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Review

Low birth weight (LBW) affects 20 million
infants worldwide (United Nations Inter-
national Children’s Fund 2006). LBW is com-
prised of two overlapping etiologies: preterm
delivery (PTD) and intrauterine growth retar-
dation (IUGR). LBW, IUGR, and PTD are
all significantly associated with infant mortality
and an array of infant morbidities that range
from pulmonary to neurologic outcomes
(Martin et al. 2002). These associations form
the basis for the “fetal origins” or the “Barker
hypothesis” which postulates that “fetal growth
retardation consequent to malnutrition has
long-term structural and physiologic impacts
that predisposes an individual to chronic
diseases in adulthood” (Barker and Fall 1998). 

Perinatal outcomes are influenced by a
multitude of factors including nutrition and
health, genetics, physiologic stressors, and
environmental toxicants such as ambient air
pollution (Keen et al. 2003). In terms of the
human health effects, the airborne particulate
matter (PM) component has received the
greatest attention (Šrám et al. 2005), and is
therefore the focus for this review. 

Current epidemiologic evidence suggests
that maternal PM exposure is correlated with
several adverse perinatal outcomes (Bobak 2000;
Chen et al. 2002; Dejmek et al. 2000; Salam
et al. 2005; Šrám et al. 2005; Wang et al. 1997;
Wilhelm and Ritz. 2005). Although these stud-
ies have become increasingly sophisticated in

their measurement of PM exposures, the bio-
logic roles of host factors that may function as
effect modifiers of their relationship with birth
outcomes have been less thoroughly examined.
In particular, the lack of attention to nutrition
factors should be considered. Nutrition can be
both confounder and effect modifier of the
associations between PM exposure and repro-
ductive effects. Given the modifiable nature of
both nutrition and PM exposures, future PM
research and biomonitoring programs on
young women would benefit greatly from the
inclusion of selected nutrition factors. It is
likely that women of childbearing age with
nutritional risk factors (e.g., inadequate caloric
intake, suboptimal protective antioxidant
micronutrient status) are more likely to live in
higher PM-exposed environments—con-
founded through their relation to socioeco-
nomic status (SES) (Gwynn and Thurston
2001). Despite the considerable effects of
nutrition among women of childbearing age,
little is known about the nutrition interactions
with SES and physical environment, such as
PM exposure.

The specific objectives of this review are
threefold: to describe the biologically plausible
mechanistic pathways by which PM exposure
may lead to adverse perinatal outcomes (LBW,
IUGR, and PTD); review the evidence show-
ing that nutrition affects the biologic pathways;
and describe biologic markers that mediate the

impact of nutrition and thereby explain the
mechanisms by which nutrition may serve as
effect modifiers of the association between PM
exposure and perinatal outcomes. 

Responses to PM Exposures:
Biologically Plausible
Mechanisms
The specific biologic mechanisms whereby PM
influences perinatal outcomes remain to be
fully elucidated. However, epidemiologic, clini-
cal, and experimental evidence correlates cur-
rent levels of PM with both respiratory and
cardiovascular effects (Brook et al. 2004;
Donaldson and MacNee 2001; Pope et al.
2004a, 2004b; Schwartz 2001), and provide
corollaries around which we have developed
biologically plausible hypotheses linking PM
exposures and birth outcomes presented in
Figure 1. Different particle size ranges includ-
ing ultrafine particles (with aerodynamic diam-
eter < 0.1 µm), fine particles (with aerodynamic
diameter < 2.5 µm), and coarse particles (with
aerodynamic diameter 2.5–10 µm) are of
importance to this framework. Figure 1 illus-
trates both chronic and acute PM effects
together. Five possible albeit not exclusive bio-
logic mechanisms have been put forth in the
literature to explain these effects. In the follow-
ing text, we describe these mechanisms.
Although an increasing number of studies sup-
port the notion that PM is associated with car-
diovascular effects, these studies at present
provide only a fragmentary and somewhat
inconclusive picture of the complex biologic
pathways involved. 

