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The Herculean effort to sequence every
nucleotide in a genome has generated
complete sequences for many of the com-
mon experimental organisms, including
Saccharomyces cerevisiae, Drosophila
melanogaster, and Caenorhabditis elegans.
Significant progress has also been made
sequencing entire genomes for more com-
plex species, such as mice and humans. The
analysis and application of this information
have the potential to advance rapidly our
understanding of the molecular mechanisms
underlying normal cellular processes as well
as the molecular basis for disease. A limita-
tion of this information is that complete
sequence data merely enable the identifica-
tion of all theoretical genes within a genome.
Sequence information alone does not indi-
cate either the expression patterns for a given
gene or the cell type in which it is expressed.

The functional expression of genes may
be assessed by measuring the levels of
mRNA and their corresponding proteins.
Previously, one could assess the expression of
mRNA for known genes or unidentified
genes or expressed sequence tags (ESTs)
using somewhat labor-intensive, low-
throughput techniques, including Northern
blot analysis and RNase protection assays.
The advent of newer technologies such as
quantitative reverse transcription-polymerase
chain reaction (RT-PCR) and DNA chips,
or microarrays, has enabled rapid and simul-
taneous comparison of mRNA levels for
hundreds to thousands of genes in virtually
any biologic sample.

The number of publications employing
microarrays has undergone exponential
growth since its inception in 1995. The orig-
inal paper by Schena et al. (1) detailing this
technique to monitor gene expression
changes has been referenced over 700 times.
Furthermore, a search of published literature
using the keyword “microarray” or “DNA
chip” yields over 800 articles (Figure 1).
Most of these articles have focused on studies

related to cancer research. Microarrays have
also been used to study questions in pathol-
ogy, cell biology, pharmacology, and toxicol-
ogy. The technology and methods involved
in microarray experiments have been the
focus of several reviews (2–9). Therefore, we
will summarize briefly the principle of
microarray, and then compile a summary of
studies in which the application of DNA
microarrays has addressed critical questions
in different scientific fields as well as discuss
several future challenges. Due to the vast
nature of this task, this review is meant to
provide a comprehensive but not inclusive
summary of all expression array studies.

General Review of Microarray
Technology
DNA microarray technology is revolutionary
because it provides a platform to perform
genome-wide expression analyses across vari-
ous biologic models. The recent popularity
of microarrays stems from the wide variety
of research areas into which this technology
can be integrated. Because physiologic
responses involve complex regulatory
networks that affect the levels of gene expres-
sion, the use of DNA microarrays to moni-
tor simultaneously the response of thousands
of genes allows one to observe genes that act
in a coordinate fashion. DNA microarrays
will help us better understand the mecha-
nisms of action of compounds, provide
insight into functions for genes with no
known function, and advance many areas of
biologic and biomedical research. 

DNA microarrays are generated by either
printing presynthesized cDNAs (500–2000
bases) or synthesizing short oligonucleotides
(20–50 bases) onto glass microscope slides or
membranes. cDNAs for microarrays may
include fully sequenced genes of known
function or collections of partially sequenced
cDNA derived from expressed sequence tags
(ESTs) corresponding to the messenger
RNAs of unknown genes. Differential gene

expression measurements are achieved by
competitive, simultaneous hybridization of
reverse-transcribed cDNAs using a two-color
fluorescence labeling approach or comparison
of two biotin or radioactively labeled samples
hybridized on different chips. One may com-
pare, for example, two different tissues, nor-
mal versus diseased tissue or untreated versus
exposed cells. Scanned images representing
the two samples are then overlaid using spe-
cialized image-processing software that
assigns a color intensity corresponding to the
amount of fluorescence or radioactivity. The
ratio of the intensity for one sample com-
pared to the other is used as a measurement
of whether a gene is significantly different
(i.e., induced or repressed) in one sample
from the other.

Oncology

In the past five years, microarray technology
has been used as a tool in many studies in
cancer research. Many of these reports are
listed in Table 1, which categorizes the stud-
ies by tumor location. Microarrays have been
used in cancer research to address three main
objectives: determining the molecular differ-
ences between normal and malignant cells;
improving the classification of tumors to
increase the effectiveness of therapeutics; and
identifying mutations in genes that are impli-
cated in tumor formation or progression.

