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Research

The nature and magnitude of the association
between temperature and human health has
been increasingly recognized (Basu and Samet
2002; Martens 1997; Patz et al. 2000; Samet
et al. 1998). Both hyperthermia and hypother-
mia are generally linked to cardiorespiratory
morbidity or mortality (Braga et al. 2001;
2002; Kunst et al. 1993). The patterns of tem-
perature–morbidity/mortality vary across
regions, with J-, U-, or V-shapes most com-
monly observed (Basu and Samet 2002; Braga
et al. 2002; Patz et al. 2000). In many regions
of the world, death rates in winter are usually
higher than those in summer, even though heat
waves can cause excess deaths (Braga et al.
2002; McMichael et al. 2001). Seasonal varia-
tion in morbidity and mortality may also reflect
factors beyond weather, including seasonal pat-
terns of respiratory infections. Consequently,
assessments of the effect of weather on human
health have usually controlled for seasonality
and sometimes for influenza epidemics
(Schwartz et al. 2004).

Meanwhile, numerous studies have shown
that air pollution is consistently associated with
adverse health effect (Bell et al. 2004; Dominici
et al. 2006; Samet et al. 2000). However, the
role of air pollution is often ignored in assessing
the health effects of temperature variability,
except in a few recent studies adjusting for air
pollution (O’Neill et al. 2003; Rainham and
Smoyer-Tomic 2003). None of the previous
studies have explored whether exposure to air
pollution modifies the association between
temperature and health outcomes. If substantial

effect modification exists, an inappropriately
specified model may result in bias. First, it may
be inappropriate to consider air pollution only
as a confounder in the assessment of the associ-
ation between temperature and health out-
comes, because air pollution may make people
more vulnerable to the effects of temperature
variability. Second, some studies have shown
that temperature may modify the associations
between air pollution and cardiorespiratory dis-
eases (Choi et al. 1997; Katsouyanni et al.
1993; Ren and Tong 2006; Roberts 2004).
There is often symmetry in modification—air
pollution modifies temperature and then tem-
perature modifies air pollution—but the mag-
nitudes are likely to differ. Finally, the true
magnitude of the association between tempera-
ture and health outcomes may be obscured if
air pollution is an effect modifier of the rela-
tionship. In this study we used three parallel
time-series models to explore whether particu-
late matter < 10 µm in aerodynamic diameter
(PM10) modified the effects of temperature on
cardiorespiratory hospital admissions, emer-
gency visits, and mortality in Brisbane,
Australia, during the period 1996–2001. 

Materials and Methods

Data collection. The data sets consisted of
concurrent daily time series of health out-
comes, weather, and air pollution collected in
Brisbane City from 1 January 1996, to 31
December 2001. Brisbane City is the capital
of Queensland, Australia, with a subtropical
climate. In 2001, there were 0.89 million

residents in Brisbane City (Brisbane City
Council 2006).

Health outcome data in this study were
provided by the Queensland Department of
Health and comprised cardiovascular hospital
admissions (CHA), cardiovascular emergency
visits (CEV), cardiovascular mortality (CM),
respiratory hospital admissions (RHA), respi-
ratory emergency visits (REV), and all non-
external-cause mortality (NECM). This
analysis excluded respiratory mortality due to
limited daily counts (mean, 1.5; range, 0–8).
Discharge diagnosis was classified according to
International Classification of Diseases, 9th
Revision (ICD-9; World Health Organization
1975) (used until July 1999) or 10th Revision
(ICD-10; World Health Organization 1992)
codes: respiratory diseases (ICD-9: 460–519
or ICD-10: J00–J99), cardiovascular diseases
(ICD-9: 390–448 or ICD-10: I00–I79), and
external causes (ICD-9: E800–E999 or
ICD-10: S00–U99). Influenza (ICD-9:
487.0–487.8 or ICD-10: J10–J11) was
excluded from respiratory diseases, but occur-
rence of influenza outbreak was considered as a
potential confounder in the data analysis. All
cases were local residents of Brisbane City. The
notification of incidence and mortality is a stat-
uary requirement under the Health Act 1937
for all public and private hospitals, nursing
homes and pathology services in Queensland.
The Queensland Department of Health is
responsible for data collection, management,
and analysis (Queensland Government 2001).

