
Although much progress has been made, child-
hood lead poisoning remains a critical environ-
mental health and justice concern. Lead causes
irreversible, asymptomatic effects at levels far
below those previously considered safe. The
2003–2004 National Health and Nutrition
Examination Survey (NHANES) survey data
reveal blood lead levels (BLLs) at or above the
Centers for Disease Control and Prevention
(CDC) blood lead action level of 10 µg/dL in
2.3% of 1- to 5-year-olds in the United States,
with children tested having an overall geomet-
ric mean BLL of 2.1 µg/dL (National Center
for Health Statistics 2006). These data indicate
that > 500,000 children < 6 years of age expe-
rience elevated BLLs (EBLLs) at or above the
CDC blood lead action level of 10 µg/dL
(U.S. Census Bureau 2002).

Research suggests that significant adverse
health effects occur at BLLs below the current
CDC action level. Learning and behavioral
deficits may occur even at BLLs < 5 µg/dL
(Canfield et al. 2003; Chiodo et al. 2004;
Lanphear et al. 2000; Miranda et al. 2007;
Schnaas et al. 2006). Meta-analysis and
reviews suggest that there is no threshold
effect level, so any level of exposure is poten-
tially detrimental (Gatsonis and Needleman
1992; Lanphear et al. 2005; Schwartz 1993,
1994). Thus, the number of children nega-
tively affected by low-level lead exposure is
likely much higher than estimates based upon
the CDC action level. From a public health

perspective, it is critical to get children who
are at risk screened for lead in a timely man-
ner and to intervene to rehabilitate the por-
tions of the housing stock that pose the
greatest risk of lead exposure.

Geographic information systems (GIS)
hold particular promise for addressing the
risks of childhood lead exposure. Wartenberg
(1991) proposed a framework within which
each type of screening approach—from health
care provider and city clinic to door-to-door
and finally to GIS-directed or informed
screening—increases the case-finding rate.
GIS has been used to evaluate known risk fac-
tors, such as old housing (Krieger et al. 2003;
Reissman et al. 2001; Roberts et al. 2003),
race (Haley and Talbot 2004), income
(Krieger et al. 2003), and education (Haley
and Talbot 2004; Krieger et al. 2003). In pre-
vious studies, addresses of children screened
for lead and of children with EBLLs, as well as
age of housing, have been used to determine
screening rates and prevalence ratios of EBLLs
(Reissman et al. 2001; Roberts et al. 2003).
Knowing the spatial distribution of these rates
allowed researchers to evaluate the effective-
ness of screening programs and determine
locations of greatest concern. Reissman et al.
(2001) found that even in previously priori-
tized screening zones, only 50% of the chil-
dren were being screened.

Although some models have been devel-
oped at more refined spatial scales (census

tract or block group) (Krieger et al. 2003),
most of the literature analyzes lead surveil-
lance data at the ZIP code level. ZIP codes
are useful because typically they are easily rec-
ognized by parents and health care providers,
and with one simple question they can be
used to identify children who should be
tested for lead exposure. This simplified char-
acterization, however, ignores the nonstan-
dardized and highly dynamic structure of ZIP
codes (Grubesic and Matisziw 2006), as well
as spatial variability within ZIP codes
(Matisziw et al. 2008). The key, then, is to
pick an areal unit that is readily recognized by
parents and health care providers and that is
sufficiently disaggregated to maximize expo-
sure risk insights.

In an effort to overcome the potential
shortcomings of analyzing spatially aggre-
gated data, some recent analyses of blood lead
screening data have used highly refined geo-
graphic scales. Roberts et al. (2003) used
household level data to identify an area of
older houses where children with EBLLs live.
Miranda et al. (2002) built models based on
tax parcels to predict relative lead exposure
risk levels for all residential parcels in a
county, combining county tax assessor, North
Carolina blood lead surveillance, and 1990
U.S. Census data.

