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Chronic exposure to styrene and a number of
other volatile organic compounds has been
linked to the occurrence of neurologic and
behavioral deficits, including increased reac-
tion time (Kishi et al. 2000), visual system
disturbances (Iregren et al. 2002), and neuro-
physiologic alterations (e.g., Harkonen et al.
1978; Lilis et al. 1978; Seppalainen and
Harkonen 1976; Stetkarova et al. 1993). In
addition, a number of dosimetric studies have
quantified the relationship between inhaled
styrene and markers of exposure: urinary con-
centrations of styrene (Ghittori et al. 1987;
Gobba et al. 1993; Imbriani et al. 1986, 1990;
Pezzagno et al. 1985) or mandelic acid, its
major excretory metabolite (Campagna et al.
1995; De Rosa et al. 1993; Fields and
Horstman 1979; Severi et al. 1994). The find-
ings in this literature suggest that styrene may
exert a variety of effects on the nervous system
and that sufficient dosimetric information
exists to develop quantitative relationships
between these effects and conditions of expo-
sure. The purpose of this study was to perform
a meta-analysis of these observations, to quan-
tify the relationship between exposure (esti-
mated from the biomarkers) and effects on two
measures of central nervous system function:
reaction time and color vision. An effort was
made to assess the importance of styrene-
related deficits to real-world task performance.
An insufficient number of reports were found
for meta-analyses of other neurotoxic effects.

Behavioral Outcomes
Reaction time has been a popular variable for
assessment of impaired behavioral task perfor-
mance for several reasons, including ease of
measurement, adversity of effect, and sensi-
tivity to drugs and toxic chemicals. Reaction
time tasks are usually divided into simple
reaction time (SRT), in which the subject
must simply react to a predefined stimulus as
quickly as possible, and choice reaction time
(CRT), in which the subject must first select
between options before deciding whether or
in what way to respond.

Long-term exposure to a number of
solvents has been reported to also produce
deficits in the performance of screening tests
for perception of color or visual contrast
(Geller and Hudnell 1997; Iregren et al.
2002). Perhaps the most prevalent agent in
this growing literature is styrene, for which
numerous published studies have reported
that exposure was associated with visual
deficits, in particular, an acquired impairment
of color perception. Color vision was usually
assessed using the Lanthony desaturated
D-15d color vision test (Lanthony 1978), a
hue discrimination test designed to grade the
loss of color discrimination from mild to
moderate. Performance on the test was usu-
ally quantified using the color confusion
index (CCI) scale (Geller 2001). Details of
testing procedure and scoring are reviewed in
Geller and Hudnell (1997).

Meta-Analyses

The literature reporting the effects of long-
term styrene exposure on behavioral perfor-
mance is diverse. Critical experimental factors
such as group sizes, analytical approaches,
and methodologic details vary greatly across
studies. A meta-analysis of the literature
involving a quantitative treatment of the com-
bined data from a number of individual
reports can help unify the literature by improv-
ing a) accuracy, by minimizing the impact of
single, perhaps anomalous reports; b) preci-
sion, by including a large number of subjects;
and c) generality, by aggregating a variety of
studies with differing subject populations and
exposure histories.

A meta-analysis of the effects of exposure
to styrene and other organic solvents on CCI
was recently reported by Paramei et al. (2004).
This analysis featured means from various
studies that were converted to Z-scores to
place them on a common scale of measure-
ment for comparison and to help assess the
possibility that an effect might have been
statistically significant. High variance was
observed between the results of different
studies after transformation, and the authors
argued that no reliable conclusions could be
drawn about the effects of styrene on CCI.
The Z-score transform, however, compares
the magnitude of each particular effect (the
mean) with the variance for that measure.
This transform conflates the measure of
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magnitude of an effect with its stability, so a
transformed score may be larger or smaller
depending on the variance of the group.

In the present work, our intent was to
evaluate the magnitude of styrene effects on
CCI and reaction times. Thus, values were
not converted to Z-scores but were expressed
as a percentage of baseline. The dose levels
were expressed as inhaled-air styrene con-
centration multiplied by the work-years of
exposure. These data were then fitted to a
dose–effect regression equation. In this analy-
sis, magnitude estimates were not conflated
with variances, and the variation among the
reported data was used to compute confi-
dence limits and test the fitted result for sta-
tistical significance (Benignus et al. 1998).