Daily meteorologic data were supplied by
the Australian Bureau of Meteorology
(http://www.bom.gov.au/), including daily
minimum temperature, relative humidity and
rainfall for the period of this study. Air pollu-
tion data included ambient 24-hr average
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concentrations of PM10 and ozone. All air
pollution data were regularly recorded at a
central monitoring site and provided by the
Queensland Environmental Protection
Agency (http://www.epa.qld.gov.au/).

Data analysis. Poisson generalized additive
models (GAM) were employed to explore the
associations of temperature and PM10 with
health outcomes. This assumed that the daily
number of counts had an overdispersed
Poisson distribution [E (Yt = µt), var(Yt) = φµt]
(Dominici et al. 2004). GAM allows nonpara-
metric smoothing functions to account for
potentially nonlinear effects of confounding
factors on the dependent variable, such as
seasonal variation and weather conditions
(Hastie and Tibshirani 1990). We used days of
calendar time with a cubic smoothing function
to control for the confounding effect of season-
ality. We controlled for short-term fluctuation
using day of the week as a factor. Other poten-
tial confounders, such as relative humidity and
influenza outbreaks, were also adjusted for.

Before exploring effect modification of
PM10 on the temperature-health relationship,
we used an independent model to explore the
patterns of the relationship between tempera-
ture and health outcomes. The independent
model is described below (Daniels et al. 2000;
Hastie and Tibshirani 1990; Insightful
Corporation 2001):

Log[E(Yt|X )] =
α + lo (tempt–i, span = 0.25) 
+ lo (pmt–i, span = 0.25) + s(seasont, 7) 
+ γDowt + s(yeart, 3) + s(raint–i , 4) 
+ s(humidt–i , 4) + s(ozonet–i , 4) + βf flut + εt

= α + lo (tempt–i, span = 0.25) 
+ lo (pmt–i, span = 0.25) + COVs + εt, [1]

where t refers to the day of the observation; i
refers to lags; E(Yt|X ) denotes estimated daily
case counts on day t; s(·) and lo(·) separately
denote the cubic smoothing spline and LOESS
smooth functions, respectively; α is the inter-
cept term; tempt–i is 24-hr minimum tempera-
ture on day t–i; pmt–i is PM10 on day t–i;
seasont denotes seasonality using days of calen-
dar time. In accordance with the literature
(Daniels et al. 2000), we used 7 degrees of free-
dom (df) per year for season so that little infor-
mation from time scales longer than 2 months
was included. Dowt is the day of week on day t,
and γ is a vector of coefficients. The variables
raint–i, humidt–i, and ozonet–i refer to rainfall,
relative humidity at 0900 hr and ozone on day
t-i, respectively; flut represents the occurrence of
influenza epidemics. Because > 99% of days
only have 0 or 1 influenza cases, influenza was
categorized as a dummy variable (0 cases,
≥ 1 cases on day t). βf is the coefficient for
influenza; εt is the residual. COVs represents all
other covariates in the model. 

Then we used three GAM models to assess
whether PM10 modified the association of
temperature with health outcomes: a nonpara-
metric bivariate response model, a nonstratifi-
cation model, and a stratification model (Ren
and Tong, in press; Roberts 2004). We used a
bivariate model to explore visually the com-
bining effects of both temperature and PM10
with health outcomes. This was undertaken
using a nonparametric smoothing function
without linear assumptions that the two pre-
dictors linearly depend on outcomes. We used
a nonstratification model quantitatively to
examine the association of both above predic-
tors with health outcomes with a linear

assumption by including an interaction term
of temperature and PM10 as continuous func-
tions. We used a stratification model quantita-
tively to assess the associations of temperature
with health outcomes across PM10 levels by
including an interaction term of temperature
and PM10 in which PM10 was categorized into
two levels. The three models are described in
detail below.

