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Phthalates and phenols include a number of
chemicals that are hormonally active and there-
fore might be expected to alter the course of
fetal development. Fetal exposure is indicated
by their detection in amniotic fluid (Bradman
et al. 2003; Engel et al. 2006). Phthalates are
widely dispersed in the environment, coming
mainly from personal products (low- and high-
molecular-weight phthalates) and household
items (high molecular weight). Extensive exper-
imental research on reproductive effects of
phthalates has underscored their antiandrogenic
activity. Changes in birth weight or early body
weight in rodents after prenatal exposure to var-
ious phthalates have been reported (Sharpe
et al. 1995; Tanaka 2002, 2003, 2005), but
reports of no effects also exist (Arcadi et al.
1998; Hoshino et al. 2005). Of interest, butyl-
benzyl phthalate given to rats at high doses
leads to lower birth weight and shorter anogen-
ital distance in male pups (Tyl et al. 2004).
Data in humans are sparse, but reports in male
infants are consistent with the animal literature
(Main et al. 2006; Swan et al. 2005), as are
effects on male reproductive function (Hauser
et al. 2006). Both low- and high-molecular-
weight phthalates have been implicated in these
biologic effects.

Less is known about phenols and their pre-
cursors. Bisphenol A (BPA) has elicited great

interest because of its hormonal activity; it is
found in resins and polymers used for dental
sealants and container linings. BPA is hormon-
ally active in rodents exposed in early life (Lee
et al. 2005). Prenatal alkylphenol exposures
have been linked with both reduced and
increased birth weight in rodents (Ferguson
et al. 2000; Latendresse et al. 2001; Sharpe et al.
1995). 2,5-Dichlorophenol (2,5-DCP), another
phenol, is a metabolite of 1,4-dichlorobenzene
(1,4-DCB), which causes lower birth weight
and decreased maternal weight gain in the rat
(Marsman 1995).

Among U.S. residents, urinary concentra-
tions of biomarkers derived from phthalates and
phenols have been relatively high compared
with pesticides (Centers for Disease Control and
Prevention 2005; Silva et al. 2004). The highly
prevalent exposures in humans and their broad
hormonal activity in experimental models led us
to hypothesize that they might impair fetal
development. Therefore, we investigated prena-
tal exposures to these agents and their relation-
ships with birth outcomes, including birth
weight and gestational age, in a multiethnic
cohort of women enrolled during pregnancy.

Materials and Methods

The Children’s Environmental Health Study is
a prospective ethnically diverse birth cohort of

404 mother–infant pairs; the study design and
protocols have been described previously in
more detail (Berkowitz et al. 2004). In brief,
479 primiparas were enrolled before delivery at
Mount Sinai Medical Center in New York
City from March 1998 to March 2002. The
final cohort included 404 healthy mothers and
singleton infants after excluding 75 women
because of medical complications (n = 3),
infant or fetal demise (n = 2), very premature
births (delivery at < 32 completed weeks or
< 1,500 g) (n = 5), miscarriage (n = 1), delivery
of an infant with genetic abnormalities or mal-
formations (n = 5), inability to collect biologic
specimens before birth (n = 12), change of hos-
pital or residence outside New York City (n =
28), or loss to follow-up or refusal to continue
to participate (n = 19). The study was
approved by the Institutional Review Board of
Mount Sinai School of Medicine; participants
provided written informed consent before the
study. Maternal urine samples were obtained,
mostly during the third trimester: 25% of sam-
ples were collected between 25 and 30 gesta-
tional weeks, 45% between 31 and 35 weeks,
and the remainder between 36 and 40 weeks.
Questionnaire information regarding maternal
characteristics was collected by interview, and
birth outcomes (weight, length, head circum-
ference, and gestational age) were obtained
from a computerized perinatal database within
the Department of Obstetrics, Gynecology,
and Reproductive Science at Mount Sinai
Hospital. Gestational age was assigned using
reported date of last menstrual period.

Address correspondence to M.S. Wolff, Department
of Community and Preventive Medicine, Mount
Sinai School of Medicine, One Gustave L. Levy
Place, Box 1057, New York, NY 10029 USA.
Telephone: (212) 241-6183. Fax: (212) 996-0407.
E-mail: mary.wolff@mssm.edu

We acknowledge the helpful and careful com-
ments of the reviewers. 

This research was supported by National Institute of
Environmental Health Sciences/U.S. Environmental
Protection Agency Children’s Center grants ES09584
and R827039, the New York Community Trust, and
the Agency for Toxic Substances and Disease
Registry/Centers for Disease Control and Prevention
(CDC)/Association of Teachers of Preventive
Medicine. 

The findings and conclusions in this report are
those of the authors and do not necessarily represent
the views of the CDC.

The authors declare they have no competing
financial interests.

Received 22 October 2007; accepted 20 March
2008.