Highly resolved models allow communi-
ties to target the highest-risk homes more
cost-effectively and to create and implement
targeted intervention programs. For example,
using the lead exposure risk model based on
tax parcels described by Miranda et al. (2002)
led to a 600% increase in the capture rate of
children with EBLLs in Durham County,
North Carolina. Local health departments
use the models to cross-reference high-risk
housing with Medicaid and WIC (Women,
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Infants, and Children) recipients, enabling
them to comply with state lead testing man-
dates and thus protect these especially vulner-
able children. Local health departments also
cross-reference recent births to determine
whether infants are residing in high-risk hous-
ing and would thus benefit from early lead
education interventions. Local housing
departments use the model to recruit home-
owners into lead abatement and rehabilitation
programs. The models are also used by com-
munity groups in planning activities, such as
door-to-door outreach, health fairs, and blood
lead screening events.

At the state level, these models are used by
the North Carolina Lead Poisoning Prevention
Program (2008) to recruit property owners into
the North Carolina Preventive Maintenance
Program (North Carolina Childhood Lead
Poisoning Prevention Program 2008) and to
enforce disclosure provisions of the federal Title
X, Residential Lead-Based Paint Hazard
Reduction Act of 1992. In a clinical setting,
health care providers can use the models to
understand the risk of exposure to lead-based
paint hazards in the individual patient’s home
and day care center. With this information, the
provider can decide whether to test a child for
lead exposure and, perhaps more important,
educate the parents regarding exposure preven-
tion strategies. The maps that result from the
models can serve as very effective tools to cap-
ture the interest of patients by personalizing the
message about risk and prevention.

Of course, these highly resolved spatial
models require additional expenditure of time
and effort spent geocoding to the tax parcel
level. Here, we explicitly examine how much
effort needs to be expended on geocoding
blood lead surveillance data to build a well-
functioning and effective tax parcel–level
model. In so doing, we demonstrate a frame-
work for the widespread replication of this
highly spatially resolved childhood lead expo-
sure risk model across North Carolina and
nationally. Because it is equally interpretable
from a housing and health perspective, the
more highly resolved spatial model provides a
basis for improving the efficiency of blood

lead surveillance programs and, perhaps more
important, for shifting lead exposure pro-
grams from a mitigative to a preventive para-
digm by directly influencing health education
and housing intervention programs.

Materials and Methods

We updated Miranda et al.’s (2002) analysis
using additional blood lead surveillance and
updated tax parcel data from 18 North
Carolina counties and by substituting 2000
Census data for the 1990 data used in the ear-
lier analysis (U.S. Census Bureau 2000,
2002). The 18 counties span the state and
represent very different populations, climates,
economies, and housing stocks. They include
Buncombe, Carteret, Craven, Cumberland,
Durham, Edgecombe, Forsyth, Guilford,
Henderson, Lenoir, Mecklenburg, Nash,
New Hanover, Orange, Stanly, Wake,
Wayne, and Wilson Counties, as shown in
Figure 1. Methods for receiving, storing, link-
ing, and analyzing data and presenting results
related to this study were all governed by a
research protocol approved by the Duke
University Institutional Review Board.

The models include demographic data
from the 2000 Census at the block group and
block level (U.S. Census Bureau 2000). We
overlaid the Census data on publicly available
tax assessor data from each of the counties. In
the model, we focused on residential tax
parcels, which typically include single- or mul-
tifamily housing structures. Digital tax assessor
data vary from county to county, but models
for each county include year of construction.

We characterized the relationship between
BLLs and housing and demographic charac-
teristics by geocoding to the tax parcel the
blood lead test results for children who were
9 months to 6 years of age and who were
tested between 1995 and 2003. Eighty-nine
percent of blood lead samples were capillary
draws, with only 5% reported as venous
draws. The sample collection method was
reported as unknown for the remaining 6%
of lead test results. Access to the blood lead
data was granted via a negotiated confiden-
tiality agreement with the North Carolina

Childhood Lead Poisoning Prevention
Program. We geocoded the lead surveillance
data to the individual tax parcel unit (as
opposed to larger geographic units such as
census block groups or tracts) using the tax
assessor databases.