First, we used the nonparametric bivariate
response model to identify the joint effects of
minimum temperature and PM10 on health
outcomes. This can capture the relationship
between independent and dependent variables
without the need for strong assumptions (Hastie
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Figure 1. Time-series distributions of PM10, minimum temperature, and health outcomes from 1996 to 2001 in
Brisbane. The panels represent the distributions of RHA, CHA, REV, CEV, NECM, CM (number of daily
cases), minimum temperature (°C), and PM10 (µg/m), from top to bottom. 



and Tibshirani 1990). This model provided a
picture of the joint pattern of two predictors
(temperature and PM10) on the dependent
variable (each of cardiorespiratory morbidities
and mortalities). Therefore, it can be used to
observe whether or not there is an interactive

effect of two continuous predictors on the
dependent variable (Greenland 1993; Hastie
and Tibshirani 1990). We modified Equation
1 to include a bivariate term for temperature
and PM10 as follows (Insightful Corporation
2001; Ren and Tong, in press; Roberts 2004):

Log[E(Yt|X )] =
α + lo(tempt–i, pmt–i, span = 0.25) 
+ COVs + εt, [2]

where lo(tempt–i, pmt–i) means joint effect of
temperature and PM10 and COVs was the
same as model 1.

Second, we used a nonstratification model,
assuming a linear relationship, to estimate the
interactive effects of PM10 and minimum tem-
perature on health outcomes. We added an
interaction term to estimate increment in
cardiorespiratory mortality/morbidity per unit
change in ambient PM10 and minimum tem-
perature, as follows:

Log[E(Yt|X )] =
α + β1pmt–i + β2tempt–i

+ β3(pmt–i : tempt–i ) + COVs + εt, [3]

where β1 denotes the increment in mortality/
morbidity per unit increase in ambient PM10
level, β2 denotes the increment in mortality/
morbidity per unit increase in temperature
level, and β3 estimates the interactive effect of
PM10 and temperature on health outcomes
after adjustment for all other covariates. COVs
was the same as in model 1. 

Finally, we applied a stratification model to
examine whether the effects of temperature on
health outcomes were heterogeneous across dif-
ferent levels of PM10. We categorized PM10
into two levels (low and high) and then exam-
ined whether temperature effects varied across
levels of PM10. To assess effect modification in
the high end of the temperature range, we used
separate data sets to fit this model: one data set
with the whole range of temperatures and
another database with temperatures ≥ 19.3 °C
(75th percentile). We slightly modified
Equation 3 as follows:

Log[E(Yt|X )] =
α + β1tempt–i + β2pmkt–i

+ β3(tempt–i : pmkt–i ) + COVs + εt, [4]

where pmkt represents levels of PM10,
tempt–i : pmkt–i represents the interaction term
of temperature and levels of PM10, and other
covariates were the same as in Equation 3.
Because PM10 was categorized into just two
levels, each of pmkt and tempt–i : pmkt–i has one
coefficient denoted by β2 and β3, respectively.
COVs was the same as in model 1.

S-plus software (version 6.2) was used in
the data analyses (Chambers and Hastie 1993;
Insightful Corporation 2001). To reduce
potential bias caused by convergence, we used
stricter criteria: 1.0 × 10–10 for both the local
score algorithm and the backfitting algorithm
(Dominici et al. 2002). We used the S-plus
function gam.exact (Dominici et al. 2004;
Internet-based Health and Air Pollution
Surveillance System 2006) to correct the
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Figure 2. Temperature–morbidity/mortality relationship. (A) RHA, (B) CHA, (C) REV, (D) CEV, (E) NECM, and
(F) CM, all on current day, and (G) NECM and (H) CM, both at lag 2. Solid lines represent point estimates
and dashed lines for 95% confidence intervals.

Table 1. Summary statistics for health outcomes, air pollutants, and meteorologic conditions.

