to overall dioxin-like toxicity is miniscule com-
pared with PCBs and polychlorinated dibenzo-
p-dioxins (Chen and Bunce 2003) and that
PBDE:s bind, but do not activate, the AhR—
AhR nuclear translocator protein—xenobiotic
response element complex (Peters et al. 2006).

Gene reporter assays have indicated that
some PBDE congeners and/or their metabo-
lites can activate estrogen receptor signal-
transduction pathways 7z vitro and exhibit
antiestrogenic activity, which may or may not
be Ah receptor mediated via increased estro-
gen catabolism or interference with estrogen-
mediated transcription (Meerts et al. 2001).
In vivo studies in rats have shown that exposure
to PBDE-99 (2,2",4,4",5-pentabromodiphenyl
ether) affects the regulation of estrogen target
genes in the uterus (Cecatelli et al. 2006).

In vivo studies in rats and mice have con-
sistently shown a reduction in thyroxine (T4)
concentrations after exposure to PBDEs (Ellis-
Hutchings et al. 2006; Fowles et al. 1994;
Hallgren et al. 2001; Stoker et al. 2004; Zhou
et al. 2001, 2002). Thyroid hormones influ-
ence the function of nearly all tissues via their
effects on cellular metabolism and the essen-
tial roles they play in differentiation and
growth. Interference with thyroid hormone
homeostasis by environmental compounds
therefore has the potential to affect every sys-
tem in the body and to impact development.
Thyroid hormone is known to influence or
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modulate estrogen action in various species,
including timing of seasonal reproduction
and lordosis behavior in rodents (Vasudevan
et al. 2002). In addition, late uterine
responses to estradiol administration have
been shown to be diminished in hypothyroid
rats (Gardner et al. 1978), and thyroidectomy
of sexually immature rats has been shown to
delay vaginal opening and to result in smaller
ovaries, as well as uteri and vaginas that are
not well developed (reviewed by Doufas and
Mastorakos 2000). In porcine granulosa cell
culture, follicle-stimulating hormone (FSH)
and thyroid hormone act synergistically to
stimulate granulosa cell differentiation and
function (Maruo et al. 1987). Because of the
interplay between the hypothalamic—pituitary—
thyroid and the hypothalamic—pituitary—
ovarian axes, we designed this study to evalu-
ate the effects of low doses of 2,27,4,4"-tetra-
bromodiethyl ether (PBDE-47) on the
developing reproductive system of the female
rat. The results from the male studies will be
presented elsewhere. PBDE-47 is one of the
predominant congeners found in humans;
Johnson-Restrepo et al. (2005) reported
PBDE-47 concentrations of 1.3-2,700 pg/kg
lipid in human adipose tissues samples col-
lected in New York City. We treated pregnant
rats to a single dose of PBDE-47 at 140 or
700 pg/kg body weight (bw) on gestation day
(GD) 6. Assuming 20% of the body weight is
composed of fat and 100% absorption of the
compound, the experimental doses corre-
spond to approximately 700 and 3,500 pg
PBDE-47/kg lipid, respectively, which is well
within or just above the range reported for
humans. An additional group was treated with
a low dose of the goitrogen 6-n-propyl-2-
thiouracil (PTU) to serve as a reference for
effects possibly associated with early develop-
mental reductions in T4 and to ensure that
our animal model is susceptible to thyroid
hormone disruption. PTU inhibits thyroid
peroxidase, thereby preventing the conversion
of iodide to iodine and its incorporation into
thyroglobulin. Inhibition of extra-thyroidal
conversion of thyroxin to thyronine is also
attributed to this compound (Knepel 2005).

Materials and Methods

Animals and housing. Virgin female Wistar
rats (HsdCpb:WU; Fa. Harlan-Winkelmann,
Borchen, Germany) weighing 200 + 15 g were
allowed to acclimate in our facility for
2 weeks. The rats were housed at a tempera-
ture of 21 + 1°C and 50 + 5% relative humid-
ity with constant light/dark periods of 12 hr
each. Tap water and rodent chow (Altromin
1324; Altromin GmbH, Lage, Germany) were
given ad libitum. Two females were placed
with one male for 3 hr on 8 consecutive days.
Daily vaginal smears were examined for the
presence of sperm. The day of sperm detection

was considered day 0 of gestation. The preg-
nant females were housed in Type III
macrolon cages with stainless steel covers and
wood shavings (Altromin GmbH). The ani-
mals were treated humanely, and care was
taken to ease suffering. The experimental pro-
tocol was approved by the Berlin Agency for
Health and Social Welfare in accordance with
the German National Animal Protection Law
(Tierschutzgesetz 1998).