Parcel geocoding is a critical step in devel-
oping these highly resolved spatial models.
Geocoding refers to the process of assigning a
geographic coordinate (latitude and longi-
tude) to observations from one data set (in
this case, blood lead screens) using reference
data (in this case, tax parcel data). This
process facilitates the linking of multiple data
sets via spatial relationships. Thus, we linked
an environmental exposure biomarker (BLL
test results) to a polygonal areal unit (tax par-
cel) via the residential address common to
both data sets.

We had 467,204 BLL test results for this
population, representing 336,736 individual
children. We attempted to geocode all records
with complete addresses, defined as addresses
with at least street number, street name, and
street type, to county tax parcel data. Parcel
address information varied by county in both
quality and level of completeness. Quality of
surveillance address information was also not
uniform across local health departments, clin-
ics, and laboratories. Percentages of records
geocoded by county ranged from 42.5% to
89.0% for all records and from 56.1% to
96.2% for records with complete addresses.
Tax assessor address data tend to be of poorer
quality for housing authority parcels and
other multifamily complexes, leading to lower
match rates for children who reside in these
tax parcels.

We implemented three stages of geocod-
ing, as described in Table 1. Level I geocoding
was an exact match of “as-reported” address
information to reference parcel data. With the
North Carolina lead screening data, we
geocoded about 36.4% of all records by the
level I process, which took 7–9 days with one
trained staff member working 8 hr/day. Level
II geocoding matched data after standardizing
the lead screening data to reflect the reference
data structure (e.g., by converting all versions
of “street”—str., street, st, etc.—to ST). This
process took about 20 days and yielded an
additional 10.4% of records. Level III geocod-
ing processed records, one by one, using visual
analysis of and matching to tax parcel address
data. This stage required an additional 3–4
months and led to an additional 22.0% of
records being geocoded. Even after the most
intensive level III geocoding, 31.2% of records
remained ungeocoded, although one-third of
these did not include a complete address.

In general, the level I stage geocoded
records rapidly, but in some counties the
number geocoded by this process alone may
not be sufficient. Level II geocoding provided
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Figure 1. Map of 18 counties in North Carolina included in the analysis.
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additional data with little additional effort,
whereas level III geocoding required substan-
tial time and effort and might be more prone
to errors in positional accuracy—that is,
locating an observation at the wrong parcel.
This could be due to the quality of the
recorded address or to the process. Geocoding
outcomes differ substantially across individual
counties. For instance, the level III process
geocoded approximately 40% of records in
Carteret and Lenoir Counties but no records
in Henderson County.

After all three geocoding processes were
complete, we included only the record with
the highest BLL at each parcel for each child
in the analysis. We used this conservative or
more protective selection method because the
highest results provide information regarding
levels of exposure to biologically available
lead. This method is consistent with the
approach used by Lanphear et al. (1998).
Because of left skewness, the natural loga-
rithm of BLLs from the blood lead data
served as the dependent variable in our multi-
variate statistical analysis, in which we used a
weighted regression model to avoid having
model output influenced excessively by tax
parcels with multiple records. We performed
the regression with clustering by block group
to adjust standard errors for correlation
within the same block group. Explanatory
variables included median household income,
percentage of households receiving public
assistance, percent African Americans, and
percent Hispanics—all taken from the 2000
U.S. Census. We also used year of construc-
tion from the tax assessor data and accounted
for seasonal changes in lead exposure by
including three dummy variables for seasons
when the blood samples were taken (winter as
reference) (Miranda et al. 2007). We also
included dummy variables for each of the
counties. We combined the spatially linked
data listed above into a single GIS database to
prepare for statistical analysis using ArcGIS,
version 9.1 (ESRI, Redlands, CA).We per-
formed statistical analysis using Stata, version
9.0 (StataCorp., College Station, TX).