Variable Mean Minimum 25th Percentile Median 75th Percentile Maximum

RHA (n) 33.16 6 23 33 42 77
CHA (n) 39.32 7 30 39 48 90
REV (n) 18.39 1 13 17 23 48
CEV (n) 17.17 2 14 17 20 38
NECM (n) 15.86 5 13 15 18 42
RM (n) 1.45 0 0 1 2 8
CM (n) 7.26 1 5 6 9 31
PM10 (µg/m3) 15.84 2.5 11.9 14.8 18.7 60
Temperature (°C) 15.42 1.2 12.0 16.0 19.3 26
Humidity (%) 65.21 12.0 57 65 74 100
Ozone (ppb) 11.26 0 7 10 15 45
Rainfall (mm) 3.038 0 0 0.0 0.8 163



potential underestimation of the coefficient’s
standard error due to concurvity (Ramsay et al.
2003). Furthermore, analyses were restricted to
days that contained values for all covariates in
each model (> 87% of observations).

Results

We examined the distributions of each of the
dependent variables, temperature, and PM10
by time. The results show that there were
strong seasonal patterns for RHA, CHA, REV,
CEV, NECM, CM, and temperature, but the
PM10 pattern was less obvious (Figure 1).
There were also apparent short-term fluctua-
tions in health outcomes, minimum tempera-
ture, and the concentration of PM10. 

Table 1 provides summary statistics for
individual health outcomes and explanatory
variables. The results show considerable varia-
tion in each variable, ranging from 6 to 77 for
RHA, 7 to 90 for CHA, 1 to 48 for REV, 2 to
38 for CEV, 5 to 42 for NECM, 1 to 31 for
CM, 1.2 to 26 °C for temperature, and 2.5 to
60.0 µg/m3 for PM10. 

In the first model, there were inverse rela-
tionships between temperature and various
measures of cardiorespiratory morbidity except
for CHA, which showed a slight positive rela-
tionship (Figure 2). The patterns were similar
at lags of 0, 1, or 2 days (RHA, CHA, REV,
and CEV). Patterns of temperature effect on
current day for morbidity and current day and
lag 2 for mortality are presented (Figure 2).
However, the relationships between tempera-
ture and cardiorespiratory mortality (NECM
and CM) differed from the morbidity out-
comes and varied by lengths of lag. For the
current day, the associations of temperature
with NECM and CM were relatively slight
when the temperature was between 0 and
20ºC and then increased quickly, but at lags of
1 and 2 days, the associations first decreased
and then leveled off or slightly increased.
Hence, the relationship between temperature
and mortality forms a J- or U-shaped pattern,
depending on the lag time (Basu and Samet
2002; Braga et al. 2002; Patz et al. 2000).

To explore potential effect modification of
PM10 and temperature on cardiorespiratory
morbidity/mortality, we separately fitted
bivariate response surface models (model 2)
with individual health outcomes at each of
three lags (0, 1, and 2 days). The results show
interactive effects of PM10 and temperature on
RHA, REV, NECM, and CM at all time
points, less so for CHA and CEV. Figure 3
illustrates the joint effects of PM10 and temper-
ature on each health outcome (RHA, CHA,
REV, CEV, NECM, and CM) for the current
day. Temperature effects were modified by
levels of PM10 for RHA, REV, NEMC, and
CM, less so for CHA and CEV. Favorable
temperature effects disappeared when PM10
was above the mean or median (15.84 or

14.8 µg/m3) for RHA and REV, but adverse
temperature effects appeared for NECM and
CM when PM10 was above the mean or
median. CHA was similar to RHA. The bivari-
ate response surfaces differed from the inde-
pendent model results, showing that the
association between temperature and mortality
changed with PM10. In fact, what at first
appeared to be a J-shaped relationship in the
independent model (model 1) became an
approximately linear relationship when the
joint effect of PM10 and temperature was taken
into account (model 2). There were inverse lin-
ear associations between minimum tempera-
ture and morbidity or mortality at low levels of
PM10 (< 20 µg/m3). However, at higher levels
of PM10, the association between temperature
and mortality was positively linear, whereas the
associations with the various morbidity meas-
ures were weak.