Treatment. Three groups of females with
sperm-positive vaginal smears were adminis-
tered either pharmacologic grade peanut oil
(Henry Lamotte GmbH, Bremen, Germany)
as vehicle or PBDE-47 at 140 or 700 pg/kg
bw (2,2",4,4"-tetrabromodiphenyl ether, 98%
purity; LGC Promochem GmbH, Wesel,
Germany) by gavage (10 mL/kg bw) on GDG6.
An additional group, serving as reference con-
trol, was administered PTU (Sigma-Aldrich
Chemicals GmbH, Steinheim, Germany).
The gravid dams were given 5 mg/L PTU in
the drinking water GD7 through postnatal
day (PND) 21.

End points. The number of litters was
recorded for each end point. Eight dams from
each group were sacrificed 27 days postpartum,
and the ovaries were weighed and evaluated
using light microscopy. The Fy offspring were
weaned on PND22 and sacrificed on PND38;
organ weights were recorded, and samples were
either frozen at —-80°C for measurement of aro-
matase activity or placed in Bouin fixative for
histology. Trunk blood was collected, and the
obtained serum samples were frozen at —20°C
for measurement of circulating estradiol con-
centrations. A second set of female offspring
was necropsied during estrus (based on vaginal
cytology) on approximately PND100. We
recorded body and organ weights and per-
formed histologic evaluation of the ovary,
uterus, vagina, and thyroid. At approximately
22 weeks of age, 22-24 virgin female offspring
(Fy) from each group were mated with non-
exposed males to generate F; offspring, so we
could evaluate fertility and perform teratologic
examinations of the skeletons.

Ovarian follicle counting (PND38).
Whole ovaries (7 = 9-10) were fixed in Bouins
solution, dehydrated in ethanol, and embed-
ded in paraffin; serial sections were cut every
6 pm and stained with hematoxylin and eosin
(H&E). Primordial and primary follicles were
counted in five sections per ovary, with the five
sections taken from the middle of the ovary
240 pm apart. We counted only follicles in
which the nucleolus could be seen. Secondary,
tertiary, and atretic follicles were counted in
25 sections per ovary, with sections taken from
the middle of the ovary 60 pm apart.
Classification of ovarian follicles has been
described in more detail (Talsness et al. 2005)
and is based on a modification (Plowchalk
et al. 1993) of a published scheme (Pedersen
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and Peters 1968); atretic follicles were identi-
fied by characteristics previously described by
Borgeest et al. (2002) and Devine et al. (2000).

Ovarian aromatase activity. We measured
aromatase activity in ovarian homogenate
according to the method of Hany et al.
(1999). This involved detecting the aromatiza-
tion of the A-ring of [1B-*H]androstenedione
catalyzed by aromatase, which results in loss of
tritiated hydrogen from the C-1f position and
its integration into *H,0. Ovaries were
homogenized at a ratio of 1 mg tissue to
200 pL TEKS buffer (50 mM Tris HCI,
1 mM disodium EDTA, 100 mM potassium
chloride, and 0.2 mM sodium azide, pH 7.4);
the charged microtiter plate was incubated in a
thermomixer at 37°C for 30 min before the
reaction was stopped. The aromatase activity is
expressed as femtomoles per milligram of pro-
tein per 15 min.

Serum estradiol concentration. Trunk
blood was collected at necropsy and allowed to
clot on ice before centrifugation at 4°C for
15 min. The serum was collected and stored at
—20°C undil analysis. We measured the estra-
diol concentration in serum samples using a
competitive radioimmunoassay kit according
to the manufacturer’s instructions (Diagnostic
Products Corporation, Biermann GmbH, Bad
Nauheim, Germany). Counts per minute were
detected and data were interpolated with a
Cobra Auto-Gamma Counting System
(Packard Instrument Company, Meridien,
CT, USA).