Oxidative stress. PM exposure may con-
tribute to systemic oxidative stress (Donaldson
and MacNee 2001) (Figure 1). Direct effects
from oxidative activities of combustion-derived
particles or by transition-metal constituents
(e.g., iron, copper, chromium, and vanadium)
(Adamson et al. 2000; Samet et al. 2000) may
adversely affect the embryo in its earliest phase
of growth (Mohorovic 2004). In addition,
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oxidative stressors resulting from PM exposure
may arise from organic compounds and from
activation of inflammatory cells capable of
generating reactive oxygen species (ROS) and
reactive nitrogen species (RNS) (Risom et al.
2005). F2α (8-iso-PGF2α) isoprostane is one of
the most promising biomarkers for assessing
oxidative injury (Morrow et al. 1990) and has
been studied the most extensively for PM
exposures.

Oxidative stress–induced DNA damage
appears to be a particularly important mecha-
nism of action of urban particulate air pollution
(Risom et al. 2005; Sorensen et al. 2003). As
theorized by Hartwig et al. (2002), metals such
as nickel in PM may inhibit DNA repair
enzymes. We hypothesize that transplacental
exposures to transition metals contained in PM
could result in oxidative stress that may lead to
DNA damage, disrupting DNA transcription
which in turn may increase the number of pla-
cental DNA adducts. This hypothesis is par-
tially supported by observations from the Czech
Teplice study that found that maternal blood
and placental DNA adducts are more common
in areas with higher levels of air pollution
(Topinka et al. 1997). One mechanism postu-
lated to mediate the effects is that PM absorbs
and transports polycyclic aromatic hydrocar-
bons (PAHs), exposure to which may lead to
increased DNA adducts (Perera et al. 1998,
1999), thus resulting in LBW (Perera et al.
1998, 1999) and IUGR (Dejmek et al. 1999,
2000). Researchers suggest that DNA damage
measured by oxidized DNA bases purines and
pyrimidines and protein and lipid peroxidation
indicated by plasma malondialdehyde may be
more sensitive than bulky DNA adducts as

markers of exposure to PM (Risom et al. 2005).
PAHs in PM can induce biotransformation by
cytochrome P450, expoxide hydrolase, and
dihydrodiol dehydrogenase (Burczynski et al.
1999) in addition to the direct action of coal
combustion toxics on antioxidants/enzymes
(e.g., superoxide dismutase, catalase) that may
adversely affect the embryo in its earliest phase
of growth (Mohorovic 2004). Alternatively,
PM may also bind receptors for placental
growth factors, resulting in decreased fetal–
placental exchange of oxygen and nutrients
(Dejmek et al. 2000). Nutrient and oxygen
supply during gestation are key factors regulat-
ing fetal growth (Harding and Johnston 1995). 

Pulmonary and placental inflammation.
PM exposure is associated with systemic inflam-
mation (Brook et al. 2003; Panagiotakos et al.
2004; Peters et al. 2001; Pope et al. 2004b;
Seaton et al. 1999) (Figure 1). We hypothesize
that inhalation of particles during pregnancy
can induce acute placental (Bobak 2000) and
pulmonary inflammation. In contrast to the
PM composition–induced effects on oxidative
stress that have been extensively studied, spe-
cific components in particles that elicit inflam-
mation are less thoroughly investigated,
although recent research points to the contribu-
tion of compositional trace elements (Saldiva
et al. 2002) and bioavailable transition metals
to cardiopulmonary injury in healthy and com-
promised animal models (Costa and Dreher
1997). Based on cell culture methodologies, the
up-regulation of pro-inflammatory mediators
in response to transition metals chromium,
aluminum, silicon, titanium, iron, and copper
within PM were found to contribute to
pulmonary inflammation (Risom et al. 2005).