Because no obvious J- or U-shaped pat-
terns of the temperature-health relationship
were observed in bivariate response models,
we separately fitted nonstratification models
(model 3) using each of the cardiorespiratory
morbidity/mortality measures as a response
variable with the same set of predictors at each

of the lags (Table 2). The results indicate sta-
tistically significant interactive effects between
temperature and PM10 on RHA, CHA,
NECM, and CM at different lags. For exam-
ple, PM10 modified the effects of temperature
on RHA and CM at all lags, but modified the
effects of temperature on NECM at lags of 0
and 2 days and CHA at lag 2, marginally at
lag 0. No significant interactions were found
for REV and CEV. The results were similar to
those from model 2. Because the estimated
effects of temperature variability differed with
PM10 levels, we present the estimated coeffi-
cients of model 3 instead of relative risks
(Table 2).

To test sensitivity of changes in degrees of
freedom related to the number of categories
used for covariates, we refitted model 3 using
12 df for seasont (each month), 6 df for year
(each year), and 8 df for rain, relative humid-
ity, and ozone instead of the original df.
Results show that increases in df changed the
modeling outcomes only minimally. 

Both the bivariate response surface and
nonstratification models suggest that the effects
of temperature on cardiorespiratory morbidity/
mortality varied with levels of PM10. We then

PM10 modifies temperature effect
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fitted the stratification model (model 4) to
examine heterogeneity of temperature associa-
tions with health outcomes across different
strata of PM10, defined as greater than or less
than the mean level (15.8 µg/m3) of PM10.
There were statistically significant interactions
for RHA, CHA, NECM, and CM at different
lags, but not for CEV and REV. Table 3 shows
the percent changes in cardiorespiratory mor-
bidity/mortality per 10°C increase in minimum
temperature across the different levels of PM10.
Temperature effects on cardiorespiratory mor-
bidity/mortality varied across the different levels
of PM10. For most lags and most health out-
comes, the percent changes were higher when
PM10 levels were higher. For morbidity meas-
ures, this meant that the inverse association
with temperature was less extreme for high
PM10; for mortality measures, the association
with minimum temperature became positive at
high PM10 levels. For example, when mini-
mum temperature increased by 10°C (using
data with the full range of temperature), there
was a decrease in RHA of 7.2% and 1.0% on
the current day, with low and high PM10 levels,
respectively. To examine the association at the
high end of the temperature range with health
outcomes, we also fitted model 4 using data sets
constrained to the highest quartile (≥ 19.3°C)
of temperature with the same cutoffs for
temperature as the whole database. The pattern
was even stronger when analyzed in the high-
temperature data set (Table 3).

Discussion
In this study, we used three parallel time-series
approaches to examine whether PM10 modi-
fied the association between temperature and
cardiorespiratory morbidity/mortality. Results
show that PM10 modified the effects of tem-
perature on respiratory hospital admissions,
cardiovascular hospital admissions, all non-
external-cause mortality, and cardiovascular
mortality in different lags. In particular, more
adverse outcomes were evident with increasing
temperature when PM10 levels also increased.
However, there were no significant interactive
effects between temperature and PM10 on res-
piratory and cardiovascular emergency visits.
Three parallel models produced similar results.

In this study we used different health out-
comes to examine consistency of findings.
However, the findings from different health
outcomes for the same observed groups varied
somewhat. Reasons for this might include dif-
ferent age distributions, different events, and
clinical features. For example, for respiratory
hospital admissions and emergency visits,
acute upper respiratory infection, pneumonia,
and asthma were the dominant causes, and a
high proportion of cases were identified in
children. For cardiovascular hospital admis-
sion and emergency visits, angina pectoris,
artrial fibrillation and flutter, and chronic
ischemic heart diseases were the main causes,
and elderly persons comprised most of theses
cases. For MECN and CM, acute myocardial

infarction, chronic ischemic heart diseases,
and stroke were the main causes, and again
elderly persons comprised most cases. Several
studies have shown that age and preexisting
diseases modify the air pollution–health asso-
ciation (Dubowsky et al. 2006; O’Neill et al.
2003). In considering the variation in findings
for different health effects, we note that
this study is designed to detect short-term
effects of air pollution (within a few days).
Mechanisms related to high temperature or
PM10 that precipitate acute illness may be
different or have different magnitudes,
depending on the underlying diseases.

