Quantcast
Environmental Health Perspectives Free Trail Issue
Author Keyword Title Full
About EHP Publications Past Issues News By Topic Authors Subscribe Press International Inside EHP Email Alerts spacer
Environmental Health Perspectives (EHP) is a monthly journal of peer-reviewed research and news on the impact of the environment on human health. EHP is published by the National Institute of Environmental Health Sciences and its content is free online. Print issues are available by paid subscription.DISCLAIMER
spacer
NIEHS
NIH
DHHS
spacer
Current Issue

EHP Science Education Website




Comparative Toxicogenomics Database (CTD)

spacer
Environmental Health Perspectives Volume 111, Number 5, May 2003 Open Access
spacer
Association of Expired Nitric Oxide with Occupational Particulate Exposure

Jee Young Kim,1 Matthew P. Wand,2 Russ Hauser,1 Sutapa Mukherjee,1 Robert F. Herrick,1,3 and David C. Christiani1,4

1Department of Environmental Health, Occupational Health Program, 2Department of Biostatistics, and 3Department of Environmental Health, Environmental Science and Engineering Program, Harvard School of Public Health, Boston, Massachusetts, USA; 4Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA

Abstract

Particulate air pollution has been associated with adverse respiratory health effects. This study assessed the utility of expired nitric oxide to detect acute airway responses to metal-containing fine particulates. Using a repeated-measures study design, we investigated the association between the fractional concentration of expired nitric oxide (FENO) and exposure to particulate matter with an aerodynamic mass median diameter of Less than or = to 2.5 µm (PM2.5) in boilermakers exposed to residual oil fly ash and metal fumes. Subjects were monitored for 5 days during boiler repair overhauls in 1999 (n = 20) or 2000 (n = 14) . The Wilcoxon median baseline FENO was 10.6 ppb [95% confidence interval (CI) : 9.1, 12.7] in 1999 and 7.4 ppb (95% CI: 6.7, 8.0) in 2000. The Wilcoxon median PM2.5 8-hr time-weighted average was 0.56 mg/m3 (95% CI: 0.37, 0.93) in 1999 and 0.86 mg/m3 (95% CI: 0.65, 1.07) in 2000. FENO levels during the work week were significantly lower than baseline FENO in 1999 (p < 0.001) . A significant inverse exposure-response relationship between log-transformed FENO and the previous workday's PM2.5 concentration was found in 1999, after adjusting for smoking status, age, and sampling year. With each 1 mg/m3 incremental increase in PM2.5 exposure, log FENO decreased by 0.24 (95% CI: -0.38, -0.10) in 1999. The lack of an exposure-response relationship between PM2.5 exposure and FENO in 2000 could be attributable to exposure misclassification resulting from the use of respirators. In conclusion, occupational exposure to metal-containing fine particulates was associated with significant decreases in FENO in a survey of workers with limited respirator usage. Key words: , , , , . Environ Health Perspect 111:676-680 (2003) .


The full version of this article is available for free in HTML or PDF formats.
spacer
 
Open Access Resources | Call for Papers | Career Opportunities | Buy EHP Publications | Advertising Information | Subscribe to the EHP News Feeds News Feeds | Inspector General USA.gov