Microarray technology has revolutionized
the manner in which cancer researchers iden-
tify genes that are differentially expressed
during tumor progression. Using breast tissue
that was obtained immediately after a modi-
fied radical mastectomy, Sgroi et al. (10)
examined differences in gene expression in
the tumor and normal tissue from a single
patient. The tissue was frozen, sectioned, and
stained using hematoxylin and eosin to dis-
tinguish normal breast epithelial cells from
invasive carcinoma cells as well as metastatic
cells (from an axillary lymph node). Each cell
population (normal, primary tumor, metasta-
tic tumor) was isolated using laser capture
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microscopy to avoid cross-contamination,
inclusion of adipose tissue, stromal compo-
nents, or lymphocytes that may have been
associated with an immune response to the
disease. Isolation of different cell populations
from a single patient meant that any
observed gene expression changes could
potentially be attributed directly to disease
progression, a task that would be more diffi-
cult if the study had been performed using
tissue from multiple women. Sufficient num-
bers of each cell type were harvested using
laser capture microscopy to yield enough
RNA for microarray analysis without using
RNA amplification procedures (11,12).
(Appropriate cell numbers will vary depend-
ing upon the cell type and tissue of origin,
and the amount of RNA depends on the
microarray platform and the labeling proto-
col.) RNA amplification should be used with
caution to avoid the risk of misrepresenta-
tional gene expression biases (12–14). 

This study (10) identified genes that were
differentially expressed in invasive or metasta-
tic breast cancer cells compared with levels
present in normal breast epithelial cells. To
increase the statistical confidence in the data,
the analysis included data from replicate
hybridizations. Many of the differentially
expressed genes were verified by quantitative
RT-PCR and immunohistochemical assays.
A significant proportion (41%, 83 of 202) of
the differentially expressed genes were
unknown; however, many of the known
genes were previously implicated in tumor
biology or specifically in breast cancer.

For example, the increased expression of
tissue factor (also known as thromboplastin
or coagulation factor III) has been described

previously during angiogenesis and metasta-
sis [reviewed by Ruf and Mueller (15)]. In a
more recent study (16), increased levels of
tissue factor protein have been detailed in
the tumor, stroma, and plasma of breast can-
cer patients. The microarray data demon-
strated a 5-fold increase in tissue factor
transcripts in primary tumor cells relative to
normal breast epithelial cells. This finding
corroborated the association of increased lev-
els of tissue factor with tumor progression,
and also indicated that tissue factor expres-
sion is under transcriptional control.
Cumulatively, this study demonstrated that
the use of carefully controlled experimental
parameters (unamplified RNA from distinct
cell populations obtained from one individ-
ual patient) in the preparation of samples for
microarray analysis can yield a descriptive
examination of the transcriptional changes
associated with tumor progression.

Microarrays have also been used to study
tumor progression in cell cultures. It has been
reported (17) that the human melanoma cell
line UACC-903 can be reverted to a normal
growth rate after introduction of a normal
human chromosome 6 [UACC-903(+6)]. In
a more recent study (18), fluorescently
labeled cDNA probes were generated from
mRNA extracted from UACC-903 or
UACC-903(+6) cells and hybridized to a
DNA chip to identify changes in gene
expression associated with the reduced rate of
proliferation and tumor suppressed pheno-
type. The criteria used to determine whether
a gene was differentially expressed identified
63 upregulated genes (7.3% of the 870 genes
present on the chip) on introduction of nor-
mal chromosome 6, whereas 15 (1.7%) genes

were significantly downregulated. The levels
of 15 of these differentially expressed genes
were verified independently by Northern
blot analysis. One of the validated genes
demonstrating increased expression in the
UACC-903(+6) line was p21/WAF1, a
mediator of p53-induced growth suppres-
sion, which correlated with the reduced
growth rate observed in transfected cells.
This report exemplifies the quality and use-
fulness of microarray data and provides fur-
ther validation of the potential utility of in
vitro models of cancer.

Microarray technology can facilitate
accurate classifications of cancer. Historically
tumors have been classified by pathologic
examination supplemented by special stains
and antibodies. Similar to the way in which
DNA sequencing is revolutionizing the field
of taxonomy, gene expression profiling is
increasing the number of markers useful in
tumor classification. For example, because of
standard immunohistochemical techniques
that showed positive staining for neural-spe-
cific markers, small cell lung cancers were
believed to originate from neuroendocrine
tissue (19). Pulmonary carcinoid tumors,
which are benign lung tumors, also stain pos-
itively for neuroendocrine markers and are
therefore hypothesized to arise from neuroen-
docrine cells. Using high-density cDNA
arrays, Anbazhagan et al. (20) supported this
theory by demonstrating that pulmonary car-
cinoid tumors exhibited a gene expression
profile similar to that of two neural-derived
tumors, oligodendroglioma and high-grade
astrocytoma. Surprisingly, the expression
profile of small cell lung cancer was more
similar to that of bronchial epithelial cells
than to those of carcinoid tumors, oligoden-
drogliomas, or high-grade astrocytomas. This
finding suggests that small cell lung cancer
may actually be an epithelial tumor rather
than of neuroendocrine origin. In studies of
melanomas, diffuse large B-cell lymphomas,
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Figure 1. Exponential growth of microarray technology use in scientific reports. Articles published per
year containing the keyword “microarray” or “DNA chip” were identified by a Medline search.
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Table 1. Use of microarray analysis in cancer
research. 