Temperature and air pollution are gener-
ally highly correlated in many places (Holgate
et al. 1999), and they may interact symmetri-
cally to affect health outcomes. Although
whether air pollution modifies temperature
estimates has not been investigated so far, sev-
eral studies have found evidence that tempera-
ture may modify the relationship between air
pollution and morbidity or mortality (Choi
et al. 1997; Katsouyanni et al. 1993; Ren and
Tong, in press; Roberts 2004). For example,
Katsouyanni et al. (1993) examined whether
air pollution and ambient temperature had
synergistic effects on excess mortality during
the 1987 “heat wave” in Athens. They found a
statistically significant modification of temper-
ature on the association between exposure to
sulphur dioxide and total excess mortality,
although the main effect of this pollutant was
not statistically significant. Roberts (2004)
investigated the interaction between daily par-
ticulate air pollution and daily mean tempera-
ture on mortality in Cook County, Illinois,
and Allegheny County, Pennsylvania, using
data for 1987–1994. The study found that
temperature modified the association between
PM10 and mortality, but the results were sen-
sitive to the number of degrees of freedom.
Our recent study also found that temperature
significantly modified the association between
PM10 and health outcomes (Ren and Tong, in
press). These findings support the hypothesis
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Table 2. Coefficients for main and interactive effects of minimum temperature and PM10 on different health
outcomes using model 3.

Laga Variable RHA CHA REV CEV NECM CM

Lag0 Temperature –0.012019* –0.003942 –0.009377* –0.003304 –0.008374** –0.008193
PM10 –0.004296** 0.000150 –0.000887 0.000737 –0.004022 –0.004565
Interaction 0.000471* 0.000232# 0.000135 –0.000015 0.000534* 0.000603**

Lag1 Temperature –0.009196* –0.0003767 –0.010039** –0.003636 –0.005321 –0.010081
PM10 –0.002474** 0.000028 –0.004209 –0.001248 –0.002182 –0.003927
Interaction 0.000339** 0.000124 0.000271 0.000116 0.000322# 0.000556**

Lag2 Temperature –0.008950* –0.009764* –0.009406* –0.008885** –0.008556# –0.015128**
PM10 –0.004229** –0.002946 –0.003440 –0.003383 –0.005177 –0.007141
Interaction 0.000413* 0.000259** 0.000280# 0.000210 0.000441** 0.000809**

aLag refers to 0, 1, or 2 days. *p < 0.01. **p < 0.05. #p < 0.10.

Table 3. Percent change (%) in cardiorespiratory morbidity/mortality per 10°C increase in temperature across the levels of PM10.

Laga Variable RHA (95% CI) CHA (95% CI) REV (95% CI) CEV (95% CI) NECM (95%CI) CM (95% CI)

Whole range of temp
Lag0 PM Lowb –7.2 (–11.3 to –2.9) –2.3 (–6.3 to 1.7) –6.8 (–12.1 to –1.1) –2.2 (–7.8 to 3.5) –1.4 (–7.3 to 4.8) –0.9 (–9.8 to 7.9)

PM High –1.0 (–5.0 to 3.2) 1.1 (–2.5 to 4.7) –6.6 (–11.5 to –1.4) –4.5 (–9.7 to 0.6) 2.8 (–2.7 to 8.7) 4.6 (–3.4 to 12.6)
Lag1 PM Low –2.9 (–7.3 to 1.6) –2.6 (–6.7 to 1.4) –3.6 (–9.2 to 2.3) –2.1 (–7.8 to 3.7) –0.2 (–6.2 to 6.0) –1.4 (–10.2 to 7.5)