Materials and Methods

Estimates of Exposure
In the neurobehavioral reports, four different
measures were used to quantify the level of
exposure to styrene: a) concentration of styrene
in inhaled air (personal monitors) given as a
time-weighted average (TWA), b) concentra-
tion of styrene in urine, c) concentration of
mandelic acid in urine as a fraction of creati-
nine in urine, and d) concentration of man-
delic acid in urine. Individual-subject data
were given via scatter plots in some studies,
whereas only group means were provided in
others. In the interest of homogeneity, we com-
puted group means from individual-subject
data and used them to express inhaled-air

styrene concentration. We also analyzed
individual-subject exposure concentrations as a
check on the results obtained from means.

To pool the data on effects of exposure
across studies, it was necessary to convert data
from the reported measurement of exposure to
one common scale (inhaled-air styrene con-
centration). To estimate inhaled-air styrene
concentration from the measures supplied by
the original authors, we found representative
publications in which the various methods of
reporting urinalyses were standardized and
tested (Table 1). In these publications, styrene
measurements from personal monitors were
recorded for a work shift, and then urine was
sampled after exposure. We digitized plotted
data for individual subjects and pooled them
into common databases, one for each of the
three methods of urine analysis. We then fit-
ted regression equations to the pooled data to
predict inhaled-air styrene concentration from
the various observed urine measures.

In neurobehavioral studies, exposure to
styrene was usually estimated at the end of a
work shift. It was implicitly assumed by the
authors of the reviewed articles that this single
measure was a representative measure of the
workers’ exposure history. This measure of
exposure would underestimate historical
exposure in cases where there have been
improvements in environmental controls in
the workplace (Gong et al. 2002).

Duration of exposure in work-years was
given in all of the neurobehavioral reports, but
always as group means, even when individual-
subject data were given for styrene concentra-
tion. The mean duration of exposure and
mean concentration, although fixed for a par-
ticular report, varied across reports. Thus,
when pooling data from several reports, we
were able to analyze for the effects of a combi-
nation of concentration and duration of expo-
sure, expressed as the product of concentration
and time (ppm work-years) (Cavalleri et al.
2000; Haber 1924; Miller et al. 2000).

Measures of Adverse Outcomes
In each neurobehavioral study, tests were
given at a fixed time after the last exposure,
usually the morning after the work shift of the
previous day; occasionally a weekend elapsed
between the last exposure and behavioral test-
ing. This delay was intended to avoid possible
acute effects of the parent compound or its
metabolites.

Most of the reports did not specify
whether the personnel administering the tests
were aware of the group to which each subject
belonged (Tables 2, 3). Such “nonblind” pro-
cedures have the potential to overestimate the
effects of a toxicant in laboratory experiments
(Benignus 1993).

Four publications produced a total of seven
data points for CRT (Table 2). For SRT, three
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Table 3. Studies of styrene effects on SRT.

Exposure SRT
Reference measure measure Control? Blind? No. Comment

Gamberale et al. 1976 Inhaled air Preexposure, Yes ? 142 Four independent
concentration, (Table 3, sites, one data
(Tables 1 and 2) morning point each;

values) means only
Jegaden et al. 1993 MA in urine, Preexposure Yes ? 60 Means only

end of shift (see (Table 1,
reference text) “morning”)

Triebig et al. 1989 MA in urine, Preexposure, Yes ? 56 Means only
end of shift (Table 4, SRT,
(Table 3 and group A)
reference text)

Abbreviations: ?, information not given in the referenced text; MA, mandelic acid. Figures, tables, and text listed in the
table refer to source of data in reference cited.

Table 2. Studies of styrene effects on CRT.