Location of primary tumor/
tumor type Reference

Breast (10,26,28,29,31,81–96)
Ovary/cervix/endometrium (32,97–100)
Prostate (101–109)
Colon (29,110–115)
Pancreas (116,117)
Kidney (118)
Blood/lymph (21,23,119–129)
Liver (130,131)
Bladder (132,133)
Head/neck/oral (134–137)
Brain (138–143)
Lung (20,29,144–149)
Skin (18,22,150–152)
Rhabdomyosarcoma (153–156)
Ewing’s sarcoma (157)
Multiple sites/tumor types (63,64,158–161)



and leukemias, previously uncharacterized
tumor subtypes were identified based on dif-
ferential gene expression patterns observed
using microarrays (21–23). Ultimately, more
accurate classification of cancerous lesions
based on gene expression profiles may
improve the therapeutic strategies employed
to treat patients by allowing selection of
chemotherapeutic agents that target tumor
subtype-specific molecules.

Breast cancers are currently classified
based on several parameters, including tumor
size and stage as well as the level of estrogen
receptor (ER) expression (24,25). Using sev-
eral breast cancer cell lines as well as primary
tumor samples, Martin et al. (26) identified
clusters on a hierarchical tree (groups of
genes that demonstrate similar expression
patterns) that are associated with each of
these clinical features. Grouping—statistical
clustering of tumors according to their
respective gene expression profiles—enabled
discrimination of tumors based on ER status.
However, several tumors were not grouped in
accordance with the original immunohisto-
chemical data. Not a shortcoming of the
gene expression profiling procedure, this dis-
crepancy represents a strength of this tech-
nique by providing additional insight into
tumor biology. Some tumors are classified as
ER-positive based on immunohistochemical
analysis, but actually express a nonfunctional
protein and therefore should by typed ER-
negative. This would indicate that tumors
expressing ER (determined by classic assays)
but not grouped with other ER-positive
tumors by clustering of gene expression data
might represent this unique group of tumors.
The accurate classification of these tumors
using a combination of classic pathologic as
well as gene expression techniques would
enable physicians to predict whether these
tumors would be refractive to hormonal ther-
apy, and allow the consideration of alterna-
tive treatment regimes.

Advances in cancer research can be facili-
tated by studies that use microarrays to
explore the function of genes implicated in
tumor progression or genetic susceptibility.
For example, women with a germline muta-
tion in BRCA1 are predisposed to breast and
ovarian cancer (27). BRCA1 has been impli-
cated in the response to DNA damage,
homologous recombination, and transcrip-
tion. To isolate target genes of BRCA1
action, two different laboratories completed
high-density array hybridizations using RNA
from cells ectopically expressing BRCA1
(28,29). Consistent with the proposed
action of BRCA1 in DNA repair, both
groups identified genes implicated in the
DNA damage response (such as GADD45)
as being significantly upregulated in cells
overexpressing BRCA1. Further exploration

into the molecular mechanisms of BRCA1
action and the effect of gene mutations on its
activity will undoubtedly provide more
insight into the basis for genetic predisposi-
tion to cancer.

To detect gene mutations, a variation on
array-based technology has been developed.
N-mer arrays contain oligonucleotides of
specific length, which correspond to a por-
tion of the coding region of the gene of
interest. Wild-type sequences as well as sin-
gle base substitutions at every position are
synthesized on a chip. After hybridization,
the intensity of each oligonucleotide is
assessed; the oligonucleotide with the highest
signal corresponds to the actual sequence for
the gene being analyzed (30). This technique
has identified single base insertions, dele-
tions, and substitutions in three different
tumor suppressor genes, BRCA1, BRCA2,
and p53 (31,32). This modified application
of microarray technology has the promise to
deliver high-throughput data with the same
accuracy as more popular, gel-based methods
of mutation screening while being less time-
and labor-intensive (32).

Infectious Disease

The underlying basis of infectious disease
stems from the complex interaction between
a pathogen and a host. Understanding the
molecular details of this interaction will aid
in the identification of virulence-associated
microbial genes and host-defense strategies.
This would enable characterization of the
genes involved in pathogenesis and the regu-
latory mechanisms controlling these genes.
Ultimately, this knowledge could guide the
generation of new treatment regimes to com-
bat infections. Microarray technology
promises to expedite microbial research by
aiding in annotation of the microbial
genome, examination of microbial physiol-
ogy, and identification of candidate virulence
factors. 

Most of the time, the function of bacterial
genes is inferred by finding homologs that
have been previously characterized in other
organisms. The study of genomewide expres-
sion patterns will greatly enhance the annota-
tion of gene function: Similar expression may
imply related function. Thus, when a gene
with an unknown function is clustered with
known genes based on similar expression pat-
terns, it is implied that the function of the
unknown gene is related to that of other
genes in that cluster. This hypothesis was first
tested in a study examining the gene expres-
sion profile of Saccharomyces cerevisiae, and it
demonstrated the coregulated expression of
genes that performed similar cellular functions
(33). Theoretically, expression profiling will
enable the function of unknown genes to be
extrapolated, even when sequence similarity

has not been established with characterized
genes. This is especially true for pathogens
because the whole genome has been
sequenced for a significant number of these
organisms using rapid techniques such as the
“shotgun” approach (34–36).