PM High –2.4 (–6.5 to 1.8) –1.0 (–4.6 to 2.5) –5.3 (–10.3 to –0.1) –1.2 (–6.3 to 3.9) 0.6 (–4.8 to 6.4) 0.0 (–7.9 to 8.0)
Lag2 PM Low –3.2 (–7.6 to 1.3) –8.2 (–12.2 to –4.2) –3.9 (–9.5 to 2.0) –6.7 (–12.4 to –1.0) –3.9 (–9.6 to 2.2) –3.6 (–12.5 to 5.2)

PM High –0.4 (–4.5 to 3.8) –3.5 (–7.1 to 0.1) –4.4 (–9.4 to 1.9) –4.2 (–9.3 to 1.0) 1.1 (–4.3 to 6.9) 0.9 (–7.0 to 8.8)
Temp ≥ 19.3°C

Lag0 PM Low –29.2 (–40.6 to –15.5) –4.7 (–19.2 to 10.0) –7.4 (–27.2 to 17.8) –13.2 (–33.8 to 7.8) 9.9 (–12.9 to 38.5) 0.8 (–31.3 to 34.1)
PM High 5.2 (–17.0 to 33.4) –3.8 (–22.8 to 15.6) 4.5 (–23.1 to 42.0) –94.2 (–118.6 to 69.1) 14.0 (–15.4 to 53.7) 44.1 (0.8 to 89.2)

Lag1 PM Low –7.6 (–23.4 to 11.5) 0.7 (–13.7 to 15.3) 1.2 (–20.2 to 28.3) –14.9 (–35.3 to 6.0) 35.1 (7.0 to 70.5) 18.9 (–13.6 to 52.4)
PM High –8.1 (–27.6 to 16.6) 12.2 (–7.4 to 32.1) 51.5 (11.1 to 106.6) 1.5 (–25.7 to 29.6) 14.8 (–15.4 to 55.8) 26.2 (–17.3 to 71.6)

Lag2 PM Low –12.8 (–27.4 to 4.8) 15.9 (1.1 to 30.8) –24.8 (–40.8 to –4.6) 8.0 (–13.0 to 29.4) 13.2 (–10.2 to 42.6) 6.7 (–25.4 to 39.8)
PM High –19.2 (–36.4 to 2.6) 12.8 (–6.7 to 32.7) –8.8 (–33.3 to 24.7) 29.4 (–51.8 to 117.5) 37.6 (1.9 to 85.8) 23.2 (–19.1 to 67.4)

Abbreviations: CI, confidence interval; Temp, minimum temperature.
aLag refers to 0, 1, or 2 days. bPM indicates PM10, categorized into low and high levels using mean of PM10 as a cutoff.
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that PM10 might modify the relationship
between temperature and health outcomes.

It is biologically plausible that PM10 modi-
fies the effects of temperature on cardiorespira-
tory diseases. A range of studies have shown
that PM10 is consistently associated with health
outcomes (Dominici et al. 2006; Samet et al.
2000). Exposure to PM10 may directly affect
airways through inhalation, including upper
airways, bronchiole, and alveolus. The exposure
could modulate the automatic nervous system
and might further influence the cardiovascular
system (Gordon 2003; Jeffery 1999). Some
studies have shown that PM10 is associated with
decreased heart rate variation (Creason et al.
2001; Gold et al. 2000). Marked temperature
changes also affect physiological and psycholog-
ical stresses (Gordon 2003), which could aggra-
vate preexisting diseases. Therefore, both high
ambient temperature and high ambient PM10
may interact to synergistically effect human
morbidity/mortality. 