Light microscopy. We collected the ovaries
(n = 4) from dams 28 days postparturition,
and the ovaries (7 = 4-6), uteri (n = 10-12),
vaginas (7 = 6-7), and thyroids (7 = 10-12)
from F; female offspring (approximately
100 days of age) during estrus. All tissues
were fixed in Bouins solution, dehydrated in
ethanol, and embedded in paraffin. Sections
(5 pm thick for the thyroid and 3 pm for all
other tissues) were stained with H&E.

Thyroid morphometry. We analyzed
H&E-stained sections (5-pm) of the thyroid
gland by standard point counting (Cruz-Orive
and Weibel 1990; Serakides et al. 1999) to
determine the proportions of colloid, follicular
epithelium, and stroma. Photomicrographs of
10 fields per thyroid were taken at 200x mag-
nification using a Zeiss Axiphot light micro-
scope (Zeiss, Oberkochen, Germany) fitted
with a Sony 3CCD camera (AVT Horn,
Aalen, Germany). A grid with 300 intersec-
tions (points) was superimposed on each field;
one of the three structural components under
each intersection was identified and counted,
giving a total of 3,000 points per animal.

Electron microscopy. Tangential sections
were made in the ovary and thyroid gland
(7 = 3) using a razor blade. Subsequently, the
ovaries were cut crosswise for preparation of
ultrathin sections. All samples were fixed in 1%
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Table 1. Body weight and paired ovarian weight of
dams (Fg) 27 days postparturition.

Treatment Body weight (g) Paired ovaries (mg)
Control 232 +6 92+4

PTU 248 +18% 101+4

140 ug PBDE-47/kg 237 +16 108 + 4**
700 pg PBDE-47/kg 2327 91+4

n =8 per group. Body weights are presented as mean +
SD, and paired ovary weights are mean + SE adjusted for
body weight.

*p<0.05, and **p < 0.01 by ANCOVA.

glutaraldehyde plus 1% tannic acid in 0.1 M
phosphate buffer (pH 7.4) and post-fixed in
1% osmium tetroxide in phosphate buffer.
After rinsing and dehydration in an ascending
alcohol series, the samples were embedded in
Epon (Plano, Marburg, Germany), cut on a
Reichert Ultracut microtome (Leica, Nussloch,
Germany) followed by contrasting with 2%
uranyl acetate/lead citrate. We evaluated the
sections using an EM 10 transmission electron
microscope (Zeiss).

Table 2. Body weight and selected organ weights of F; females on PND38.

Treatment Body weight (g) Liver (g) Uterus (mg) Paired ovaries (mg)
Control (n=11) 44 +7 2.00+0.06 24+72 23+1

PTU (n=15) 38 + 4% 1.86 +0.06 25+2 15+ 1*%
140 ug PBDE-47/kg (n=18) 42+6 1.80 +0.05* 24 +2 17 £ 1%%
700 ug PBDE-47/kg (n=16) 45+ 4 1.73 +0.06** 25+2 21+1

nindicates the number of litters. Body weights are presented as mean = SD (by ANOVA and unpaired t-test). Organ
weights are presented as mean + SE adjusted for body weight (by ANCOVA).

*p<0.05, and **p<0.01.

Table 3. Ovarian follicle counts for F; females on PND38.

Follicle type
Treatment Primordial Primary Secondary Tertiary Atretic
Control (n=9) 78 (62, 100) 46 (35, 50) 7(7,8) 13(9,16) 41 (35, 46)
PTU 42 (28, 76)* 32 (18, 43) 5(2,9) 9(4,12) 36 (26, 46)
140 pg PBDE-47/kg 76 (56, 93) 35(32, 46) 4(4,8)* 11 (5, 14) 40 (36, 52)
700 pg PBDE-47/kg 82 (69, 105) 42 (28, 50) 4(2,7)* 8(4,10)" 45 (29, 56)

The median number of follicles and (Q;, Q3) presented are from 5 sections per ovary for the primordial and primary folli-
cles and from 25 sections per ovary for the secondary, tertiary, and atretic follicles. The control group includes 9 litters;
the PTU and PBDE groups (140 pg/kg and 700 pg/kg) include 10 litters each.