Exposure CRT
Reference measure measure Control? Blind? No. Comment

Jegaden et al. 1993 MA in urine, Preexposure Yes ? 60 Means only
end of shift (Table 2,
(reference text) “morning”)

Mutti et al. 1984 MA in urine, Preexposure Yes ? 100 Four independent
at behavior (Table 2) means; exposure
test time back calculated;
(reference text) see reference text

Triebig et al. 1989 MA in urine, Preexposure, Yes ? 56 Means only
end of shift (Table 4, CRT,
(Table 3 and group A)
reference text)

Tsai and Chen 1996 Inhaled air Preexposure, Yes Yes 86 Means only
concentration (Table 4, mean
(Table 1) of tests 2, 5,

6, and 8)

Abbreviations: ?, information not given in the referenced text; MA, mandelic acid. Figures, tables, and text listed in the
table refer to source of data in reference cited.

Table 1. Studies of styrene urinary measures as a function of styrene exposure.

Reference Urinary measure No.

Campagna et al. 1995 Mandelic acid (mg/g creatinine) 58
De Rosa et al. 1993 Mandelic acid (mg/g creatinine) 22
Fields and Horstman 1979 Mandelic acid (g/L urine) 44
Ghittori et al. 1987 Styrene 88
Gobba et al. 1993 Styrene 193
Imbriani et al. 1986 Styrene 92
Imbriani et al. 1990 Styrene 25
Pezzagno et al. 1985 Styrene 93
Severi et al. 1994 Mandelic acid (mg/g creatinine) 66



articles yielded six data points (Table 3). Some
studies provided data on both SRT and CRT.
Only those studies of color vision that
employed the Lanthony desaturated D-15d
test were used (Table 4). The data were indi-
vidual CCI and styrene exposure estimates
from five studies. The illuminants used in
testing were of intensity 1,000–1,200 lux
with spectral distribution specified as “day-
light illumination.” Color vision testing was
done in the morning, before the work shift in
four of five of the references used. CCI was
reported as a raw score in three of the five
studies; in the other two, CCI was adjusted
for individual age and alcohol consumption.
In the three studies reporting raw CCI scores,
subjects were eliminated from analyses if cri-
teria were exceeded for age, disease, alcohol
consumption, or drug use.

Quantitative Procedures
When data were graphically presented in pub-
lications, graphs were digitized as previously
described (Benignus et al. 1998). Graphs were
scanned and imported into digitization soft-
ware (UN-SCAN-IT; Silk Scientific, Orem,
UT), which produced a table of x,y-coordi-
nates for each data point. Because some of the
points on a plot were hidden behind others,
the number of digitized data points was always
slightly less than the number of points that the
original authors reported. The number of digi-
tized points was used and reported in the pre-
sent work. When data were given numerically
by the authors, these were used directly.

Normalization of data before pooling.
Data from different studies can be pooled only
if the measurement scales can be made compa-
rable. Each datum was adjusted as follows:

[1]

in which E is a normalized (effect) value, D is
the value of the unadjusted dependent vari-
able, and B is the value of a baseline condition.
In studies where only means were reported,
the performance of the control group pro-
vided baseline values. In some other studies
reporting individual-subject data, independent
control groups were not studied, and the
investigators relied on a dose–effect analysis in
which subjects with very low exposures served
as implicit controls. In the present work, when
individual-subject data were given, the mean
of all data from exposed to < 10 ppm styrene
was used as a baseline. This procedure was fol-
lowed even if specific control groups were
measured to assure consistency and also to
include the maximum number of studies in
the meta-analysis.

Fitting dose–effect curves. The data were
pooled after all useable data had been trans-
formed by Equation 1 and all exposure data

had been converted to inhaled-air styrene. A
linear regression equation of the form

[2]

was then fitted to the data. Here Ẽ is the esti-
mated value of the effect, C is the concen-
tration of styrene in inhaled air (parts per
million), t is the duration of exposure (work-
years), and the βs are empirical parameters fit-
ted with a least-squares procedure (Proc REG;
SAS Institute Inc., Cary, NC). Equation 2 was
fitted first to assure that the intercept term, β1,
was near zero and not statistically significant
(which should be the case for data adjusted by
Equation 1). If the intercept term was not sta-
tistically significant, Equation 2 was refitted
with only a slope (β2) term.