A series of studies demonstrated that the
evaluation of mRNA expression profiles by
DNA microarray analysis is a powerful
approach for characterizing and understand-
ing host–pathogen interactions (37–43).
The ability to identify virulence factors using
DNA microarrays has been shown by com-
paring gene expression of pathogen-infected
and -uninfected cells. Cohen et al. (39)
observed changes in the gene expression pro-
file of the human promyelocytic THP1 cell
line after infection with Listeria monocyto-
genes, a pathogenic intracellular organism
responsible for meningitis, meningo-
encephelitis, and in some cases gastroenteri-
tis. The underlying premise of their study
design was that this gram-positive bacterium
is able to penetrate and grow in both phago-
cytes and nonphagocytic target cells. The
infection stimulated transient activation of
signal transduction pathways in the host cell,
leading to modulation of gene expression.
The authors’ findings were consistent with
previously published data, and also identified
several novel genes associated with the infec-
tion. L. monocytogenes-regulated genes
belonged to different functional categories,
including inflammation, chemotaxis, tran-
scription, apoptosis, transduction, metabo-
lism, and cell cycle. This information will
enhance the understanding of the molecular
physiology of L. monocytogenes and guide the
development of new therapeutic drugs. 

Cellular Biology

Microarray technology has influenced cell
biology by enabling characterization of differ-
ent cellular events at the molecular level
(Table 2). This information has increased the
understanding of major biologic events such
as organ development, homeostasis, as well as
inter- and intraorgan communication. 

Studies using microarrays have not only
enhanced the understanding of known cellu-
lar processes, but also aided the discovery of
previously unknown properties or functions
of different cells. Iyer et al. (44) demon-
strated this through analysis of the response
of human fibroblast cells to serum. Genes
were clustered into groups on the basis of
their temporal patterns of expression. Many
features of the transcriptional program
appeared to be related to the physiology of
wound repair, suggesting that fibroblasts may
play a larger role in this complex, multicellular
response than had previously been assumed.

When studying human responses, the
goal is to use human-derived tissue that is
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representational of the organ or system being
studied. However, several gene expression
studies have identified differences between
widely used cell culture models and the tis-
sue of origin. Detailed studies regarding the
function of normal cells will help identify
limitations of cell models, For example,
Walker and Rigley (45) examined gene
expression profiles in human peripheral
blood mononuclear cells (PBMCs) stimu-
lated with phytohemagglutinin. They found
104 genes to be differentially expressed in
response to phytohemagglutinin stimulation.
Clustering analysis grouped these genes into
major functional categories including detoxi-
fication, intracellular signaling, vesicle traf-
ficking, inflammation, and house keeping.
Due to the vast number of studies using
PBMCs, it is important that changes in their
gene expression profile resulting from differ-
ent treatment and culturing conditions be
studied and characterized. This information
will aid greatly in interpreting data from
studies using these cells and identify changes
in gene expression resulting from variation
in the model.

Additional complications of in vitro
studies are that cells can differentiate, grow
old, or become transformed during experi-
mentation through treatment or growth
conditions. Cell differentiation during an in
vitro study introduces potential biological

variability into a data set. Changes in gene
expression during differentiation have been
studied by comparison of differentiated
3T3-L1 adipocytes and nondifferentiated
3T3-L1 preadipocytes (46). A vast difference
in expression patterns was discovered, high-
lighting the importance of identifying exper-
imental parameters that can confound
experimental results.

DNA microarrays have also been used to
better understand mechanisms associated
with aging by identifying specific genes asso-
ciated with age-related processes. One study
(47) evaluated gene expression alterations in
in vitro-aged dermal fibroblast cell popula-
tions following immortalization with the
telomerase catalytic subunit (hTERT).
Telomeres are specialized DNA repeats that
stabilize the ends of chromosomes (48,49).
As somatic cells divide, their telomeres grad-
ually become shorter until a critical length is
reached, after which somatic cells enter a
nondividing state termed senescence (50).
Microarray analysis showed that senescent
cells express reduced levels of collagen I and
III, as well as increases in genes associated
with the destruction of dermal matrix and
inflammatory processes. The study also
demonstrated that expression of telomerase
in the normal cells produced gene expression
patterns very similar to early passage cells,
consistent with the ability of these cells to

proliferate and perform normal biologic
functions. The investigators indicated that
telomerase activity not only conferred
immortality in skin fibroblasts, but also
reversed the loss of biologic function in
senescent cells. 

A separate study analyzed the gene expres-
sion profile of the aging process in the skeletal
muscle of mice (51). The data revealed that
aging produced a heightened stress response
and lower expression of metabolic and
biosynthetic genes. These findings are consis-
tent with the senescent phenotype because
decreased levels of biologic activity character-
ize these cells. Interestingly, these investigators
also demonstrated that changes in the gene
expression profile were prevented by a calorie-
restrictive diet, suggesting that increasing pro-
tein turnover and decreasing macromolecular
damage could extend the aging process.