Prenatal Phenol and Phthalate Exposures and Birth Outcomes

Mary S. Wolff,1 Stephanie M. Engel,1 Gertrud S. Berkowitz,1 Xiaoyun Ye,2 Manori J. Silva,2 Chenbo Zhu,1

James Wetmur,3 and Antonia M. Calafat 2

1Department of Community and Preventive Medicine, Mount Sinai School of Medicine, New York, New York, USA; 2National Center for
Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA; 3Department of Microbiology and Genetics
and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA

BACKGROUND: Many phthalates and phenols are hormonally active and are suspected to alter the
course of development.

OBJECTIVE: We investigated prenatal exposures to phthalate and phenol metabolites and their asso-
ciations with body size measures of the infants at birth.

METHODS: We measured 5 phenol and 10 phthalate urinary metabolites in a multiethnic cohort of
404 women in New York City during their third trimester of pregnancy and recorded size of
infants at birth.

RESULTS: Median urinary concentrations were > 10 µg/L for 2 of 5 phenols and 6 of 10 phthalate
monoester metabolites. Concentrations of low-molecular-weight phthalate monoesters (low-MWP)
were approximately 5-fold greater than those of high-molecular-weight metabolites. Low-MWP
metabolites had a positive association with gestational age [0.97 day gestational age per ln-bio-
marker; 95% confidence interval (CI), 0.07–1.9 days, multivariate adjusted] and with head circum-
ference. Higher prenatal exposures to 2,5-dichlorophenol (2,5-DCP) predicted lower birth weight in
boys (–210 g average birth weight difference between the third tertile and first tertile of 2,5-DCP;
95% CI, 71–348 g). Higher maternal benzophenone-3 (BP3) concentrations were associated with a
similar decrease in birth weight among girls but with greater birth weight in boys.

CONCLUSIONS: We observed a range of phthalate and phenol exposures during pregnancy in our
population, but few were associated with birth size. The association of 2,5-DCP and BP3 with
reduced or increased birth weight could be important in very early or small-size births. In addition,
positive associations of urinary metabolites with some outcomes may be attributable partly to
unresolved confounding with maternal anthropometric factors.
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We analyzed maternal urine samples for
5 phenol and 10 phthalate metabolites using
laboratory and quality control methods that
have been reported previously (Kato et al.
2005; Ye et al. 2005). From the 401 urine
samples collected, sufficient specimen amounts
remained after other earlier analyses to deter-
mine phthalate metabolites in 382 and phenols
in 367 specimens. Limits of detection were cal-
culated as three times the standard deviation of
near-zero or blank quality control specimens.
Urinary concentrations of the biomarkers were
examined both as micrograms per liter and as
corrected for creatinine (micrograms per gram
creatinine; µg/gC) to normalize for urine dilu-
tion. In addition to the 10 individual phthalate
analytes, three micromolar sums (µmol/L)
were studied: four metabolites originating from
di(2-ethylhexyl) phthalate (DEHP), mono-
ester metabolites of high-molecular-weight
(> 250 Da) monoester metabolites (high-
MWP), and low molecular-weight (< 250 Da)
monoester metabolites (low-MWP). These
groupings were chosen because they each rep-
resent similar structures and biologic activity
and are derived from similar sources.

Statistical analyses were performed using
SAS-PC, version 9.1 (SAS Institute Inc., Cary,
NC). Continuous biomarker values and creati-
nine were natural log transformed (ln) to pro-
duce more normal distributions. Tertiles of
biomarkers were created using the creatinine-
corrected values. Predictors of birth weight,
length, head circumference, and gestational age
at delivery were analyzed using generalized lin-
ear models. Covariates were included in multi-
variate analyses if they were related to the birth
outcomes or to biomarkers at p < 0.10 by the
Spearman correlation (rS), the Kruskal–Wallis
rank-sum statistic, or the chi-square test. These
included race/ethnicity (white vs. nonwhite),
infant sex, gestational age at delivery (except in
models predicting gestational age), ln-creati-
nine, prenatal smoking (ever vs. never), mater-
nal prepregnancy body mass index (BMI;
kilograms per square meter), education (high
school or greater), and marital status (married,
living with a partner, or divorced/widowed/
separated/single). Associations that were sig-
nificant at the p < 0.05 level in models with
exposure represented as a continuous (log-
transformed) variable we further examined by
substituting tertiles of the biomarkers (micro-
grams per gram creatinine) to assess the linear-
ity of the effects. We included ln-biomarker as
micromoles per liter or micrograms per liter in
these models; models that used biomarkers as
the ln-µg/gC concentrations produced almost
identical β-values. Timing of urine collection
may reflect differences in use of products that
cause exposure to these metabolites, such as
sunscreen, or differences in water retention by
mothers. Therefore, in sensitivity analyses, we
entered the variables for year, season, and

gestational age at urine collection individually
into the multivariate-adjusted models; none
altered the coefficients, so we did not include
them in the final models. Weight gain during
pregnancy was also available in a subset of the
population; when included in the multivariate-
adjusted models, it did not alter the coefficients
of the exposure variables, and therefore we did
not include it in the final models.