In cases where the regression lines were fit-
ted to means from various studies or groups,
each mean was weighted by the number of
subjects for that mean. This was done by the
“weight” statement of Proc REG. This had the
effect of giving the larger studies (with smaller
SEs) greater weight in the fitting procedure. If
a regression equation was found to be statisti-
cally significant, the data were plotted with the
effect on the y-axis and with the product of
styrene concentration (in parts per million)
and work-years on the x-axis. In general, when
regression lines are fitted to means instead of
individual-subject data, estimated lines are very
nearly the same, but confidence limits will be
somewhat wider than if individual-subject data
had been available. This may be intuitively
explained as due to the loss of information
when means are used. The effects were also
plotted separately as functions of styrene parts
per million alone with four lines for 2, 4, 6,
and 8 work-years of exposure. These lines were
calculated by solving the regression equation
with styrene concentration as the independent

variable for each of the work-years of exposure
(either 2, 4, 6, or 8). Because some of the pub-
lished reports gave SRT and CRT data only as
means ± SDs, all regression lines were fitted to
means, even for CCI, where individual-subject
data were available. For the CCI data, means
were computed from the baseline-adjusted
individual-subject data by dividing the expo-
sure range of each report into two or three sub-
ranges and computing the means of exposure
and effect magnitude within the subranges. To
assess the effect of converting individual-sub-
ject data to means, a regression line was also fit-
ted to the individual-subject data.

Results

Estimating Exposure

We evaluated the relationship between styrene
concentration in inhaled air and styrene con-
centration in urine from the pooled individual-
subject data from five reports (Table 1). These
data are presented in Figure 1 along with a lin-
ear regression line and 95% confidence limits
(CLs). We evaluated the relationship between
inhaled-air styrene concentration and mandelic
acid in urine (expressed as milligrams per gram
creatinine) from the pooled data of three stud-
ies (Table 1) and the result is given in Figure 2.
Results from the only study (Fields and
Horstman 1979) that estimated inhaled-air
styrene concentration from mandelic acid
(expressed in grams per liter) are shown in
Figure 3. Parameters and statistical tests for the
three regression lines are given in Table 5. All
of the relationships were statistically significant.

Effects of Styrene on Neurobehavioral
Measures
Reaction time. In one case, Mutti et al.
(1984) found that urine samples were col-
lected in the morning, just before behavioral
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Table 4. Studies of styrene effects on CCI.

Exposure CCI
Reference measure measure Control? Blind? No. Comment

Campagna et al. 1996 Inhaled air, Preexposure No ? 128 Raw data and
2nd shift (Figure 1) means
(Table 1)

Eguchi et al. 1995 MA in urine, Preexposure Yes ? 62 Raw data and
end of shift (Table 1 and means
(Table 1) Figure 3)

Gobba 1991; Gobba Inhaled air, Preexposure Yes Yes 51 Raw data and
and Cavalleri 2000 during shift [Figure 1 (Gobba means in Gobba

[Table 1 and and Cavalleri and Cavalleri
reference text 2000)] 2000; details in
(Gobba 1991)] Gobba 1991

Gong et al. 2002 MA in urine, Preexposure Yes Yes 55 Raw data and
end of shift (Figure 3) means
(Figure 2,
Table 1)

Kishi et al. 2001 MA in urine, Preexposure Yes ? 87 Raw data and
end of shift (Table 2 and means
(Table 1) Figure 2)

Abbreviations: ?, information not given in the referenced text; MA, mandelic acid. Figures, tables, and text listed in the
table refer to source of data in reference cited.



testing; in all other cases, urine samples were
taken at the end of a work shift. The data for
exposures for Mutti et al. (1984) were back
adjusted to an end-of-shift value, using a
published elimination curve (Engstrom et al.
1976, their Figure 1, group I).