Use of microarrays to examine changes in
gene expression patterns can also identify reg-
ulatory genes and other essential components
of different cellular processes. Monitoring
RNA expression levels in organisms for
which the entire genome has been sequenced
(such as yeast) enables a comprehensive
examination of functional genomic responses
compared to other biologic models where
only partial sequence is known. Lashkari et
al. (52) generated the first high-density
cDNA microarray of yeast open reading
frames, whereas Wodicka et al. (53) devel-
oped the first high-density oligonucleotide
arrays for monitoring the expression of nearly
all yeast genes. The sheer volume of data gen-
erated using the S. cerevisiae model, including
development of mutation, knock-out, and
overexpression models, reduces the challenges
of testing hypotheses and making associations
inferred from gene expression analyses. 

Eisen et al. (33) grouped genes expressed
in budding yeast into functional subsets by
combining gene expression profiling with
clustering analysis, using an algorithm
designed to arrange genes according to simi-
larity in expression patterns. This study
revealed the versatility of microarrays and
highlighted the computational tools that can
be applied to these data so as to derive bio-
logic associations. 

The use of genetic manipulations, in
addition to genome-wide transcript profiling
in yeast, revealed changes in gene expression
underlying pheromone signaling, cell cycle
control, and polarized morphogenesis (54).
These experiments showed cross talk and
overlap of multiple mitogen-activated pro-
tein kinase pathways such as filamentous
growth and mating responses. More glob-
ally, this study demonstrated the potential to
correlate gene expression changes with alter-
ations in physiologic or developmental
processes. 
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Table 2. Application of microarray technology to different scientific disciplines.

Discipline, investigation topic Reference

Pathology
Pseudonoma aeruginosa (38)
Human papilloma virus (42)
Human immunodeficiency virus (39)
Listeria monocytogenes (41)
Salmonella (40)
Tuberculosis (43)
Malarial parasite (162)
Bordetella pertussis (37)

Toxicology/pharmacology
Carbon tetrachloride (HepG2) (163)
Beta-naphthoflavone (mouse liver) (164)
2,3,7,8-Tetrachlorodibenzo-p-dioxin (HepG2) (165)
Copper regulation in S. cerevisiae (166)
Multidrug resistance in S. cerevisiae (167)
Isoniazid (168)

Cell biology/cellular signaling
Yeast cell cycle (169)
Yeast adaptation to growth conditions (170–172)
Transcription control (173–179)
Functional diversity among kinase A subunits (180)
Role of histones in telomeric silencing (181)
Kinase inhibitors (182)
Effect of clotting factor on fibroblasts (183)
Differentiation of embryonic stem cells (184)
Erythroid maturation (119)
Maturation of human dendritic cells (185)
Response of pancreatic cells to glucose (186)
Mechanically induced genes in human muscle cells (187)
Mid-gestation placenta and embryo associated genes (188)
Metamorphosis (189)
Functional diversity of T cells (190)
Transcript profile of hematopoietic stem cells (191)



Numerous other studies have focused on
elucidating components of signaling cascades
in biologic models (Table 2). Cumulatively,
these studies contribute to a greater under-
standing of the molecular communication
within cells and how those signals mediate
cellular processes. 

Toxicology and Pharmacology

Identification of environmental carcinogens
and other hazards constitutes a major chal-
lenge in the field of toxicology. The assess-
ment of risk associated with different
chemical exposures is limited partially by dif-
ficulties relating to cross-species extrapolation
and dose response as well as estimations of
exposure levels. Thus, one must identify
trans-species, chemical-specific biomarkers
that result from quantified exposures to drugs
or toxic chemicals. This would improve the
extrapolation of data from model systems to
potential effects in humans. Many disciplines
employ in vitro models to study cell processes
and signals; however, to extrapolate findings
to humans, toxicology and pharmacology
require the use of relatively large, complex
organisms such as rodents, rabbits, canines,
and monkeys. The process of gene discovery
and deciphering these genomes is challeng-
ing, but current efforts to sequence the
genomes of these organisms will greatly
enhance the DNA microarray field by offer-
ing more defined sequences to monitor in the
response of a biologic model to a chemical
exposure. 