Very dilute urine samples (< 20 mg/dL cre-
atinine, n = 28) we excluded because they
altered the β-values for almost all analytes by
more than 10%. We also used this restriction in
our earlier study of pesticides for the same rea-
son (Wolff et al. 2007a), and it follows com-
mon practice (Carrieri et al. 2001; Eskenazi
et al. 2004). The rationale is that urine samples
with very low creatinine may provide inaccurate
biomarker measurements and, further, that
dividing the biomarker value by a small creati-
nine value may create an inaccurately elevated
analyte value. If the models with statistically sig-
nificant coefficients that we report here had
included these 28 low-creatinine observations,
the estimates would have changed by 2–40%.

Recognizing that the metabolites or their
parent compounds are hormonally active, we
examined the possibility that associations dif-
fered by infant sex by adding an interaction
term (infant sex*ln-biomarker). We also pre-
sent deviations from additivity (evidenced by a
p-value for the interaction term < 0.1). In
addition, to further elucidate relationships

between the phthalate metabolites and body
size, we ran logistic regression models predict-
ing small- or large-for-gestational age (defined
as the race- and infant sex-specific lower and
upper 10th percentile of weight for gestational
age) (Oken et al. 2003).

Results

The women in this population were young
(maternal age, 24 ± 6.2 years, mean ± SD) and
largely nonwhite, and most had at least a high
school education (Table 1). Average maternal
BMI was 23.4 ± 4.4 kg/m2, average birth
weight was 3,266 ± 465 g, and average gesta-
tional age was 39 ± 1.6 weeks, reflecting in part
the exclusion of very preterm births. There
were more boys than girls in the cohort, and
the proportion was similar for all ethnicities
(not shown).

As expected, exposures were prevalent.
The median urinary concentration of mono-
ethyl phthalate (MEP) was > 100 µg/L;
median levels were > 20 µg/L for 2,5-DCP,
monobenzyl phthalate (MBzP), monobutyl
phthalate (MBP), and mono-2-ethyl-5-
carboxypentyl phthalate (MECPP) (Table 2).
In addition, triclosan (TCS) and two DEHP
oxidative metabolites had median concentra-
tions > 10 µg/L. Low-MWP urinary concen-
trations were about five times greater than the
high-MWP concentrations. 2,4-Dichloro-
phenol (2,4-DCP) and 2,5-DCP were highly
correlated (rS = 0.91, Pearson’s r = 0.93).
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Table 1. Maternal characteristics of 404 women and infants enrolled in the Children’s Environmental
Health Study, 1998–2002 [no. (%)].

Mothers with phenol Mothers with phthalate
measurements metabolite measurements All mothers

Characteristic (n = 367) (n = 382) (n = 404)

Maternal age (years)
< 20 129 (35) 133 (35) 142 (35)
20–29 160 (44) 168 (44) 176 (44)
≥ 30 78 (21) 81 (21) 86 (21)

Race/ethnicity
White 76 (21) 80 (21) 86 (21)
Nonwhite 291 (79) 302 (79) 318 (79)

Black 103 (28) 107 (28) 112 (28)
Hispanic 182 (50) 190 (50) 200 (50)
Other 6 (2) 5 (1) 6 (1)

Marital status
Married or living with a partner 195 (53) 205 (54) 215 (53)
Divorced/widowed/separated/single 172 (47) 177 (46) 189 (71)

Education
< High school 107 (29) 113 (30) 118 (29)
≥ High school 258 (71) 267 (70) 284 (70)

Prepregnancy BMI (kg/m2)
< 20 72 (20) 76 (20) 82 (20)
20–24.9 196 (54) 203 (53) 214 (53)
25–29.9 68 (19) 69 (18) 72 (18)
≥ 30 30 (8) 33 (9) 35 (9)

Pregnancy weight gain (lb) 
< 25 53 (16) 56 (17) 58 (16)
25–34.9 89 (27) 90 (27) 96 (27)
35–44.9 76 (23) 77 (23) 80 (23)
≥ 45 111 (34) 116 (34) 123 (34)

Smoking during pregnancy
No 349 (95) 362 (95) 383 (95)
Yes 18 (5) 20 (5) 21 (5)



In bivariate analyses, we examined the
relationship between phthalate and phenol
biomarkers and maternal characteristics.
Several biomarkers were significantly inversely
correlated with marital status, BMI, educa-
tion, and smoking history (data not shown).
Inverse relationships of biomarkers with
maternal age were not statistically significant.
Most of the phthalate biomarkers and three
phenols were higher among nonwhites, but

TCS and benzophenone-3 (BP3) were higher
among whites. BPA, 2,5-DCP, and 2,4-DCP
were positively correlated with maternal
prepregnancy BMI if the biomarker was
expressed as micrograms per liter, but not if
expressed as micrograms per gram creatinine.
BP3 was inversely correlated with BMI, regard-
less of creatinine correction. When expressed as
micrograms per liter or micromoles per liter all
phthalate metabolites except monomethyl

phthalate (MMP) had significant positive cor-
relations with BMI. With creatinine-corrected
concentrations (micrograms per gram creati-
nine or µmol/gC), the only significant correla-
tions with BMI among phthalate biomarkers
were MBzP (positive) and MMP (negative).