We fitted equation 2 to the pooled mean
data for CRT (seven observations) from the
studies in Table 2. We observed a statistically
significant linear relationship between the
mean proportional increase in CRT and
cumulative styrene exposure. The intercept
term was not statistically significant, and the

no-intercept fitted equation was statistically
significant, accounting for 91% of the variance
(Table 6). The mean data along with the fitted
equation and 95% CLs are plotted in Figure 4.
The size of the plotted points reflects the rela-
tive number of subjects used in computing
each mean. Because one of the means in the
CRT data was collected at considerably higher
exposure (1,336 ppm work-years) and there-
fore had a much greater effect magnitude
(Figure 4), concern arose that the fitted line
may have been heavily influenced by this
point. We did an exploratory analysis without
the extreme point, and the results are given in
Table 6 (labeled “CRT, exploratory”). Figure 5
gives the effect magnitude as a function of
styrene parts per million for 2, 4, 6, and 8
work-years of exposure (calculated by setting
the work-years of exposure to either 2, 4, 6 or 8,

and solving for the effect of parts per million
with the fitted regression equation).

The relationship between SRT and styrene
exposure was not statistically significant in the
pooled mean data from three studies (Table 6).

Color confusion index. We fitted a regres-
sion equation to mean data (as computed from
the individual-subject data) to keep the CCI
results comparable with those of reaction time.
The intercept term was not statistically signifi-
cant, and the no-intercept form of the equa-
tion was statistically significant and accounted
for 35% of the variance (Table 6). Figure 6 is a
plot of the mean data along with the fitted line
and its 95% CLs. The size of the plotted
points reflects the relative number of subjects
used in computing each mean. Equation 2 was
also fitted to the pooled individual-subject data
(329 observations) from the studies in Table 3.
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Figure 2. Scatter plot and fitted regression line with
95% CLs for estimation of styrene concentration in
inhaled air (TWA ppm) from mandelic acid in urine,
normalized by creatinine (mg/g). Digitized individual-
subject data were pooled from three studies.
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Table 5. Statistics for exposure-estimation equations.

Equation p-Value β1 β2 R 2

Styrene concentration in urine < 0.0001 –1.749 0.6190 0.726
Mandelic acid in urine (mg/g creatinine) < 0.0001 0.289 0.0793 0.838
Mandelic acid in urine (g/L urine) < 0.0001 30.500 41.1000 0.851

The p-value is from the F-test for overall fit, the βs are the equation parameters, and R 2 is the corrected value of squared
correlation.

Figure 3. Scatter plot and fitted regression line with
95% CLs for estimation of styrene concentration in
inhaled air (TWA ppm) from mandelic acid in urine,
normalized by urine volume (g/L). Digitized individual-
subject data from one study.
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Table 6. Statistics for dose–effect equations.

Equation p-Value β1 β2 R 2

CRT 0.0002 –0.0209, p = 0.672 0.000408, p = 0.0002 0.909
CRT, exploratory 0.0139 — 0.000327, p = 0.0139 0.733
SRT 0.5680 — — —
CCI, means 0.0062 0.0344, p = 0.326 0.000139, p = 0.0062 0.348
CCI, raw < 0.0001 0.0040, p = 0.821 0.000184, p < 0.0001 0.072

—, parameter not statistically significant. The p-value is the F-test result for the final form of the fitted equation. The
p-value for β1 is the t-test value for that parameter. If the β1 was not significant, the term was not included in the final
form. The p-value for β2 is the t-test value for the final form. The R 2 is the value for the final form.

Figure 4. Scatter plot and fitted regression line with
95% CLs for estimation of effect of styrene exposure
(ppm work-years) on CRT. Means from five studies
were pooled after normalization as in Equation 1.
The size of the plotted points indicates the relative
number of subjects used in computing each mean.
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Figure 1. Scatter plot and fitted regression line with
95% CLs for estimation of styrene concentration in
inhaled air (TWA ppm) from styrene concentration
in urine. Digitized individual-subject data were
pooled from five studies.



The intercept term was not statistically signifi-
cant and the no-intercept form was statistically
significant with the β2 term similar to that for
the equation fitted to the means (Table 6).
Figure 7 is a plot of the individual-subject data
and the fitted line with 95% CLs. The confi-
dence limit for individual-subject data is some-
what narrower than for the means (Figure 6).
The scale of Figure 7 was kept the same as
Figure 6 to facilitate comparisons, even though
some of the points were off scale.