The most widely studied biomarkers of
inflammation are high-sensitive C-reactive
protein, oxidized low-density lipoproteins,
proinflammatory cytokines interleukin (IL)-1,
IL-6, and tumor necrosis factor-α, serum amy-
loid A (Pearson et al. 2003), the acute phase
marker fibrinogen, neutrophil count and blood
platelet count, red blood cells and white blood
cells (Seaton et al. 1999), and albumin (Liao
et al. 2005). With cell culture methods, PM
exposure–induced trace elemental markers of
inflammatory response denoted by the release
of cytokines and chemokines were recently
identified by Becker et al. (2005), who showed
that PM constituent iron and silicon correlated
with the release of IL-6, whereas chromium
correlated with IL-8. 

Inflammation could be associated with
inadequate placental perfusion (Knottnerus
et al. 1990), which can mediate placental
inflammatory responses and its biologic
sequelae, resulting in impaired transplacental
nutrient exchange (Bobak 2000) (Figure 1).
We hypothesize that inadequate placental
perfusion may cause growth restriction
in utero due to interference with some process
or processes such as affecting nutrition of the
fetus, reduced oxygenation of maternal blood,
or both. For example, a rapid decline in the
placental delivery of essential fatty acids
arachidonic acid and docosahexanoic acid is
expected (Crawford 2000). 

Independent of the cascade of events char-
acterized above, the biologic mechanisms that
trigger adverse perinatal outcomes may
include maternal infections, especially during
the last trimester of pregnancy, and may initi-
ate premature contractions and/or rupture of
membranes (Wilhelm and Ritz 2005).
Although air pollution does not directly cause
maternal infections, exposure to specific pollu-
tants may enhance allergic inflammation (Nel
et al. 1998) and increase the maternal risk for
adverse birth outcomes. 

Coagulation. Systemic alterations in rheo-
logic factors, including blood coagulability and
whole blood viscosity as a result of exposure to
PM, represent other potential mechanisms of
PM toxicity (Pekkanen et al. 2000; Peters et al.
1997; Prescott et al. 2000; Seaton et al. 1999).
In response to PM exposures, increase in any
of the proteins of the clotting cascade present a
possibility for coagulation (Donaldson and
MacNee 2001; Pekkanen et al. 2000). Based
on a cross-sectional study conducted in
London, Pekkanen et al. (2000) found ambiva-
lent results for the association between PM10
(PM < 10 µm in aerodynamic diameter) and
plasma fibrinogen—this association was signifi-
cant only for the warm season. Other measur-
able biomarkers include factors VII–IX, fibrin
D-dimer, and von Willebrand factor (Jansson
et al. 1991). PM exposures may also lead to
changes in hemoglobin, platelets, and white

Nutrition biomarkers, PM, and perinatal outcomes

Environmental Health Perspectives • VOLUME 114 | NUMBER 11 | November 2006 1637

Figure 1. Proposed biologic framework for exploring possible effect modification of PM–birth outcomes by
maternal nutrition.
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blood cells (Riediker et al. 2004), which may
potentially contribute to the association
between PM and adverse fetal growth. 

Endothelial function. Exposure to PM may
influence endothelial functions and could be
considered as an intervening pathway in subse-
quent impact on fetal growth (Figure 1).
Although this pathway has been less extensively
studied, the impact of PM on vascular func-
tion has been the subject of recent investiga-
tions (Brook et al. 2003). Inhalation of
environmental tobacco smoke (ETS) [similar
in characteristics to PM2.5 (PM < 2.5 µm in
aerodynamic diameter)] causes rapid vaso-
constriction (Ambrose and Barua 2004),
increases plasma endothelin levels (Goerre
et al. 1995), and triggers endothelial dysfunc-
tion (Otsuka et al. 2001). Although the spe-
cific chemical components of ETS responsible
for the observed effect of vasoconstriction have
not been adequately characterized, it is likely
that the PM in ETS is primarily responsible, as
summarized by Brook et al. (2004). 