*p < 0.05, **p = 0.06, and * = 0.08 by Kruskall-Wallis test, followed by Dunn’s Multiple Comparison Test and Mann-
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Figure 1. Individual serum estradiol concentrations
(bars indicate means) of F; female offspring on
PND38 after treatment with vehicle or PBDE-47
(140 or 700 pg/kg bw) to Fy dams on GD6. PTU was
administered on GD7-PND21.

*p<0.05, and **p < 0.01.
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Figure 2. Individual ovarian aromatase activity (bars
indicate means) of F, female offspring on PND38
after treatment with vehicle or PBDE-47 (140 or
700 pg/kg bw) to Fy dams on GD6. PTU was adminis-
tered on GD7-PND21.

Table 4. Body weight and selected organ weights of the F; females in estrus on approximately PND100.

Treatment Body weight (g) Liver (g) Thyroid (mg) Uterus (mg)  Paired ovaries (mg)

Control (n=14) 167 +13 6.89+0.52 102 470+ 53 98+9

PTU (n=18) 168 + 16 6.28 + 0.80% 12 +2%% 480 + 56 100+ 12
(n=15)2

140 pg PBDE-47/kg (n=19) 174 + 26 7.02+0.74 10+1 461 +58 98 +12

700 pg PBDE-47/kg (n=18) 162+ 14 6.60 + 0.61 M+2 464 +123 103+13
(n=16)2 (n=17)2

nindicates the number of litters. Body and organ weights are presented as mean = SD (by ANOVA, followed by Dunnett's

Test and unpaired t-test).

aNumber of litters differs from that given for the treatment group. *p < 0.05, and **p < 0.01.
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Female reproductive performance. At
approximately 22 weeks of age, 22-24 female
Fy offspring from each group were mated daily
with untreated males for 14 days or until a
sperm-positive vaginal smear was obtained.

On day 21 of gestation, the dams were sac-
rificed and the uterus was excised. We deter-
mined fetal weight and sex, as well as the
numbers of implantations, resorptions, and
fetuses. The fetuses were examined for external
anomalies; all were cleared for skeletal staining
by fixation in 5% formalin for 1 week and
then rinsing in water for 2 days. After eviscera-
tion, they were placed in a diethylether/ethanol
solution (1:4) for 1 week and then washed
with water. The skeletons were stained with an
alizarin/10% potassium hydroxide solution,
rinsed with water, placed in a benzyl alcohol/
glycerol/ethanol (1:2:2) solution until clear,
and then stored in glycerol until examination.

Statistical analyses. We performed statisti-
cal analyses using GraphPad Prism, Version
3, software (GraphPad Software Inc., San
Diego, CA, USA). We considered the litter as
the experimental unit. We compared means
from the PTU group with those of controls
using the unpaired Student’s #test; means
from the PBDE-47 groups were compared by
analysis of variance (ANOVA) followed by
the Dunnett’s test. Medians from the PTU
group were compared with those of controls
using the Mann-Whitney test, and those from
the PBDE-47 group were analyzed with the
Kruskal-Wallis test and Dunn’s Multiple
Comparison Test. The ovarian weights of the
dams and the organ weights of the offspring
on PND38 were analyzed by analysis of
covariance (ANCOVA) (SAS, version 9.1;
SAS Institute Inc., Cary, NC, USA) using
body weight and treatment as covariables,
because statistically significant differences in
body weights were ascertained for the PTU
group compared with the control group.

Results

Body and ovarian weights of dams. At
27 days postparturition, the dams in the PTU
group were heavier than those in the control
group (p < 0.05). In the 140-pg PBDE-47
group, there was an increase in mean paired
ovarian weight (p < 0.01) (Table 1).

Ovarian histology of dams. We detected
no histologic abnormalities in the ovaries
(n = 4/group) of the dams from the control
group or those exposed to 140 pg PBDE-47/
kg bw. One of four animals in the 700-pg
PBDE-47 group exhibited slight follicular
dilation indicative of cysts. In the ovary from
one animal in the PTU group, we observed
expanded interstitial spaces, which is compati-
ble with slight edema (not shown).