No phenols were significantly associated
with any birth outcomes in models adjusted
for covariates (Table 3). However, interaction
terms between infant sex and three maternal
urinary phenols (2,5-DCP, TCS, and BP3)
revealed possible sex-specific effects in four
models for birth weight or length (Table 4).
Boys were 210 g smaller [95% confidence
interval (CI), 71–348 g] in the third tertile of
maternal 2,5-DCP (highest exposure) com-
pared with the first tertile (adjusted predicted
means: third tertile, 3,370 g; 95% CI,
3,250–3,490 g; first tertile, 3,160 g; 95% CI,
3,020–3,300 g; Figure 1). Similar effects on
birth weight were seen for TCS in boys (non-
significant) and for BP3 in girls (Figure 1).
However, in boys, BP3 predicted higher birth
weight for prenatal exposure to this sunscreen
agent (Figure 1). Because racial/ethnic expo-
sures to BP3 differed, we examined the models
separately for nonwhites (n = 269) and for
Hispanics (n = 168); in both groups, the trends
were similar to those among all women, with
the third tertile of maternal BP3 associated
with heavier boys and lighter girls. The num-
ber of white mothers (n = 66) was too small to
examine separately. Effects of both 2,5-DCP
and TCS on birth length were similar to find-
ings on birth weight, such that boys were
approximately 0.3 cm shorter (95% CI, –0.6
to –0.4 cm) per ln-2,5-DCP (Table 4).
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Table 2. Third-trimester urinary phenol and phthalate biomarkers among mothers enrolled in the Children’s
Environmental Health Study, 1998–2002.

Percentile
Analyte LOD (µg/L) % > LOD Minimum 25th 50th 75th Maximum

Phenols (n = 367)
2,5-DCP 0.12 100.0 0.5 23 53 135 13,300
2,4-DCP 0.17 95.7 LOD 0.9 2.1 4.9 225
TCS 2.27 77.4 LOD 2.9 11 42 1,790
BP3 0.34 97.8 LOD 2.6 7.5 31 92,700
BPA 0.36 90.8 LOD 0.7 1.3 2.3 35.2

Phthalates (n = 382)a
MECPP 0.25 99.5 LOD 16 35 70 2,054
MEHHP 0.32 99.2 LOD 9.5 20 39 2,051
MEOHP 0.45 99.0 LOD 8.3 17 36 1,335
MEHP 0.9 90.6 LOD 2.9 6.0 14 526
MBzP 0.11 99.4 LOD 8.8 22 50 668
MCPP 0.16 98.2 LOD 1.8 3.2 6.0 129
MiBP 0.26 97.4 LOD 2.7 6.2 12 131
MBP 0.4 99.7 LOD 16 36 75 11,133
MEP 0.4 99.5 LOD 137 380 1,010 44,740
MMP 1 60.7 LOD LOD 1.6 3.8 10,834

Sums as µmol/Lb

ΣLow-MWP 0.007 0.90 2.2 5.6 231
ΣDEHP-MWP 0.005 0.13 0.27 0.5 20
ΣHigh-MWP 0.005 0.22 0.43 0.9 20

Abbreviations: LOD, limit of detection; MCPP, mono-3-carboxypropyl phthalate; MEHHP, mono-(2-ethyl-5-hydroxylhexyl)-
phthalate; MEOHP, mono-(2-ethyl-5-oxohexyl)phthalate; MiBP, monoisobutyl phthalate.
aIn order of decreasing molecular weight. bDEHP-MWP comprises MECPP, MEHHP, MEOHP, and MEHP. Low-MWP com-
prises MMP, MEP, MBP, and MiBP. High-MWP comprises MBzP, MEHP, MECPP, MEHHP, MEOHP, and MCPP.

Table 3. Associations of third-trimester maternal urinary concentrations of phenol and phthalate biomarkers with birth outcomes in the Children’s Environmental
Health Study, 1998–2002.