Figure 8 gives the magnitude of effect
plotted as a function of styrene ppm for 2, 4,
6, and 8 work-years of exposure (calculated
by setting the work-years of exposure to either
2, 4, 6, or 8 and solving for the effect of parts
per million with the fitted regression equa-
tion). The scales were kept the same as for
Figure 5 to facilitate comparison with CRT
results.

Discussion

Estimates of Exposure

Inhaled-air styrene concentration was linearly
related to styrene concentration or its metabo-
lites in urine (Figures 1–3). Inspection of
these figures reveals that, although the equa-
tions fit well, a number of individual-subject
data lay outside the confidence limits. One
potential source of such errors is the measure-
ment of inhaled-air styrene, which was usually
made with dosimeters placed “near” the sub-
ject’s personal exposure space and might not
have measured actual exposure. Another
potential source of variance involves differ-
ences in physical activity across subjects,
which would have affected the amount of
styrene inhaled. Despite the observed varia-
bility, the overall trend and the statistical

significance of the fitted lines in Figures 1–3
reveal that all three biomarkers of styrene
exposure provide reasonable indicators of
recent exposure.

Behavioral Effects
Choice reaction time. Cumulative styrene was
associated with increased CRT in a dose-
related manner. Inspection of Figure 4 reveals
that one point lies at a higher exposure value
with respect to the others. That point is the
mean for one of four groups from the same
study, each exposed to a different amount of
styrene. These four means are represented as
the smallest four points in Figure 4. They
form a series that is consistent with the fitted
dose effect function. Each of the points is
the mean of 18–28 subjects, for a total of
100 subjects. Despite the fact that one point
is outstanding in Figure 4, the fact that it
came from the only study with multiple expo-
sure levels makes the resulting fitted equation
plausible. Furthermore, an exploratory analy-
sis, with the extreme point removed from
the data set, yielded only a slightly lower slope
and a poorer fit. The fitted line from the
exploratory analysis was well within the confi-
dence limits of the line fitted to the whole
data set. More data at the upper end of expo-
sure would improve the confidence limits.

No significant effects were observed on
SRT, perhaps because the largest exposure for
the SRT data was only about 250 ppm work-
years. Thus, there may not have been suffi-
cient exposure to produce a reliably detectable
effect.

Under the assumption that the metric of
exposure can be separated into discrete con-
centration (parts per million) and duration
(work-years) components, the lines in Figure 5
may be used to estimate the magnitude of var-
ious exposure histories on CRT. For example,
8 work-years at 150 ppm is estimated to pro-
duce an increase in CRT of almost 50%. For
20 ppm, a contemporary limit for occupa-
tional styrene exposure [American Conference
of Governmental Industrial Hygienists
(ACGIH) 2000] for 8 work-years is estimated
to produce a 6.5% increase in CRT. By use of
the fitted dose–effect equation the increase in
CRT can be estimated for any combination of
concentration and duration of exposure.
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Figure 5. Nomogram for estimating magnitude of
effect of styrene (ppm) and work-years of exposure
on CRT.

0.5

0.4

0.3

0.2

0.1

0.0

Styrene (ppm)

Ef
fe

ct
 o

n 
m

ea
n 

CR
T 

(p
ro

po
rt

io
na

l c
ha

ng
e)

0 15010050

8 w
or

k-y
ea

rs

6 w
ork-

ye
ars

4 work-years

2 work-years

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

–0.1

Styrene (ppm work-years)

Ef
fe

ct
 o

n 
m

ea
n 

CC
I (

pr
op

or
tio

na
l c

ha
ng

e)

0 1,5001,2501,000750500250

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

–0.1

Styrene (ppm work-years)

Ef
fe

ct
 o

n 
CC

I (
pr

op
or

tio
na

l c
ha

ng
e)

0 1,5001,2501,000750500250

Figure 6. Scatter plot and fitted regression line with
95% CLs for estimation of effect of styrene expo-
sure (ppm work-years) on CCI. Means were com-
puted from digitized individual-subject data, which
had been normalized by Equation 1. Means were
then pooled from six studies. The size of the plotted
points indicates the relative number of subjects in
the computation of each mean.