Body and organ weights of F; female off-
spring on PND38. The mean body weight was
significantly lower in offspring exposed to
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PTU than in controls on PND38 (Table 2).
This is in contrast to PND1, when there was
no statistically significant difference for any of
the groups in average pup weight (whole litter
body weight divided by the number of pups in
the litter). Liver weight was significantly lower
in both PBDE-47 groups. Paired ovarian
weights were reduced in the 140-pg PBDE-47
group and those exposed to PTU. The change
in ovarian weight was not associated with
histopathologic alterations at the light micro-
scopic level. Qualitative assessment revealed a
decrease in tertiary follicles in the PTU and
700 pg PBDE-47 groups.

Ovarian follicle numbers, ovarian aro-
matase activity, and serum estradiol concen-
tration. We found statistically significant
differences in follicle numbers in the PTU
and 700-ug PBDE-47 groups: primordial
and tertiary follicles were reduced in the
PTU group, and reductions in secondary and
tertiary follicles occurred in the PBDE-47
group (Table 3). The reduction in growing
follicles in the 140-pg PBDE-47 group did
not reach statistical significance. The serum
estradiol concentrations were reduced in the
treatment groups, and were statistically sig-
nificant in the PTU and 700-pg PBDE-47
groups (Figure 1). Whole ovarian aromatase
activity was similar to control in all treatment
groups (Figure 2).

Body and organ weights of female offspring
in estrus on PND100. We observed no differ-
ences in body weight or reproductive organ
weights in the treatment groups compared
with controls. The only statistically significant
changes were a reduction in liver weight and
an increase in thyroid weight in the PTU
group (Table 4).

Histology of F; female offspring on
PND100. At the light microscopic level, the

. Stroma
=3 Epithelium
mmm Colloid
100
-
=
[
| I I I
[}
-
0
Control PTU 140 ug 700 pg
PBDE-47 PBDE-47
Exposure

Figure 3. Percent of intersections overlying either
stroma, epithelium, or colloid of thyroid glands from
F, female offspring on approximately PND100 after
treatment with vehicle or PBDE-47 (140 or 700 pg/
kg bw) to Fy dams on GD6. PTU was administered
on GD7-PND21. The control group includes 9 lit-
ters; the PTU and PBDE groups (140 and 700 ug/kg)
include 10 litters each.

*p<0.05 and **p < 0.01.

histologic findings of the ovary, uterus, and
vagina were unremarkable compared with con-
trols. Evaluation of the thyroid glands revealed
occasional follicular cyst formation in the
140-pg PBDE-47 and PTU groups, and only
mild cyst formation in the 700-pg PBDE-47
group. There were multiple areas of degener-
ated follicular epithelium in the 140-pg
PBDE-47 group and slight attenuation of the
follicular epithelium in the PTU group.
Morphometric analyses resulted in compatible
results, as thyroid point counting yielded a sta-
tistically significant decrease in the number of
points overlying the follicular epithelium in the
PTU group, as well as an increased number
over the colloid in the PTU and 140-pg
PBDE-47 groups (Figure 3). The number of
points overlying the epithelium in the 140-pg
PBDE-47 group was decreased and, although
statistical analysis indicated exposure-related
differences, the post hoc test for this end point
but did not reach statistical significance.
Electron microscopy also revealed detachment

of thyroid follicular epithelial cells, which can
be found in the colloid (Figure 4)

Ultrastructural analysis of the control
ovaries revealed the presence of intact stromal
cells with a small number of vesicular structures
and a few vacuoles containing small electron
dense granular masses (Figure 5A). The stromal
cells of the ovary from the PTU-treated group
(Figure 5B) have an accumulation of vesicular
structures with homogeneously dense granular
material. The ovaries from animals treated with
140 (Figure 5C) and 700 pg PBDE-47/kg
(Figure 5D) showed an accumulation of vesicu-
lar structures with homogeneously dense granu-
lar material in the cytoplasm of the stromal
cells, which appear to fuse together to form
large vacuoles.