A recent animal-based study (Dvonch
et al. 2004) found that PM2.5 exposure
increased plasma concentrations of asymmet-
ric dimethyl arginine that is associated with
impaired vascular function and increased risk
of cardiovascular events (Valkonen et al.
2001). Circulating concentrations of soluble
adhesion molecules E-selectin, intracellular
adhesion molecule (sICAM-1), and vascular
cellular adhesion molecule (VCAM-1) are
overexpressed when the endothelium encoun-
ters inflammatory stimuli (Hwang et al. 1997).
The inhalation of high urban levels of concen-
trated ambient particles and ozone for 2 hr
caused conduit arterial vasoconstriction in
healthy adults (Brook et al. 2002). As summa-
rized by Brook et al. (2004), it is possible that
acute systemic inflammation and oxidative
stress following PM exposure (Sorensen et al.
2003) are responsible for triggering endothelial
dysfunction leading to vasoconstriction
(Bonetti et al. 2003). Endothelial dysfunction
can also be secondary to other cardiovascular
disease (CVD) risk factors (e.g., metabolic syn-
drome) (Roberts et al. 2003). These patho-
physiologic reactions in response to PM
exposures may result in impaired fetal growth. 

Hemodynamic responses. Biologic measures
that assess hemodynamic changes in response to
PM exposure have typically included systolic
blood pressure (SBP) and diastolic blood pres-
sure (DBP). Panel studies conducted of adults
with preexisting CVD found an increase in
SBP associated with elevated particulate expo-
sures (Ibald-Mulli et al. 2001; Linn et al. 1999;
Zanobetti et al. 2004) (Figure 1). In contrast,
based on population exposures, an increase of a
5-day average of ultrafine particles was associ-
ated with a small decrease in SBP and DBP
(Ibald-Mulli et al. 2004). Specific biologic
mechanisms for the observed PM-associated

effects on blood pressure (BP) have been sug-
gested to include an increase in sympathetic
tone and/or the modulation of basal systemic
vascular tone (Ibald-Mulli et al. 2001). Another
potential mechanism whereby pollutant com-
ponents can increase BP is superoxide-mediated
inhibition of the actions of nitrous oxide in
inducing vasodilatation (Delfino et al. 2005). 

If PM exposure is also associated with BP
elevations in pregnant women, this could
increase the risk of adverse perinatal outcomes
as a consequence of preexisting hypertension or
pregnancy-induced hypertension. Elevation of
BP to levels that is defined as pregnancy-
induced hypertension has been associated with
IUGR (Misra 1996) and PTD (Misra 1996).
Severely impaired fetal growth is preceded by
maternal hemodynamic maladaptation
(Duvekot et al. 1995). These changes may force
the fetus to adapt, down-regulate growth, and
prioritize the development of essential tissues
(Fall et al. 2003). Hypertension can also be sec-
ondary to oxidative stress and vascular inflam-
mation (Virdis and Schiffrin 2003) or other risk
factors, for low maternal body weight, for
example (Ehrenberg et al. 2003), thus enhanc-
ing the susceptibility to adverse birth outcomes. 

Exploring Effect Modification
by Nutrition
Although the specific underlying mechanisms
that contribute to normal or adverse birth out-
comes are not yet fully understood, an ade-
quate periconceptional nutrition status is
considered a key determinant (Henriksen and
Clausen 2002; Hobel and Culhane 2003).
Given that both dietary composition and
CVD risk are strongly socially patterned, this
suggests one way to approach the possible
interaction between air pollution and SES (in
affecting birth outcomes). As is described in
more detail below and illustrated in Figure 1,
dietary composition has been demonstrated to
relate to those same biologic mechanisms
hypothesized to explain the possible effects of
PM exposure on birth outcomes. 