β-Values (95% CIs) for ln-biomarkers predicting birth outcomesa

Analyte (ln) Birth weight (gm) Birth length (cm) Head circumference (cm) Gestational age (weeks)

Phenols (n = 339)
2,5-DCP –10 (–41 to 20) –0.03 (–0.20 to 0.14) –0.02 (–0.14 to 0.10) 0.01 (–0.12 to 0.14)
2,4-DCP –9.2 (–43 to 24) –0.01 (–0.20 to 0.18) 0.01 (–0.12 to 0.14) 0.01 (–0.14 to 0.15)
TCS –11 (–34 to 11) –0.04 (–0.17 to 0.08) –0.04 (–0.13 to 0.04) 0.00 (–0.10 to 0.09)
BP3 1.7 (–18 to 22) –0.03 (–0.14 to 0.08) 0.01 (–0.07 to 0.08) 0.04 (–0.04 to 0.12)
BPA 38 (–6.0 to 82)* 0.11 (–0.14 to 0.36) 0.08 (–0.09 to 0.25) 0.03 (–0.16 to 0.21)

Phthalate sums as mol/Lb (n = 352)
ΣLow-MWP 6.0 (–30 to 42) 0.08 (–0.10 to 0.25) 0.13 (0.01 to 0.24)** 0.14 (0.01 to 0.27)**
ΣDEHP-MWP 10 (–29 to 49) 0.07 (–0.13 to 0.27) 0.00 (–0.14 to 0.14) 0.10 (–0.05 to 0.24)*
ΣHigh-MWP 10 (–21 to 42) 0.14 (–0.08 to 0.35) 0.04 (–0.11 to 0.19) 0.13 (–0.03 to 0.28)*

Individual phthalate monoesters (n = 352)
MECPP 4.2 (–31 to 40) 0.04 (–0.16 to 0.24) 0.01 ( –0.13 to 0.14) 0.07 (–0.08 to 0.21)
MEHHP 6.6 (–27 to 40) 0.08 (–0.10 to 0.27) 0.00 (–0.13 to 0.13) 0.06 (–0.07 to 0.20)
MEOHP 5.1 (–29 to 40) 0.07 (–0.12 to 0.27) 0.01 (–0.12 to 0.14) 0.05 (–0.09 to 0.20)
MEHP 4.9 (–28 to 38) 0.01 (–0.18 to 0.19) 0.01 (–0.11 to 0.14) 0.15 (0.02 to 0.29)**
MBzP 1.4 (–34 to 37) 0.20 (0.00 to 0.40 )** 0.11 (–0.02 to 0.25)* 0.07 (–0.07 to 0.22)
MCPP –4.2 (–50 to 41) 0.18 (–0.07 to 0.44)* 0.06 (–0.12 to 0.23) 0.02 (–0.17 to 0.21)
MiBP –14 (–57 to 28) 0.04 (–0.19 to 0.28) 0.05 ( –0.11 to 0.21) 0.03 (–0.20 to 0.14)
MBP –5.5 (–45 to 34) 0.15 (–0.07 to 0.37)* 0.05 (–0.09 to 0.20) 0.10 (–0.06 to 0.26)
MEP 9.0 (–20 to 38) 0.05 (–0.11 to 0.21) 0.12 (0.01 to 0.23)** 0.11 (–0.01 to 0.22)*
MMP –6.6 (–44 to 30) 0.11 (–0.10 to 0.31) 0.07 (–0.07 to 0.21) 0.09 (–0.06 to 0.24)

Abbreviations: MCPP, mono-3-carboxypropyl phthalate; MEHHP, mono-(2-ethyl-5-hydroxylhexyl)phthalate; MEOHP, mono-(2-ethyl-5-oxohexyl)phthalate; MiBP, monoisobutyl phthalate.
aAdjusted for race, infant sex, gestational age (except for models predicting gestational age), ln-creatinine, smoking during pregnancy, maternal education, marital status, prepregnancy
BMI, and restricted to observations with creatinine ≥ 20 mg/dL. bLow-MWP comprises MMP, MEP, MBP, and MiBP. DEHP-MWP comprises MECPP, MEHHP, MEOHP, and MEHP.
High-MWP comprises MBzP, MEHP, MECPP, MEHHP, MEOHP, and MCPP. *p < 0.20. **p < 0.05.



In the multivariate-adjusted models for
phthalate biomarker sums, neither DEHP-
MWP nor high-MWP metabolites were sig-
nificantly associated with any birth outcome.
Low-MWP metabolites were positively associ-
ated with head circumference (β = 0.13 cm;
95% CI, 0.01–0.24 cm) and gestational age
(β = 0.14 week; 95% CI, 0.01–0.27 week,
per ln-unit increase biomarker level, adjusting
for race, infant sex, ln-creatinine, maternal
education, marital status, and prepregnancy
BMI; Table 3). However, the tertiles of low-
MWP metabolites were not significantly asso-
ciated with head circumference (data not
shown). For gestational age, the second and
third tertiles of low-MWP metabolites pre-
dicted 0.4 week longer gestation compared
with the first tertile (adjusted predicted
means: third tertile, 39.6 weeks; 95% CI,
39.1–40.1 weeks; second tertile, 39.7 weeks;
95% CI, 39.2–40.2 weeks; first tertile, 39.2
weeks; 95% CI, 38.7–39.6 weeks), suggesting
a threshold effect. These associations were not
modified by infant sex, although we may have
had insufficient power to detect a sex–phtha-
late metabolite interaction.