The potential of DNA microarray tech-
nology to identify gene expression changes
associated with toxic or pharmacologic
processes has been the focus of several stud-
ies. For example, the biochemical and mole-
cular mechanisms of lead neurotoxicity have
not been fully elucidated; however, lead has
been shown to interfere with several signal
transduction pathways (55–58). Changes in
gene expression in target cells is hypothe-
sized to be a mechanism by which this
chemical interferes with normal brain devel-
opment (59). Hossain et al. (60) studied the
mechanisms underlying lead neurotoxicity
using cDNA microarray gene expression
analysis and identified lead-sensitive genes in
immortalized human fetal astrocytes (SV-
FHA). Their findings indicated that lead
induces vascular endothelial growth factor
(VEGF) expression in SV-FHAs via a path-
way involving protein kinase C and the AP-1
transcription factor, yet independent of
hypoxia-inducible factor-1. This report
highlights the potential of DNA microarrays
for the discovery of novel toxicant-induced
gene expression alterations and the ability to
dissect the second messenger pathways and
transcription factors mediating these
changes. By allowing determination of the

mechanisms of toxicant action, such studies
will ultimately contribute to models devel-
oped for risk assessment in humans. 

Microarray experiments using pharmaco-
logic agents have focused on identification of
mechanisms for drug action as well as isola-
tion of potential drug targets. A landmark
study (61) described a method for drug target
validation and identification of secondary
drug target effects based on genome-wide
gene expression patterns. These researchers
generated mutations in yeast genes encoding
putative targets of the immunosuppressant
drugs cyclosporin A or FK506. Expression
profiles were then identified for both mutant
and wild-type cells after drug treatment to
verify essential components of the drug’s
molecular mechanism. This research revealed
pathways that FK506 affected in a cal-
cineurin- and immunophilins-independent
manner by induction of drug-dependent
effects in “targetless” cells. The described
method permitted direct confirmation of
drug targets and recognition of drug-depen-
dent changes in gene expression, including
those mediated through pathways distinct
from the drug’s intended target. This parallel
approach in comparison of wild-type and
mutant cells may help improve the efficiency
of the drug development process.

Currently, there is a limited inventory of
expression profiles reflecting the response to
chemical treatment in biologic models. This
type of information would enhance our
understanding of toxicology and pharmacol-
ogy. The principal hypothesis underlying
toxicogenomic studies is that chemical-spe-
cific patterns of altered gene expression can
be revealed using high-density microarray
analysis on the tissues from treated organisms
(6). As detailed earlier, gene expression-based
pattern discrimination has been effective in
tumor classification (21,23,62–64); however,
this problem is more complex in toxicology-
based studies that are confounded by target
organ, dose, and time point variables. This
challenge was demonstrated in a recently
published effort to distinguish classes of toxi-
cants based solely upon cluster-type analysis
of differentially expressed genes in HepG2
cells (65). Initial comparison of gene expres-
sion profiles for cytotoxic anti-inflammatory
drugs and DNA-damaging agents to a data-
base populated with gene expression profiles
from 100 toxicants failed to differentiate
between the two classes of compounds. The
authors suggest that a lack of replicate
hybridizations resulted in low reproducibility
of the gene responses. To surmount this chal-
lenge, they generated a single gene-expression
profile from 13 separate hybridizations using
RNA isolated independently from cisplatin-
treated HepG2 cultures, producing a set of
genes that demonstrated altered expression

with relatively high reproducibility. This
highlights the need for multiple biologic and
hybridization replicates to provide statistical
confidence in the gene expression profiles.

We have also verified the hypothesis that
chemical-specific patterns of expression can
be revealed using microarray analysis (66).
We analyzed patterns of gene expression in
liver tissue isolated from chemically exposed
Sprague-Dawley rats using cDNA microar-
rays. Biologic and hybridization replicates
generated statistically significant information
pertaining to the expression pattern of all
1,700 genes on the DNA chip. Clustering
analysis and statistical correlation revealed
that gene expression profiles produced in ani-
mals treated with different agents from a
common class of compounds (peroxisome
proliferators) were similar. As expected, a dis-
tinct gene expression profile was produced
using a compound from a completely distinct
class (barbiturates). Not only did our study
discriminate among different classes of toxi-
cants on the basis of analysis of validated, sta-
tistically significant gene expression profiles,
but also corroborated past findings regarding
the molecular mechanisms of action for per-
oxisome proliferators and phenobarbital. 

DNA microarrays will be instrumental
in revolutionizing the fields of toxicologic
and pharmacologic research. However, data
generated from microarray analysis cannot
be appreciated fully without computational
tools that can efficiently handle and analyze
large volumes of data. Thus, the field of
bioinformatics has emerged and is actively
addressing issues such as detecting microar-
ray targets, calculating intensity from raw
image scans, transforming data sets into
more manageable forms, performing analy-
ses that extract associations from gene
expression levels, and facilitating the emer-
gence of new testable hypotheses.

Data Analysis: Bioinformatics

The applications of database systems, com-
puter programs, and information technol-
ogy have revolutionized the way in which
biologic scientists manage, analyze, and
share information and data. The National
Center for Biotechnology Information
(www.ncbi.nlm.nih.gov) (67), a division of
the National Library of Medicine at the
National Institutes of Health, maintains
many databases and biologic resources that
contain information and data for the scien-
tific community engaged in biomedical
research. In addition, several investigative
programs in computational biology have
been established to leverage theoretical, ana-
lytical, and applied computer science
research toward addressing complex mathe-
matical and statistical problems inherent in
modern day molecular biology. In essence,
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the Human Genome Sequencing Project has
ascended as a quintessential large-scale, mul-
tidisciplinary effort that has benefited
immensely from the analysis, interchange,

and comparison of DNA sequencing data
and results (68).