The nutrition aspects of the framework
shown in Figure 1 are not intended to include
every possible parameter worthy of considera-
tion. Explorations about what to add to various
layers of the framework could be one of its most
useful applications in future work on this topic.
Although no previous studies of the perinatal
effects of PM exposure have examined effect
modification by nutrition, theoretical and
empirical evidence is growing. Researchers
studying air pollution and birth outcomes have
suggested that nutrition status may play a role in
protecting the fetus or magnifying the effects
(Dejmek et al. 1999; Ritz and Yu 1999). Other
investigators have cited the potential importance
of nutrition as a buffering or synergistic factor
with regard to PM-induced cardiovascular
responses (Hennig et al. 2005; Ostro et al.

2006; Schwartz 2001). Using data from the
Third National Health and Nutrition
Examination Survey (NHANES III), Schwartz
(2001) considered the role of nutrition in the
association between PM exposures and inci-
dent ischemic events. Considering a limited set
of dietary factors (saturated fat, fiber, alcohol,
caffeine, fish and shellfish), Schwartz (2001)
reported that the selected factors did not mod-
ify the association. Furthermore, the biomark-
ers were limited to fibrinogen, platelet and
white blood cell count, SBP, total cholesterol,
and high-density lipoprotein cholesterol. On
the other hand, we propose that researchers
should explore the potential effect-modifying
roles using a more comprehensive list of dietary
variables and biomarkers.

Consideration of a Hypothesis
of Nutritional Susceptibility
The Institute of Medicine (1999) describes
combinations of environmental exposures and
greater susceptibility as a form of “double
jeopardy.” Maternal nutrition stressors such
as micronutrient deprivation are likely to
occur around the world in subpopulations
that experience disparate air pollution pro-
files. Considerable research evidence supports
the important role played by nutrition,
particularly micronutrients, in determining
positive pregnancy outcomes (Black 2001). In
addition, gestational energy stress, a phenome-
non characterized by lower plasma volume
expansion (Mardones-Santander et al. 1999),
protein-energy malnutrition, and pregnancy
complications, may also co-occur. As depicted
in Figure 1, we propose that maternal nutrition
could be exacerbating or buffering in the asso-
ciation between PM and birth outcomes for a
subgroup of women of childbearing age. In the
following section, we contextualize these bio-
logic pathways for nutrition: first based on
intakes of nutrients, next based on the con-
sumption of foods or of groups of foods, and
finally based on indices and dietary patterns
that combine both approaches (Kant 1996). 

Nutrients potentially contributing to
biologic pathways. In the past two decades,
understanding of cardioprotective nutrients and
foods has grown substantially owing to studies
of the molecular mechanisms and the metabolic
effects. Investigators typically estimate nutrient
intakes using food frequency questionnaires
(Block et al. 2001; Kristal et al. 2000; Willett
1989), food records, and/or 24-hr dietary
recalls. Nutrient values may be derived using
existing databases (U.S. Department of
Agriculture 1992) supplemented with informa-
tion from manufacturers and biochemical
analyses. 

Oxidative stress. Ingestion of particular
micronutrients causes a shift in oxidative
status. The micronutrients most relevant to
the pathways shown in Figure 1 include the
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fat-soluble carotenoids and vitamin E, water-
soluble vitamin C, (Mayne 2003) and methyl
nutrients including the B-vitamins pyridoxine
(B6), cyanocobalamin (B12), and folate.
Carotenoids may protect against oxidant dam-
age (Porrini et al. 2002). Dietary micronutrient
trace minerals zinc and manganese may display
indirect antioxidant activity as constituents of
enzymes including superoxide dismutase.
Micronutrients may extend the gestational
period to full term or counteract the damage
caused to lipids and DNA triggered by PM
exposures (Smolkova et al. 2004). Methyl
nutrients are involved in DNA methylation
(Ames 1999), and the resulting methyl nutri-
ent status may modify PM-induced alterations
in oxidative stress through its impact on DNA
stability, repair, and the different gene expres-
sion processes. Suboptimal methyl nutrient
status may also increase the risk for PTD asso-
ciated with preeclampsia (Powers et al. 1998)
and LBW (Vollsett et al. 2000). 