We ran three models using combinations
of data from the different geocoding processes:
a) level I geocoding only, b) levels I and II
geocoding, and c) levels I–III geocoding. We
compared the results from the models to
investigate how much the additional data
from more intensive geocoding processes
improve performance of childhood lead
exposure risk models in identifying areas of
elevated lead exposure risk.

Results

The results of the revised model in the addi-
tional counties are consistent with findings
reported previously (Miranda et al. 2002).
Table 2 compares the results of the original

six-county model with the three versions of
our 18-county model. The marked decrease
in the coefficient of median income in the 18-
county models compared with the original
six-county model could result from adding
more county-specific dummies where some
income effects are embedded. More likely, the
change may be due to income growth in the
North Carolina counties between the 1990
Census and the 2000 Census, in which
income is expressed in nominal rather than
real terms. A Wilcoxon matched-pairs signed-
ranks test confirmed that the two income dis-
tribution functions are identical but differ
only with respect to their median values. The
coefficients for age of housing and percent
African American are relatively close between
the 6-county and 18-county models. The new
variables—percent Hispanics, percentage of
households receiving public assistance, and

dummies for seasonality—were all significant
and of the expected sign.

Table 2 also shows that the 18-county
models provide very similar results across the
three levels of geocoding. Although using a
substantially smaller number of observations,
the models using only level I geocoding and
level I and II geocoding produced very similar
coefficients and model fit compared with the
model using levels I–III geocoding, except for a
minimal difference for some county-specific
dummies. This finding is noteworthy because
it implies that additional time and resources
dedicated to level III geocoding do not signifi-
cantly alter or affect statistical modeling results.

We then applied the coefficient vector to
the corresponding variables at the tax parcel
level, creating a lead exposure risk index value
for each residential tax parcel unit in each of
the 18 counties, as the data permitted.

A highly spatially resolved childhood lead exposure risk model
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Table 1. Geocoding processes for 18 North Carolina counties.

No. of screens in
Geocoding level Description 18 counties (1995–2003) Time invested

I Exact match of “as reported” 170,277 7–9 days
address to reference (parcel) data (36.4% of all records)

II Exact match after address 48,459 20–22 days
standardization to reflect (10.4% of all records)
reference data structure

III Match using visual analysis of 102,854 90–120 days
tax parcel data (22.0% of all records)

Ungeocoded Remain ungeocoded after 145,614 —
level III geocoding (31.2% of all records)

Table 2. Results of statistical models [dependent variable: ln(BLL) μg/dL].

18-County model

Level I Level I + II Level I + II + III
Independent 6-County modela geocoding only geocoding geocoding
variable (n = 11,523) (n = 122,674) (n = 156,461) (n = 214,878)

Year built –0.0044 –0.0038 –0.0038 –0.0038
Household median income –4.42 × 10–6 –1.83 × 10–6 –1.77 × 10–6 –1.75 × 10–6

Percent African American 0.002 0.0027 0.0027 0.0027
Percent Hispanic 0.0023 0.0024 0.0023
Percent public assistance 0.0040 0.0036 0.0034
Screened in spring 0.02 0.03 0.03
Screened in summer 0.08 0.09 0.09
Screened in fall 0.07 0.07 0.07
Buncombe County 9.85 8.58 8.43 8.51
Carteret County 8.67 8.52 8.60
Craven County 8.66 8.52 8.60
Cumberland County 8.64 8.49 8.57
Durham County 9.81 8.47 8.32 8.39
Edgecombe County 10.10 8.79 8.65 8.72
Forsyth County 8.63 8.48 8.55
Guilford County 8.59 8.45 8.52
Henderson County 8.68 8.55 8.62
Lenoir County 8.75 8.61 8.68
Mecklenburg County 8.59 8.44 8.51
Nash County 8.74 8.58 8.65
New Hanover County 9.92 8.63 8.48 8.55
Orange County 9.93 8.60 8.45 8.52
Stanly County 8.81 8.66 8.73
Wake County 8.60 8.45 8.52
Wayne County 8.71 8.56 8.63
Wilson County 10.30 8.73 8.58 8.67
Root mean square error 0.619 0.601 0.601 0.602

All coefficients are significant at the 1% level.
aData from Miranda et al. (2002).