Reproductive performance and teratology.
We found no differences between the control
group and any of the treatment groups in
terms of the number of live fetuses, fetal
weight, or resorption rate. The mean number
of implantation sites per dam was significantly

Figure 4. Electron micrographs showing ultrastructure of thyroid from F, female offspring on approximately
PND100 after treatment with vehicle or PBDE-47 (140 or 700 pg/kg bw) to Fy dams on GD6. PTU was admin-
istered on GD7-PND21. (A) Thyroid section from control animal. The follicular architecture consists of a
single layer of thyrocytes, with adjacent cells in close contact (arrowheads) surrounding a colloid-filled
lumen (*). Microvilli are present on the luminal side (arrows) of the polarized thyrocytes. In sections from
animals exposed to PTU (B), 140 ug PBDE-47/kg (C), and 700 pg PBDE-47/kg (D), the follicles have an irreg-
ular, nontypical shape. Numerous follicular cells are detached (+) from the basal membrane, and the folli-
cle cells are swollen and dilatated (#). Magnification = 5,000x; bar = 1 um.
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increased in the PTU group. The sex ratio of
the F, animals in the 700-ug PBDE-47 group
was approximately one-half that of the control
group (Table 5). However, comparison of the
altered sex ratio with controls from two differ-
ent historical experiments (7 = 24 and 43 lit-
ters) revealed no differences.

Evaluation of the F; offspring from the F,
female offspring mated with untreated males
revealed two anomalies in one pup (F,) from the
700-pg PBDE-47 group: a shortened mandible
accompanied by fused tympanic bone.

Discussion

PBDEs have been shown to alter thyroid hor-
mone homeostasis, and interactions have been
reported between thyroid hormones and the
reproductive system. We evaluated the influ-
ence of early developmental exposure to
PBDE-47 on the female reproductive system.

The increase in ovarian weight observed in
the dams at the low PBDE dose (140 pg/kg)
was not observed in the group exposed to the
higher dose of PBDE-47 (700 ng/kg).
Characterization of the dose-response

Figure 5. Electron micrographs showing ultrastructure of ovaries from F; female offspring in estrus on
approximately PND100 after treatment with vehicle or PBDE-47 (140 or 700 pg/kg bw) to Fy dams on GD6.
PTU was administered on GD7-PND21. (A) Control ovary showing vesicular structures with homoge-
neously dense granular material in the cytoplasm (¥) of the stromal cells (arrows). (B) In PTU-exposed
ovary, there is an increase in vesicular structures with homogeneously dense granular material (arrows)
in the cytoplasm (*). Multiple vacuolization and large vesicles with homogeneously dense granular mater-
ial (arrows) in the cytoplasm (*) of ovarian cells are present in the ovaries from 140 pg PBDE-47 (C) and
700 pug PBDE-47 (D) ovaries. Magnification = 5,000x; bar = 1 pm.

Table 5. Fertility indices of F; female offspring after mating with nonexposed males.

relationship was not possible in this study;
however, there are reports in the literature
describing nonmonotonic dose-response
curves after exposures to hormonally active
compounds (Almstrup et al. 2002; Muto et al.
2002; Putz et al. 2001; vom Saal et al. 1997),
indicating that qualitative differences can exist
between low and high doses. Possible mecha-
nisms include differential binding affinities of
compounds to steroid receptor isoforms, com-
petition between endogenous and exogenous
ligands, and the formation of mixed ligand—
receptor complexes versus homodimers and
their respective recruitment of activators or
repressors of gene transcription. In addition,
nongenomic effects of steroids may modify
genomic actions yielding nonmonotonic
responses (Rochette-Egly 2003).

On PND38, we found a reduction in body
weight and paired ovarian weight in the group
exposed to PTU, which is in accordance with
another study in rats after oral PTU treatment
from PND21 to PND40 (Marty et al. 1999)
and one after exposure from PND1 to PND40
(Dijkstra et al. 1996). In the present study, we
also found reduced ovarian weight in the
140-pg PBDE-47 group. This reduction is in
contrast with the increase in ovarian weight in
the mothers from the same treatment group
and it was also not associated with histologic
abnormalities at the light microscopic level.