Inflammation. Dietary macronutrient
intakes may produce inflammatory responses.
Unlike micronutrients, some macronutrients
may show opposite effects. Reducing trans- and
saturated fatty acids and increasing omega-3
fatty acids are also associated with a reduced
inflammatory status. Food sources rich in n-6
polyunsaturated fatty acids are shown to
enhance IL-1 production; n-3 fatty acids on the
other hand have been demonstrated to have the
opposite effect (Lopez-Garcia et al. 2004).

Coagulation. A deficiency in any one of
the methyl nutrients could result in elevated
homocysteine (McCully 1993). Homocysteine
thiolactone can subsequently influence vascular
coagulation (McCully 1993). In addition, high
total dietary fat may lead to fibrin deposits and
thrombus formation through activation of
coagulation (Miller 2005).

Endothelial function. Micronutrient
antioxidants representing β-carotene subfrac-
tions derived from vegetables and fruits are
inversely related to E-selectin (Rowley et al.
2003). Polyphenols have been found to inhibit
expression of endothelial adhesion by regulat-
ing gene transcription (Carluccio et al. 2003).
Micronutrient intakes such as arginine and
folic acid have been shown to improve
endothelial function (Cuevas and Germain
2004). Unlike the possible cardioprotective
effects of micronutrients and polyphenols,
macronutrients may be beneficial or detrimen-
tal. Based on the Nurses Health Study, Lopez-
Garcia et al. (2004) reported a positive
relationship between trans-fats and endothelial
dysfunction, whereas n-3 fatty acids were
inversely associated with sICAM-1, sVCAM-1,
and E-selectin. 

Hemodynamic responses. The favorable
effects of fruits and vegetables, low-fat dairy
products, and reduced sodium suggested by
Dietary Approaches to Stop Hypertension

(DASH) (Appel et al. 1999) indicate the possi-
ble role for micronutrients in reducing the risk
for prepregnancy hypertension. Several mecha-
nisms of polyphenols have been researched,
including their antioxidant functions. 

Contributions of foods/food groups to bio-
logic pathways. There is a growing list of
foods and food groups consumption of which
is associated with the various biologic path-
ways depicted in the present framework
(Figure 1). Fruits and vegetables contain a
myriad of different components of varying
antioxidant capacity, thus offering a range of
possibilities for altering PM-induced oxidative
effects (O’Byrne et al. 2002). Based on the
NHANES III findings, grain consumption is
inversely associated with an elevated CRP
concentration (Ford et al. 2005). Similarly,
fresh fruit, olive oil, mushrooms, cruciferous
vegetables, and nuts are associated with a
favorable homocysteine profile (Weikert et al.
2005). Adding vegetables may reverse the
increases in ICAM-1 and VCAM-1, whereas
high intakes of refined grains, and processed
meat and low consumption of cruciferous and
yellow vegetables may exacerbate the inflam-
matory processes (Giugliano et al. 2001). 

Dietary patterns as contributors to the bio-
logic pathways. Dietary pattern analysis serves
as a complementary approach to the nutrient-
focused and food-group analysis described
above. Dietary patterns are food intake pat-
terns over a referent period and consider the
overall dietary matrix (Fung et al. 2001; Hu
2002; Kerver et al. 2003; Tseng and DeVillis
2003). However, most of these studies did not
focus on the dietary patterns among women of
childbearing age. 

Dietary patterns cannot be measured
directly, and one must rely on statistical meth-
ods that employ dimension-reduction tech-
niques such as factor analysis and cluster
analysis (Fung et al. 2001). The advantage of
novel statistical approaches such as the reduced
rank regression (Hoffman et al. 2004) is that
the derived pattern incorporates the biologic
pathways presented in the current framework
and thus is hypothesis driven. 