The positive association we report between
low-MWP metabolites and gestational age at
delivery and birth length, although biologi-
cally plausible based on the animal literature,
may also reflect unresolved confounding by
the following mechanism. The correlation
between low-MWP metabolites and BMI in
our data (rS = 0.18, p < 0.01) and in other
studies (Stahlhut et al. 2007) support a posi-
tive relationship between phthalate exposure
and adiposity. Prepregnancy BMI, in turn, is
positively, but weakly, associated with gesta-
tional age (rS = 0.08, p = 0.09) and strongly
associated with urinary creatinine levels (rS =
0.18, p < 0.01). And finally, low-MWP
metabolites were also strongly correlated with
creatinine (rS = 0.40, p < 0.01). Therefore, it
appears that, in our data, maternal anthropo-
metric features may affect the measurement of
the exposure level (low-MWP), the measure-
ment of the metabolite-level correction factor
(creatinine), and the measurement of the out-
come (gestational age/head circumference).
Because our estimates of anthropometry in
this study population were relatively crude
(self-reported prepregnancy weight and
height, and self-reported weight gain), residual
confounding of the low-MWP–gestational
age/birth length relationship by maternal
anthropometry is possible.

Discussion

Of the 19 phenol and phthalate metabolites
measured in this study, two showed higher
concentrations than those reported in other
U.S. populations: 2,5-DCP [median, 54 µg/L
in our study vs. 30 µg/L as reported by Hill
et al. (1995)] and MEP [median, 380 µg/L

vs. 178 µg/L among female participants of all
ages in the 1999–2000 National Health and
Nutrition Examination Survey (NHANES)
(Centers for Disease Control and Prevention
2005)]. 2,5-DCP was also relatively high in a
population of New York City minority chil-
dren compared with those at two other sites
in the United States (Wolff et al. 2007b).
Total phthalate biomarker concentrations
were also relatively high in this study,
approaching 1 mg/L total (~3 µM). Our pop-
ulation has a large proportion of minority
women, and therefore the levels are consistent
with those seen in NHANES data where sev-
eral phthalate biomarkers were elevated
among blacks and Hispanics compared with
whites (Centers for Disease Control and
Prevention 2005). Concentrations of BPA
were relatively low in this population as in
other recent reports of nonoccupational expo-
sures (Kuklenyik et al. 2003; Liu et al. 2005;
Matsumoto et al. 2003; Ouchi and Watanabe
2002; Wolff et al. 2007b; Ye et al. 2005).

Environmental sources of phenols and
their precursors include personal care and
home cleaning products. 1,4-DCB is used in
mothballs and in room deodorizers; it is
metabolized to 2,5-DCP. The high correla-
tion of 2,4-DCP with 2,5-DCP suggests that
2,4-DCP is a metabolite of 1,3-dichloro-
benzene, a minor contaminant of 1,4-DCB
(National Toxicology Program 2005). TCS is

a microbicide, and BP3 exposure comes
mainly from sunscreen. Environmental
sources of phthalates are numerous. MEP and
MBP are found in cosmetics, shampoo, per-
fume, and products with fragrance. The
higher-molecular-weight phthalates, includ-
ing DEHP and butylbenzylphthalate, are
found in soft plastics, vinyl wrap, plastic tub-
ing, and home construction components such
as vinyl floor tile.

We observed sex-specific associations of
phenols with birth weight and length. Third-
trimester 2,5-DCP exposure was associated
with lower birth weight among male infants,
and BP3 was associated with lower birth
weight among female infants. For both bio-
markers, the third versus first tertile of prena-
tal phenols predicted about 200-g-lower
difference; this deficit is comparable to the
reduction in birth weight seen for active
smoking during pregnancy (Bernstein et al.
2005). This difference is also similar to that
between males and females at birth, where
females are 135 g (median) lighter than males
at 39 weeks of gestation (Oken et al. 2003).

Like 2,5-DCP, TCS had sex-specific
inverse but nonsignificant associations with
birth weight and length among boy infants in
this cohort. TCS is 5-chloro-2-(2,4-dichloro-
phenoxy) phenol, and thus it is structurally
similar to 2,5-DCP. Our finding of increased
male birth weight with higher maternal BP3
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Table 4. Interaction of male infant sex with maternal third-trimester urinary phenol metabolites in models
predicting birth weight and length: Children’s Environmental Health Study, Mount Sinai Hospital, 1998–2002.