We observed statistically significant altera-
tions in folliculogenesis in offspring in the
PTU group and the 700 pg PBDE-47 group.
PTU exposure resulted in a 50% reduction in
primordial follicles, posing the possibility that
these animals may experience early sexual
senescence. (The disadvantages of early
menopause in humans include a shorter repro-
ductive life span; also, the onset of menopause
can be associated with a variety of health prob-
lems such as osteoporosis.) The tertiary folli-
cles were also reduced following exposure to
PTU. Modifications to folliculogenesis have
been reported in other studies after exposure
to PTU (Chan and Ng 1995; Dijkstra et al.
1996), and these data are in agreement with a
study performed with ammonium perchlorate
(AP), which is used to treat hyperthyroidism
and is also found as a water contaminant in
the United States because of its use in rocket
fuel, paints, fertilizers, and lubricants.
Baldridge et al. (2004) reported a reduction in

Implantation Fetuses Mean fetal
Total no. of Total no. of sites per dam per dam weight (g) Resorption Sex ratio

implantation sites live fetuses (mean + SD) (mean + SD) (mean + SD) rate (%) [median (Q;,Q3)]
Control (n=11) 133 125 121+0.8 11408 47+02 6 1.20(0.84, 2.38)
PTU (n=17) 223 200 131+£1.2% 118+18 47+02 10 1.17(0.71, 1.45)
140 pg PBDE-47 (n=19) 243 228 128+1.6 120+20 47+05 6 0.86 (0.53, 1.42)
700 pg PBDE-47 (n=17) 212 202 125+1.1 119+14 45+03 5 0.65(0.45, 1.12)*
n =number of litters. Sex ratio is calculated as male/female. Analyzed by ANOVA followed by Dunnet’s test; unpaired t-test; Kruskal-Wallis test followed by Dunn's; and Mann-Whitney test.
*p<0.05.
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preantral follicles, as well as total antral folli-
cles, following in utero and lactational expo-
sures to high doses of AP, whereas lower doses
affected only the large antral follicles.

In the present study, exposure to PBDE-47
did not affect primordial follicles as in the
PTU group; however, a similar effect on larger
follicles was demonstrated, as secondary and
tertiary follicles were decreased in the 700-pg
PBDE-47 group. The lower number of larger
follicles in the PTU and PBDE-47 groups was
not due to an increased rate in atresia of this
follicle stage. PCB mixtures (Baldridge et al.
2003; Lilienthal et al. 2006) and high doses of
PBDE-99 (Lilienthal et al. 2006) have also
been shown to alter folliculogenesis. Ovarian
folliculogenesis was not altered, however, dur-
ing adulthood following prenatal and lacta-
tional exposure to low doses of PBDE-99
(Talsness et al. 2005).

In the studies by Baldridge et al. (2003,
2004), T4 supplementation was able to ame-
liorate the effects on the smaller sized follicles,
suggesting that thyroid hormone disruption
plays a role in the disturbed folliculogenesis of
the less mature follicles.

Antral follicles are a major source of estro-
gen, and we observed a concomitant reduction
in circulating estradiol concentrations after
exposure to either PTU or PBDE-47. In a
study following in utero exposure to 1 or
10 mg PBDE-99/kg, Lilienthal et al. (2006)
reported effects on circulating estradiol con-
centrations. They observed statistically non-
significant reductions in circulating estradiol
concentrations, which were more pronounced
in the lower dose group than the higher one,
in F, females on PND21. Estradiol concentra-
tions in males, however, were decreased in a
statistically significant fashion on PNDs 21
and 160 (Lilienthal et al. 2006). Evidence sug-
gests that some PBDE congeners and metabo-
lites may affect CYP19 activity. Cantén et al.
(2005) reported that aromatase (CYP19)
activity evaluated in the H295R human
adrenocortical carcinoma cell line showed
inhibition of aromatase activity with 6CH;O-
PBDE-47. However, in the present study, we
found no changes in whole-ovary aromatase
activity associated with reduced circulating
estradiol concentrations. Some explanations
for the decreased estradiol concentrations
include the lower number of antral follicles,
altered gonadotropins affecting follicular mat-
uration, and the expression of steroidogenic
enzymes other than aromatase or an increase
in estrogen metabolism.

Tonic levels of FSH play a role in early fol-
licular growth, and rising FSH levels are
involved in further follicular maturation when
expression of steroidogenic enzymes increases
dramatically. The alterations in folliculogenesis
and steroidogenesis indicate disruption along
the hypothalamic—pituitary—ovarian axis.