(Although we conducted the model analysis
using only those tax parcels that had been
linked to a blood lead screen, the resulting
model parameters can be applied to all residen-
tial tax parcel units.) We coded all tax parcel
units in each county that could be identified as
residential into one of four priority categories
based on the relative size of their risk index val-
ues: top 10%, 10–20%, 20–60%, and
60–100%. We chose this “10–10–40–40” dis-
play structure based on several conversations
with local health and housing department per-
sonnel regarding how to display model outputs
in ways that are meaningful and directly useful
to policy makers and other stakeholders.

Figure 2A maps the 10–10–40–40 expo-
sure risk priorities for a portion of Wake
County, North Carolina, based on the results
from the models using data from level I and
II geocoding. This is only one example of
how model results can be grouped and dis-
played. The models allow for flexibility and
adaptation to different intervention strategies.
This model does not capture non-housing-
related lead exposure risk, such as cosmetics,
toys, or traditional medicines.

For all of the counties included in this
analysis, the ranks of risk index created by the
three models are highly correlated, and the
Spearman correlation coefficient is close to 1.
Most parcels remain unchanged in their risk
priority with additional data from more
intensive geocoding; the risk categories
change only for < 1% of the parcels. In Wake
County, for instance, the two models assign
different categories to only 1,095 of the total
198,045 parcels (Figure 2B).

Figure 3 summarizes the distribution of
EBLLs (≥ 10 µg/dL) by priority risk categories
from the models with versus without level III

data for Wake County. An intervention pro-
gram based on the model with level I and II
data that targeted only the top 10% of the
housing stock in Wake County would have
captured 55.2% of the EBLLs in the county,
with an additional 15.4% of EBLLs captured
by targeting the next 10% of the housing
stock. This compares very favorably with the
54.4% and 20.2% that would have been cap-
tured by targeting the top 10% and next 10%,
respectively, of the housing stock using the full
model with data from levels I, II, and III. We
found similar results for all 18 counties in this
analysis, indicating that the lead exposure risk
model based on level I and II geocoding per-
forms on par with the model based on levels
I–III geocoding, with considerably less effort
expended on developing the model. This find-
ing supports the feasibility of widespread repli-
cation of a highly spatially resolved childhood
lead exposure risk model.

Discussion

Comparing the model using level I and II data
with that using levels I–III data shows that, for
most counties, expending the additional effort
on level III geocoding adds little to no improve-
ment in model performance. The overall per-
formance of these models tends to be driven at
least partly by the underlying quality of address
data in both the tax parcel and the lead surveil-
lance data sets, as well as the total number of
children previously screened in the county. Tax
parcel data-quality improvements are rapid as
local governments realize the gains in efficiency
in property tax collection made possible by
high-quality digitized parcel data. Lead surveil-
lance data are stored in a central registry in
North Carolina (North Carolina Childhood
Lead Poisoning Prevention Program, North

Carolina Department of Environment and
Natural Resources databases, unpublished
data), which is extremely helpful for developing
models for multiple counties at the same time.
In addition, the quality of these data has
improved substantially, as have the postcollec-
tion quality assurance and quality control prac-
tices at state offices. The number of children
who have previously been screened—and
whose data thus serve as the basis for building
the childhood lead exposure risk models—
varies from county to county, with much lower
levels in more sparsely populated counties, as
would be expected. In these situations, addi-
tional years of data may need to be included to
improve the performance of the models.