Figure 7. Scatter plot and fitted regression line with
95% CLs for estimation of effect of styrene expo-
sure (ppm work-years) on CCI. Digitized individual-
subject data were pooled from six studies.

Figure 8. Nomogram for estimating magnitude of
effect of styrene (ppm) and work-years of exposure
on CCI.
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Importance of rapid reaction times. The
importance of reaction times has been dis-
cussed in a number of ergonomic settings,
among which perhaps the most quantitative is
automobile driving. For drivers in the United
States, it has been estimated that reducing the
reaction time by 100 msec would reduce acci-
dent-related property damage costs alone by
$655,000,000 annually (1994 US$) and pre-
vent 58,000–70,000 injuries per year (Blincoe
1994; Kahane and Hertz 1998). For unex-
pected events, a decrease in reaction time of
100 msec is about 7% of the normal reaction
time, and for expected events 100 msec is
about 14% (Green 2000). Thus, changing
reaction time by 7–14% has important eco-
nomic and personal implications. Styrene
exposure to permissible levels produced the
magnitude of change upon which the above
economic estimates were based. In addition,
consideration should be given to the possibility
that people sometimes have additionally
increased reaction times due to work-related
fatigue and consumption of ethanol and drugs.

Given the above information it would be
possible to calculate the benefit of any pro-
posed changes in styrene exposure limits if data
were available on a) the number of workers
exposed to styrene, b) the distribution of expo-
sure concentrations and durations, and c) the
duration of the effect after cessation of work-
place exposures. It would then be possible to
compare the cost of regulation to the benefit of
such regulation on a continuous dose-related
scale. Presumably, the above data could be
found, except for estimates of the permanence
of the increased CRT after exposure cessation.

Color vision. Long-term exposure to
styrene was associated with increased errors in
performing a color discrimination/arrangement
task in the pooled data from six studies of
occupationally exposed workers. The mean
effect size for CCI was estimated with closer
confidence limits for Figure 7 than for Figure 6
because of the use of individual-subject data,
but the regression lines for the two procedures
were similar. The individual-subject observa-
tions scattered widely about the estimated line,
lowering the variance accounted for. For an
exposure of 8 work-years to 150 ppm, the
estimated increase in CCI score was approxi-
mately 17% (Figure 8). This is lower than for
CRT, which was estimated at nearly 50%. For
20 ppm, a typical limit (ACGIH 2000) for
8 work-years, there was an estimated 2.23%
increase in CCI.

Color vision deficiencies associated with
exposure to styrene and other solvents have
been associated primarily with difficulty in
discriminating among colors at the “blue” end
of the spectrum. This is commonly referred to
as a blue/yellow deficit. This type of color
vision deficit could be associated with reduced
function in the short-wavelength-sensitive

(blue) cones or their associated ganglion cells
(Greenstein et al. 1990; Hood et al. 1984;
Pachec-Cutillas et al. 1999). Why, or if, these
cones are actually more susceptible is not well
understood.

The measures of CCI show a relatively
large variance among individual subjects, as
was observed in group mean data by Paramei
et al. (2004). Factors that could contribute to
this variance include use of incorrect chro-
maticity values derived from the saturated
Farnsworth-Munsell D-15 test, rather than
unsaturated D-15d test (Geller 2001; Geller
and Hudnell 1997) and differences between
spectrum color profiles of light sources labeled
as “daylight” (Wyszecki and Stiles 1982). Also
important are the effects of luminance and
practice that were not necessarily constant
across studies.

Importance of color-vision deficits. The
importance of impaired color perception is
difficult to specify quantitatively. The broad
scope of tasks deleteriously affected by color
confusion should, by itself, give weight to the
importance of deficits. Color information is
important to persons who are driving; making
distance judgments; reading colored text on
video monitors, medicine bottles, food cans,
and the like; scanning for objects in a complex
visual scene; or working with color-coded elec-
trical circuitry (Klein et al. 1999; McClure
et al. 2000; Owsley et al. 2001; Rubin et al.
1994, 1997, 2001). Congenital color deficien-
cies are related to poorer school performance,
slowed CRT at traffic lights, difficulty with
information processing from color video mon-
itors, and increased difficulty with color-coded
tasks (Cole and MacDonald 1988; Margrain
et al. 1996; O’Brian et al. 2002; Steward and
Cole 1989). Although all of these tasks are
important, there is no obvious way of relating
these reported deficits to the magnitude of
effects reported for styrene. For such a rela-
tionship to be established, experimental evi-
dence is needed to relate CCI values to task
performance.