β-Values for (male sex × ln-biomarker)
interaction term in models predicting birth outcomes
Birth weight (g) Birth length (cm)

Urinary biomarker (ln-µg/L) No. Estimate 95% CI Estimate 95% CI

2,5-DCP 339 –88 –140 to –36** –0.33 –0.63 to –0.35**
TCS 339 –23 –68 to 22 –0.26 –0.51 to 0.001*
BP3 339 44 5.4 to 84** –0.02 –0.24 to 0.21

β-Values represent the difference between boys and girls in outcome for 1 ln-unit biomarker. The β-values for girls
(referent) were, for birth weight, 30 (2,5-DCP), 1.2 (TCS), and –21 g (BP3), and for length, 0.13, 0.07, –0.02 cm, respectively (all
p > 0.1). Estimates are adjusted for race, infant sex, gestational age at delivery, ln-creatinine, smoking during pregnancy,
maternal education, marital status, and prepregnancy BMI and were restricted to observations with creatinine ≥ 20 mg/dL.
*p for the interaction term < 0.10 and **< 0.05. 

Figure 1. Adjusted mean birth weight ± SE predicted by prenatal maternal 2,5-DCP (A) and BP3 (B) tertiles of
creatinine-corrected urine concentrations. The male sex*biomarker interaction terms in models with tertiles
of biomarkers had p < 0.01. Adjusted means differed significantly between the first and third tertiles of
2,5-DCP for boys (p = 0.0016), and of BP3 for boys (p = 0.026) and girls (p = 0.021). Birth-weight predicted
means are adjusted for race/ethnicity, gestational age, ln-creatinine, smoking during pregnancy, maternal
education, marital status, and prepregnancy BMI and are limited to samples with ≥ 20 mg/dL creatinine. The
ranges of values in the third tertiles were 114–9,950 µg/gC, 27–13,300 µg/L for 2,5-DCP, and 26–104,000 µg/gC,
7–92,700 µg/L for BP3. 

3,500

3,400

3,300

3,200

3,100

3,000

3,500

3,400

3,300

3,200

3,100

3,000
Boys Girls Boys Girls

B
ir

th
 w

ei
gh

t (
g)

B
ir

th
 w

ei
gh

t (
g)

A B

2,5-DCP 1st tertile
2,5-DCP 2nd tertile
2,5-DCP 3rd tertile

BP3 1st tertile
BP3 2nd tertile
BP3 3rd tertile



concentrations is unexpected and has no clear
biologic basis. Although BP3 levels were
higher in whites, consistent with putative use
of sunscreen, the associations of BP3 with
birth weight did not differ by race/ethnicity
in this study. We saw no effects with BPA in
our study, but BPA urinary concentrations
were much lower than those of 2,5-DCP,
TCS, and BP3 and may not have reached a
level of biologic significance.

Pregnant ewes treated with BPA had off-
spring with reduced birth weights, and their
blood levels were greater than 35 µg/L on aver-
age, with adipose concentrations of 200 mg/kg
(Savabieasfahani et al. 2006). Experimental
findings for other phenols are consistent with
our results, supporting a possible mechanism
for reduced birth weight in boys prenatally
exposed to 1,4-DCB or girls to BP3. In rats,
1,4-DCB reduced body weight at high doses
(30–270 mg/kg; Bornatowicz et al. 1994). In
addition, 1,4-DCB is an animal carcinogen and
“reasonably anticipated to be a human carcino-
gen” by the National Toxicology Program and
“possibly carcinogenic” by the International
Agency for Research on Cancer (National
Toxicology Program 2005). 1,4-DCB is also a
respiratory toxin (Elliott et al. 2006) and was
banned in schools in New York State in 2004
because of potential to exacerbate childhood
asthma and in California in 2006 for use as
room deodorizers.

Phenols and 1,4-DCB are hormonally
active in vitro, where bioassays have shown
weak to modest estrogenicity (Fang et al.
2000). At doses above 1 µM, environmental
phenolic residues exhibited both estrogenic
and antiandrogenic potential (Paris et al.
2002). 1,4-DCB is likely to be a tumor pro-
moter (Holmes and Rainsford 2001), signify-
ing its potential hormonal activity. TCS is
antiandrogenic (Chen et al. 2007). BP3 and
its analog, benzophenone-2, are estrogenic
(Ogawa et al. 2006; Seidlova-Wuttke et al.
2005), and benzophenone-2 is thought to
cause hypospadias in mice through this mech-
anism (Hsieh et al. 2007).