At necropsy during estrus on approxi-
mately PND100 of the present study, the
reduction in body weight the PTU-exposed
offspring observed on PND38 was no longer
apparent. Persistent adverse effects on the thy-
roid gland after exposure to PTU was indi-
cated by increased weight of the thyroid gland
associated with histologic changes, indicating
occasional follicular cyst formation and atten-
uation of the follicular epithelium. Although
no change in thyroid weight was apparent in
the animals exposed to 140 pg PBDE-47/kg,
we observed similar histologic findings.
Thyroid point counting, performed by an
observer unaware of the histologist’s findings,
supported the histologic observations in the
PTU group: the proportion of points over the
epithelium were decreased, and the number
over the colloid were increased in the this
group. The same pattern was observed in
the morphometric analysis of the 140 pg
PBDE-47 group; however, the decrease in the
epithelium did not reach statistical significance.
Developmental exposure to either PTU or
PBDE-47 led to changes in the thyroid tissue,
which were apparent in adulthood.

At adulthood, the increased amount of
vesicles observed in the ovaries from the off-
spring exposed to PTU or PBDE-47 exhib-
ited ultrastructural changes similar to those
we reported following exposure to PBDE-99
(Talsness et al. 2005). This observation is
compatible with nonspecific or uncontrolled
synthesis of steroid products.

The mean increased number of implanta-
tion sites in the PTU-exposed F; females was
accompanied by a higher resorption rate,
resulting in a similar mean number of fetuses
compared with the control group. The higher
resorption rate in this group is not considered
to be biologically significant because resorp-
tion rates of = 10% are within normal limits
for our historical controls of this rat strain. We
observed a statistically significant alteration in
the secondary sex ratio in favor of females after
mating of the F; females from the 700-pg
PBDE-47 group. The biological relevance of
this finding is low because analyses performed
comparing the 700-pg PBDE-47 group with
our historical controls indicated no statistically
significant differences.

The anomaly observed in one F, offspring
following exposure of the Fy dam to 700 pg
PBDE-47/kg on GD6 is one that we have
never observed in our rat strain after examining
> 10,100 fetuses (historical data). In a similar
experiment, we also observed skeletal anom-
alies in offspring from two different mothers
exposed in utero and via lactation to 300 pg
PBDE-99/kg, which had also never been docu-
mented in our laboratory (Talsness et al.
2005). Incomplete bone deposition was
observed in the left and right parietal and
frontal bones of the skull in one offspring.
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Also, in a pup from another litter of the same
group, only a portion of the first sacral vertebra
was present and the remaining sacral and
caudal vertebrae were absent.

Possible causes for these anomalies may be
either spontaneous or substance related. The
fact that we have not observed these anomalies
in Wistar rats speaks against a spontaneous
cause, although it cannot be ruled out. In
addition, the Fy generation was treated with a
very low dose of PBDE-47, and the anomaly
was seen in the F, generation; this suggests
that the anomaly is not directly substance
induced, as the congener was probably not
present at the time of mating. It is theoreti-
cally possible that it is related to an epigenetic
modification of the DNA.

Summary and Conclusions

Data from the present study indicate
endocrine disruption following in utero and
lactational exposure to environmentally rele-
vant doses of PBDE-47, as the doses used in
this study would result in an approximate
maternal body burden within or just above the
range of concentrations reported in human
adipose tissue samples collected in New York
City (Johnson-Restrepo et al. 2005). We
observed alterations in ovarian folliculogenesis,
circulating estradiol concentrations, and per-
sistent changes to both the ovaries and thyroid
glands. Legislation banning the marketing and
use of the pentaBDE and octaBDE commer-
cial formulations in the European Union and
some states of the United States has already
occurred, and decaBDE has been banned in
Sweden and in Washington and Maine; how-
ever, these lipophilic compounds are highly
persistent in the environment, and release and
exposure will continue for an extended period
of time. The European Union is considering a
vote to discontinue the planned ban of the
decaBDE formulations. The continued use of
decaBDE is of concern because of direct expo-
sure to the compound and its debromination
to lower brominated congeners. In addition,
exposure to the myriad of chemicals in the
environment yields the possibility of additive,
synergistic, or antagonistic effects. The devel-
oping embryo, fetus, and neonate are highly
susceptible to exogenous insults, and the mag-
nitude of the current maternal body burden of
PBDEs may be of concern for human health.
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