We have replicated the parcel-level lead
exposure risk models for Kenosha County,
Wisconsin, and for the City of Detroit,
Michigan (Miranda ML, Kim D, Galeano
MAO, unpublished data) and found that the
key explanatory variables in the North
Carolina models remain significant in these
two additional locales. The Kenosha model,
on average, performs better than the North
Carolina model, addressing 67% of the ele-
vated cases by targeting the top 10% of the
housing stock and 82% by targeting the top
20%. On the other hand, the performance of
the Detroit model was not as good as the
North Carolina or the Kenosha models,
addressing 25% by targeting the top 10% and
46% by targeting the top 20%. This indicates
that the sources of childhood lead poisoning
may be more complex in heavily industrialized
areas such as Detroit. Thus, the Detroit model
includes variables to account for proximity to
industrial facilities that either presently or his-
torically emit lead. In addition, we are in the
process of obtaining additional data layers
related to industrial facilities that should sub-
stantially improve model performance.

The limitations of this study deserve men-
tion and consideration for future research. First,
the screens that remained ungeocoded even
after level III efforts might have had an impact
on the model results. Second, errors and
inaccuracies associated with our three levels of
geocoding, such as address matching errors,
could have potentially affected the model para-
meters (Rushton et al. 2006). Third, although
our study provides a framework for producing
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Figure 2. Lead risk priority maps and model performance for a portion of Wake County, North Carolina.
(A) Map with level I + II data: priority 1 parcels predicted most likely to contain lead-based paint hazards
(top 10%); priority 2 and 3 parcels (10–20% and 20–60%); priority 4 parcels (60–100%), least likely to contain
lead-based paint hazards. The white areas are nonresidential parcels or parcels for which we have no
data (missing year of construction or suppression of data by the U.S. Census for confidentiality reasons).
(B) Map showing only the parcels where priorities change with level III data (red).
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highly spatially resolved models for childhood
lead exposure risk, in some geographic areas
additional explanatory variables may be needed,
as was the case, for example, in Detroit.

Despite these limitations, the potential for
community outreach is great with these
highly spatially resolved models. When
enhanced by data layers of community
resources, the model can be used to identify
venues for outreach activities such as child
care centers, places of worship, and commu-
nity centers—particularly those located in
high-risk areas. In one application of the
model in Durham County, North Carolina,
we are overlaying the childhood lead exposure
risk model with a map of recent births. The
health department can then use these maps
and databases to direct a home visitation pro-
gram that provides education on lead-safe
cleaning practices, conducts home testing,
and reminds parents to have their children
screened for lead in a timely fashion. This
approach gets critical information to families
before children enter the developmental stage
with high hand-to-mouth activity that exacer-
bates exposure to lead in the home.

We are also working to make the results of
these models universally accessible through a
Web-based portal. With this tool, a health ser-
vice provider (or any community member) can
look up an address to evaluate the associated
lead risk at the residence, as well as other rele-
vant public and environmental health concerns.
This approach to GIS mapping allows for
detailed evaluation of risks, while simultane-
ously protecting patient confidentiality. This
Web-based approach helps identify children at
risk quickly and makes targeted intervention
more effective. In addition, it serves as a critical
planning tool for housing departments and
affordable housing coalitions, as they consider
priorities for rehabilitating the housing stock. It
has also been used to direct housing inspections
to more quickly identify substandard houses. In
a clinic setting, the model maps of those areas
where patients live can be displayed in poster
format to give patients (and health care
providers) a sense of the exposure patterns for
different residential areas. In addition, the
Web-based direct look-up function can be inte-
grated with health record databases to provide

an automatic flag to health care providers to
screen children for lead. Eventually, the portal
could expand to include prevention of multiple
potential residential exposures. 

Conclusions

This analysis demonstrates that widespread
replication of highly spatially resolved child-
hood lead exposure risk models is feasible in
any area with digitized tax parcel data.
Increasingly, such data sets are being main-
tained digitally, even in low-income areas, as
the cost of electronic data storage decreases
and technical expertise increases. For exam-
ple, in North Carolina, 84 of 100 counties
already have digitized parcel data, with plans
moving forward rapidly in the remaining
16 counties. Recent developments in geocod-
ing techniques and reference data sets (e.g.,
parcel geocoding and building-level geocod-
ing) will make highly spatially resolved data
increasingly available to researchers and policy
practitioners interested in using these tech-
nologies to improve public health.
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