In contrast to our hypothesis of an inverse
effect of phthalate exposure on birth size and
gestation, we found a positive association of
low-MWP biomarkers with duration of preg-
nancy and infant head circumference. Effect
sizes were small: < 1 day longer gestation per
ln-biomarker and 2.8 days between the third
and first tertiles of low-MWP biomarkers.
Similar but nonsignificant effects on gesta-
tional age were found for the DEHP-MWP
and high-MWP biomarkers. Our maternal
exposures may be too low to elicit the inverse
effects we hypothesized based on the birth
weight reductions reported in rodents. The
lower cut point of the third tertiles were 0.01
µmol/L for BPA, 0.5 µmol/L for 2,5-DCP,
0.4 µmol/L for DEHP-MWP biomarkers,

and 3.9 µmol/L for low-MWP biomarkers.
Moreover, the effect sizes we observed were
modest enough that residual confounding
resulting from poorly measured maternal
anthropometric features may account for
these findings.

In humans, associations have been
reported between prenatal and early postnatal
phthalate exposures and shorter anogenital
distance as well as lower serum testosterone in
newborns (Main et al. 2006; Swan et al.
2005). In addition, shorter gestational age
was associated with cord serum concentra-
tions of DEHP and its metabolite mono-2-
ethylhexyl phthalate (MEHP) (Latini et al.
2003, 2006). It is possible that in these stud-
ies exposures were higher than in our popula-
tion, because MEHP levels in serum were
slightly greater than 1,000 µg/L on average,
which would be comparable to higher urinary
concentrations than we observed. Other pre-
natal exposure biomarkers have been associ-
ated with reduced gestational age (Fenster and
Eskenazi 2006), and both positive and nega-
tive associations with head circumference
have also been reported (Apelberg et al. 2007;
Eskenazi et al. 2004; Wolff et al. 2007a).
However, increased weight and lengthened
gestation as a result of androgen antagonist
exposures have not been reported in children.

Limited support exists for a hormonal
mechanism for both shorter and longer gesta-
tion following phthalate exposures in animals,
depending on dose. DEHP in rats has been
reported to cause both longer (Dalgaard et al.
2003) and shorter (Marsman 1995) gestational
age. Low perinatal exposure can be androgenic
in male rats (earlier puberty), but can have the
opposite effect at high doses compared with
controls (Ge et al. 2007). High doses, in these
and other studies, exceeded 100–3,000
mg/kg/day. Dibutyl phthalate, the precursor of
MBP, has estrogenic effects in vitro at levels
typically found for environmental estrogens,
including BPA (van Meeuwen et al. 2007).

Overall, for both phenols and phthalates,
we found few significant associations in this
study; for example, the findings in Table 3
could be attributable to multiple comparisons
(five associations at p < 0.05 among 72 com-
parisons). An additional limitation is that we
had biomarkers measured once in the third
trimester for exposures that ordinarily have rel-
atively short half-lives (days). Consistency in
levels during pregnancy has been observed for
some environmental exposure biomarkers
(Longnecker et al. 1999; Muckle et al. 2001),
whereas pesticide levels, with ambient expo-
sures that are likely to be sporadic, show more
variability (Bradman et al. 2005). However,
research in other populations has suggested
that phthalate biomarkers are relatively stable
for a period of weeks to months (Hauser et al.
2004; Hoppin et al. 2002; Teitelbaum et al.

2007); less is known for phenol biomarkers,
but they also appear to have adequate stability
to predict exposure over 6–12 months in chil-
dren (Teitelbaum et al. 2007). It is reasonable
that the biomarkers we describe here have
modest intraindividual variability, because use
of common products that result in these expo-
sures may be fairly constant over days or
months. Nevertheless, to more fully under-
stand relationships between exposures with
short half-lives and health outcomes, it may be
necessary to investigate additional methods of
exposure assessment, especially ones that might
offer a more comprehensive and integrated pic-
ture of the individual environment, perhaps by
evaluating specific products use over long
period of time in conjunction with indoor air
levels as well as biomarkers of exposure.

Creatinine correction is commonly used
for urinary biomarkers of phthalates, pesti-
cides, phenols, and phytoestrogens. There are
limitations to the use of creatinine to normal-
ize for urine dilution; other investigators have
used specific gravity instead of creatinine to
adjust phthalate urinary biomarkers for urine
dilution, but we did not have specific gravity
measurements. However, specific gravity is
highly correlated with creatinine (Barr et al.
2005), and therefore it is not likely that we
overcorrected for urine dilution, especially
because we discarded results from very dilute
urines. In addition, parameters in our models
were little changed by creatinine-corrected val-
ues (micrograms per gram creatinine) versus
uncorrected values (micrograms per liter) for
the biomarkers or by adjustment for creatinine
as a covariate in the multivariate models.

The exposures we studied are relatively
prevalent, and some biomarker levels approach
those with significant effects in experimental
models. In a healthy cohort such as ours,
effects of hormonally active environmental
exposures on birth size may be small, yet more
sensitive end points such as infant neurologic
development may be affected. A further
dimension to consider in future research is
multiple exposures of hormonally active agents
such as these. In terms of prevention, exposure
to these chemicals can be avoided if the prod-
uct contents are known; unfortunately, they
often are not listed on the label because they
are not “active” ingredients.
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