With the advent of microarray technol-
ogy to monitor genomewide expression of

thousands of genes, scientists have adopted an
operations research approach to analyze and
manage gene expression data in a production-
like setting. The essential component of
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Figure 2. Example of microarray image and data analysis processes for toxicogenomic studies. Abbreviations: PCA, principal component analysis; SOM, self-
organizing maps. The simplified schema illustrates the three main processes involved in microarray analysis. The cDNA chip denotes a high-density, complemen-
tary DNA glass substrate microarray. The Cy3 and Cy5 illustrations depict raw 16-bit gray scale images resulting from scanning a cDNA chip with dual lasers to
excite the two cytofluorescent dyes at different wavelengths. The color image represents a standard red-green-blue (RGB), 24-bit pseudo-color composite over-
lay image. The Cy3/Cy5 ratio values graph illustrates the frequency distribution of the Cy3/Cy5 ratio pixel intensity values calculated for each gene target on the
cDNA chip. Data then are usually transformed into a numeric data file for further processing steps as depicted. 
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microarray data analysis is capturing mean-
ingful information regarding gene regulation.
These data ultimately will be used to gather
heuristic knowledge about a biologic system,
toxic agent, or environmental condition
affecting human health and disease states
(5,6,9,69). The microarray data analysis
schema comprises three main processes:
image analysis and data acquisition, data pro-
cessing, and multivariate analysis (Figure 2).

The initial stage of microarray gene
expression analysis is image analysis and data
acquisition. Typically a microarray is
scanned in a chip reader using lasers to excite
two different cytofluorescent dyes that have
been incorporated into the DNA; simultane-
ously the chip reader collects the separate
emission signals with dual photomultiplier
tubes (PMT). The output current of each
PMT is then digitized to form a raw 16-bit
gray scale image (8,70). The most current
scanning technology performs imaging in
the range of 5–10 mm resolution; however,
new developments in scanning technology
should improve imaging resolution and ulti-
mately enhance the signal-to-noise and
dynamic range of detection. 

Changes in gene expression are quanti-
fied from raw images using image analysis
algorithms and data acquisition procedures to
detect target regions, compute feature pixel
intensity values, subtract background inten-
sity, and compare the pixel intensity values of
DNA from a treated sample to that of a con-
trol or untreated sample. Normalization or
calibration steps are regularly performed in
microarray data analysis to accurately adjust
and correct the variability in intensity values
extracted from two separate samples accord-
ing to a standard set of control genes or
against all the targets represented on the
DNA chip. A final mean ratio pixel intensity
value is calculated for each gene target and
processed into a standard 24-bit pseudo-
color composite image for visualization of
the gene expression profile. 

Given the high “gene feature” density of
microarray chips, one may store pixel inten-
sity values, calculated ratio, and statistics for
each gene as records in a tab-delimited text
file for subsequent data management and
analysis. For instance, the microarray data-
base ArrayDB was designed as a relational
database management system to store, ana-
lyze, and associate gene expression data with
information from remote biologic resources
(71). More recently, a comprehensive data-
base has been developed to correlate gene
expression patterns with information about
pharmacologic compounds (63). 

The next stage in microarray data analysis
is data processing. Inherent in microarray
gene expression data is the nonlinear nature of
the data. Low-quality or unreliable data

points originate from fluorescent signals
below threshold detection levels or anomalies
on the microarray chip, or are the result of
missing DNA features. Typical microarray
data analysis software includes functions to
log-transform gene expression data, which
essentially stabilizes the variance in the data.
In addition, cutoff values may be applied to
the pixel size of DNA features as well as to the
intensity range of the values to refine the data
set for further analysis. These processing fea-
tures filter microarray gene expression data
and generally improve the reliability of results. 

Determination of differentially expressed
genes is the staple of this processing stage,
which adds another level of complexity to
the analysis of microarray gene expression
data, but promises to play a pivotal role in
fundamental microarray gene expression pat-
tern recognition exercises. At the onset of the
microarray era, simplistic statistical methods
were used to facilitate the interpretation of
complex and large-scale microarray gene
expression results. For example, a set num-
ber of standard deviations above and below
the mean intensity values typically identified
transcriptional changes in biologically rele-
vant genes in most published microarray-
related studies. In newer, more sophisticated
methods, computed confidence intervals are
used to determine significantly changed
genes from a ratio distribution of gene
expression data (72). In this application, dif-
ferentially expressed genes are identified on
the basis of confidence intervals determined
from a probability distribution of the ratios
of intensity values, with significantly
changed genes being those that fall outside
of the confidence limits. Ratio values close to
1.0 represent genes that are expressed simi-
larly in the two samples being compared.
More importantly, differentially expressed
genes can be validated by comparing repli-
cate measurements of microarrays and per-
forming subsequent biologic assays to
confirm the biologic significance of altered
gene expression (73,74). Using this method,
the probability that a “validated” gene
occurred by chance at a given confidence
level can be determined using a binomial
distribution model (75). 