It is possible to compare the effect of
styrene exposure with the effect of aging on
CCI. The CCI of men increases with age at the
rate of about 10% of baseline every 13 years of
age (Iregren et al. 2002, their Figure 1 and
Table 6). Thus, the deficit in color perception
caused by exposures to styrene of 115 ppm for
8 work-years or 156 ppm for 6 work-years is
roughly equivalent to 13 years of additional age
in visual dysfunction. Eight work-years at
20 ppm (the ACGIH limit) would produce a
2.23% deficit, which is roughly equivalent to
1.7 additional years of age.

Reversibility of Effects
It is not clear whether the effects of long-term
styrene exposure are reversible. All of the data
analyzed in the present work were collected at

least 15 hr after the last exposure and there-
fore are probably not due to the concurrent
presence of styrene or its metabolites in the
blood. Some experimenters gave behavioral
tests to subjects both before and after a day’s
exposure and found no statistically significant
differences for CRT (Jegaden et al. 1993;
Triebig et al. 1989) or for CCI (Triebig et al.
2001). This implies that the acute body bur-
den of styrene and its metabolites was not
responsible for the effects and that longer-
term processes were acting.

A few of the experimenters tested subjects
both before and long times after exposure, to
characterize the reversibility of effects. For
CCI, Triebig et al. (2001) reported that effects
were reversible after 4 weeks of vacation.
This study had relatively low exposures (even
though the effect was large). Mergler et al.
(1996) reported that reduction of exposure
due to workplace improvements also reduced
the CCI effect (and other behavioral effects)
after a period of 2 years. These data are scant
and spotty but suggest the possibility that at
least some recovery may occur from the effects
of long-term exposure to styrene.

Possibility of Estimation Errors
It is possible that the concentration of styrene
in the past was greater, by an unknown
amount, than indicated by contemporary
measures because workplace improvements
may have been made (Gong et al. 2002). If this
were the case, then the noted effects would
have been due, in part, to higher styrene expo-
sures in the past and not to the possibly lower
concurrent exposures. Although this would
have the effect of overestimating the magni-
tude of effect for any indicated concentration
of exposure, it would not have affected the sta-
tistical significance of the finding that styrene
produces the indicated effect.

On the other hand, all of the available
data in this analysis were from studies of
occupationally exposed workers. The risks of
chronic styrene exposure to the general popu-
lation may have been underestimated to the
extent that healthy workers are not represen-
tative of the general population. It is possible
that persons who are more susceptible to
effects of styrene exposure do not remain in
positions where such exposure occurs—the
so-called “healthy-worker effect.” It is also
possible that nonworking persons such as the
young or elderly might be more susceptible to
effects of styrene exposure than are healthy
workers.

Summary and Conclusions

Workplace styrene exposure can increase CRT
and CCI. The magnitudes of the effects are
statistically significant linear functions of parts
per million work-years. The magnitude of each
effect is a continuous function and reaches
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socially important values at realistic exposure
concentrations.

Increased CRTs are associated with
impairment of tasks performance, such as dri-
ving, that can be monetized for benefit–cost
analysis. Increased color vision deficiencies are
associated with difficulty in the performance
of many everyday tasks. The cost of these
increases is difficult to estimate. It appears
that the effects on CRT and CCI persist for
some time after exposure ends, but this con-
clusion is based on limited data.

The effects of styrene on CRT and CCI
may have been overestimated by an unknown
amount in this meta-analysis because of
a) underestimates of past exposure and b) bias
from experimenter knowledge of subject
exposure status while testing. On the other
hand, the potential for effects of styrene expo-
sure in the general population may have been
underestimated because of the healthy-worker
phenomenon or because of the lack of suscep-
tible persons in the workplace, such as the
young or elderly.
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