Each of the three models used in this study
has inherent advantages and disadvantages. The
bivariate response surface model is a flexible
approach to show the patterns of two continu-
ous predictors on the dependent variable and
explore whether potential interaction exists
without a rigid assumption of linearing between
predictors and the dependent variable
(Greenland 1993; Hastie and Tibshirani 1990).
However, this model can not provide paramet-
ric estimates for exposure effects; therefore, it
may be difficult to judge whether interactive
effects exist and also to compare the results
from different studies. The nonstratification
parametric model includes a pointwise product
of two continuous variables. Parametric esti-
mates for both predictors and their pointwise
product can be obtained (Chambers and
Hastie 1993). However, the linear assumption
between the dependent variable and both con-
tinuous predictors is not necessarily met in all
situations, especially for temperature and air
pollution in a multisite study with variation in
study populations. Moreover, the estimated
coefficients of both predictors can not be sim-
ply interpreted as the main effects (Table 2)
(Chambers and Hastie 1993). The stratifica-
tion parametric model provides parametric
estimates, which can be easily interpreted as
main effects and interaction. The parametric
estimates can be used in a meta-analysis.
However, because the effect of one continuous
predictor generally changed with another pre-
dictor level (Figure 3), the selection of cutoffs
is still a challenge, especially in comparing the
results from different studies.

We explored a marker of air pollution as a
modifier of the relationship between tempera-
ture and cardiovascular morbidity/mortality.
We used an independent model (model 1) and
a bivariate response model (model 2) to exam-
ine the patterns of temperature with several

health outcomes (RHA, CHA, REV, CEV,
NECM, and CM). A J-shaped pattern was
observed only for NECM and CM on the cur-
rent day but not for other measures of car-
diorespiratory morbidity. No obvious J-shaped
pattern was observed in the bivariate response
surface models, suggesting that the interaction
between PM10 and temperature may play an
important role in model fit. Therefore, when
modeling the health effects of air pollution
and/or temperature, an interaction between
these two factors should be carefully considered.
Many studies have shown J-, U-, or V-shaped
patterns of the temperature–health relationship
(Basu and Samet 2002; Braga et al. 2002; Patz
et al. 2000).The different patterns observed
may be caused by different climate conditions
across studies. For example, Braga et al. (2002)
reported that greater variability of summer and
winter temperature was associated with larger
effects for hot and cold days, respectively, on
respiratory deaths. However, Brisbane has a
subtropical climate, with few extremely cold
days (for example, the mean minimum temper-
ature was 15.4°C and the lowest temperature
was 1.2°C during the study period).

This study is an ecologic design, and mis-
classifications are possible for both health
outcomes and exposure. Because a broad clas-
sification of diseases (cardiovascular, respira-
tory, and nonexternal classification of diseases)
was used, we do not believe that misclassifica-
tion for health outcomes is likely to be substan-
tial. We used air pollution from one central
monitoring site to represent individual expo-
sure to PM10 and this might result in misclassi-
fication. However, previous studies have
shown that central fixed-site measurements
may be treated as surrogates for personal expo-
sure (Kim et al. 2005) and bias from the moni-
toring data might not be severe. Although
some families in Brisbane have access to air
conditioning, thus reducing exposure to high
temperature when indoors, this effect is
believed minimal due to the small proportion
of houses with air conditioning as well as the
outdoor lifestyle of Queensland residents.

There are two major strengths of this study.
First, this is, to our knowledge, the first study to
examine whether PM10 modifies the association
of temperature and a range of cardiorespiratory
morbidity/mortality measures. Second, we per-
formed three parallel statistical models with
multiple health outcomes, and they produced
similar findings, which strengthens the validity
of findings. 

However, this study also has two key limi-
tations. First, caution is needed in interpreting
any time-series study within a single location.
This study was carried out in a single city with
a subtropical climate, and 6 years of data are
not extensive. Therefore, the results of this
study may be difficult to generalize to other
places. Second, this study is an ecologic design,

in which bias from exposure measurement
errors might occur to some degree due to lack
of individual information. 

Overall, we found statistically significant
interactive effects of PM10 and temperature
on respiratory and cardiovascular hospital
admission, all nonexternal-cause mortality,
and cardiovascular mortality at different lags
in Brisbane during the study period. The
temperature effects were more adverse at high
levels of PM10. These findings may have
important implications in the assessment of
health effects of temperature and the develop-
ment of strategies and policies for controlling
and preventing temperature-related deaths
and diseases. However, it is necessary to
determine whether a consistent finding could
be found in other settings.
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