At this time, these methods do not con-
trol for false positives and false negatives, low
fold changes, or variation of data across
independent replicate experiments, nor do
they account for genes exhibiting a bias
when detected from microarray fluor-reverse
experiments. Fortunately, surveying changes
in microarray gene expression data has
recently attracted significant attention and
gained interest from practitioners in statis-
tics, mathematics, and applied physics com-
munities as well as expert bioinformatics
companies committed to applying rigorous

and innovative computational error models
to measurements of microarray gene expres-
sion data. For instance, pioneering analysis
of microarray gene expression data is cur-
rently underway using various mixed linear
models and general analysis of variance mod-
els to assess gene statistical significance from
microarray gene expression data (76,77).
Similarly, a combination of robust additive
and multiplicative error models is used to
account for the uncertainty and variation in
measuring gene expression data as well as
assign confidence and probability values,
weight, and error bars to define statistical
significance of individual genes (78).
Though these new and practical approaches
emphatically meet the computational needs
of the microarray community, it remains to
be seen how mainstream and conventional
these procedures will be in the next genera-
tion of commonplace microarray gene
expression analysis tools.

The final stage in microarray gene expres-
sion analysis is multivariate analysis. In this
step, higher-order computational tools and
procedures assist with interpretation and
visualization of complex multivariate
microarray gene expression data. Although
there is no definitive rule about which form
of multivariate analysis to use on microarray
gene expression data, it is critical to under-
stand fully the implicit characteristics of each
algorithm so as to exploit inherent advan-
tages of each to gain the most intriguing
insight and interpretation of analyzed results. 

For example, hierarchical clustering
methods are essentially iterative processes to
organize objects into groups with similar
attributes based on resemblance, proximity,
and similarity or dissimilarity measurements.
The four basic steps in conducting a cluster
analysis on microarray gene expression data
are data collection and selection of variables
(genes and experiments) for analysis; genera-
tion of a resemblance matrix using a particu-
lar mathematical formula to measure the
extent of similarity; selection and execution
of an iterative clustering method to produce
a phylogenetic tree diagram (dendrogram)
with the branches representing the amount
of similarity between clusters; and determi-
nation of where to “cut” the tree into a select
number of nodes. Recently, robust computa-
tional tools and an interactive graphical
interface have been developed to facilitate
the compilation and visualization of clus-
tered microarray gene expression data (33).
Although cluster analysis is a classic and
rather simple partitioning technique, its
application is relatively new to microarray
data analysis and is not supported by any
comprehensive body of statistical literature. 

Self-organizing maps (SOMs) are another
useful algorithm used to interpret and visualize
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large high-dimensional data sets in two-
dimensional space. Basically, SOMs are an
array of interconnected cells that become
refined to various input signal patterns or
classes of patterns in an orderly manner.
These artificial neural networks undergo a
competitive and unsupervised iterative learn-
ing process. When microarray gene expres-
sion data are used to train SOMs, structure is
imposed on the data, with neighboring nodes
defining related clusters. In essence, the
SOM constitutes a new paradigm in artificial
intelligence and cognitive learning and has
recently been implemented into a computer
program as a genetic neural network model
for interpreting and displaying various pat-
terns of gene expression data (79).

Finally, discriminant analysis is com-
monly used to determine which variables
best distinguish between two or more
groups. The general concept underlying the
use of discriminant analysis for microarray
data is to determine whether classes of gene
expression measurements differ significantly
with regard to distinct and characteristic
gene expression profiles. Microarray data are
used to assess and rank the importance of
particular genes for discrete sample classifica-
tion. When identified, hallmark gene mark-
ers are used to predict the classifications of
test microarray treatments as well as apply
robust pattern recognition procedures to
large volumes of complex gene expression
data. Computationally, discriminant analysis
is similar to analysis of variance; however, a
novel approach that combines a genetic algo-
rithm and the k-nearest neighbor method has
been described to positively identify genes
that discriminate between classes of tumor
cells (80) and toxicant treatments (66).

DNA microarrays have revolutionized
the basic approach to research. This tech-
nique has generated collaborations among
various scientific groups (pathologists, mole-
cular and cellular biologists, toxicologists,
and the like). Additionally, microarrays have
brought together experts in engineering,
bioinformatics, and statistics. The large and
complex nature of these studies will facilitate
the partnering of different research institu-
tions in both the public and private sectors.

The popularity of DNA microarrays is
derived from the promise that this technol-
ogy will rapidly advance our understanding
fundamental biologic questions. Microarrays
have the potential to markedly increase our
understanding of not only the process of dis-
ease but also the interactions between bio-
logic organisms and their environment. 
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