Gene–nutrient interactions and impact on
biologic pathways. Nutrigenomic researchers
have provided evidence for interactions among
dietary factors, genetic variants, and biochemi-
cal markers of CVD (Ordovas 2004). Genetic
background can interact with habitual total
dietary fat and fatty acid composition, thereby
affecting predisposition to the woman’s respon-
siveness to PM exposures. Similarly, genetic
susceptibility related to functional polymor-
phisms in genes coding for antioxidant and
DNA repair enzymes may be expected to mod-
ify the levels of oxidative DNA damage caused
by exposure to PM. In addition, there is signifi-
cant evidence that genes are involved in deter-
mining enzymes, receptors, cofactors, and

structural components involved in regulation of
BP and inflammatory and coagulation factors
(Ordovas 2004). 

Measurement Indices for
Nutrients, Foods, and Food
Groups and Dietary Patterns
Individual dietary constituents may have small
biologic effects that emerge only when the com-
ponents are integrated into a simple unidimen-
sional score. Appendix 1 lists candidate tools,
and we have classified them in three categories
as a function of their determination mode,
based on a now classical review (Kant 1996): a)
indices based on intakes of nutrients (or at least
of certain nutrients); b) indices based on the
consumption of foods or of groups of foods;
and c) indices that combine both approaches
resulting in dietary patterns. In the following
section, we present examples of these measure-
ment indices that add quantitative elements to
qualitative aspects, and some are based on
thresholds or recommendations. In a few cases,
the indices were studied to link to the biologic
parameters in the present framework.

Nutrient indices. Oxidative stress has been
described as a disturbance in the balance
between free radical production and antioxi-
dant capacity (Ames 1999). Reflecting this
definition, the dietary antioxidant index sum-
marizes the combined intakes of carotenoids,
flavonoids, tocopherols, tocotrienols, sele-
nium, and vitamin C (Wright et al. 2004).
The integrated oxidative balance score reflects
antioxidant (e.g., vitamin C) and pro-oxidant
(e.g., iron) intakes (Van Hoydonck et al.
2002). The antioxidant scores for commonly
consumed fruits, fruit juices, and vegetables
are published as oxygen radical absorbance
capacity (ORAC) or ferric-reducing anti-
oxidant power (Cao et al. 1993; Cao et al.
1996). More than 80% of the antioxidant
capacity in fruits and veggies may also be
attributed to flavonoids (Peterson and Dwyer
1998) that have the ability to chelate metal
ions (Belguendouz et al. 1997) and have par-
ticular relevance here. 

Foods and food group indices. Dietary vari-
ety determined by Recommended Foods score
(simple count of consumed food items) and
diversity measured as Dietary Diversity Score
(count of represented food groups) (Kant 1996)
are both good candidates for measuring overall
dietary quality. The Healthy Eating Index
based on the Dietary Guidelines for Americans
is an additional measure of quality (Kennedy
et al. 1995). The Mediterranean pattern now
recommended for the secondary prevention of
coronary artery disease quantifies adherence to
the traditional Mediterranean diet using a 9-
point scale (Trichopoulou et al. 2003). Minor
variants to these indices, the alternate Healthy
Eating Index (Fung et al. 2005) and the alter-
nate Mediterranean dietary pattern (Fung et al.
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2005) were found to be associated with markers
of inflammation. 

Dietary pattern indices. The possibility that
dietary patterns may exert an effect on biologic
measures was first suggested through the find-
ings of the DASH clinical trial (Appel et al.
1999) (Appendix 1). As shown in Appendix 1,
other population studies conducted in the
United States indicate two major dietary pat-
terns: “prudent” and “Western” (Tseng and De
Villis 2000). The prudent pattern was found to
be inversely associated with homocysteine and
positively associated with folate (Fung et al.
2001) while also showing a beneficial effect on
the endothelium. The Western pattern, on the
other hand, was positively correlated with
homocysteine, high-sensitive C-reactive pro-
tein, and impaired endothelial function and
negatively associated with folate (Martinez-
Gonzalez and Sanchez-Villegas 2004).

Similarly, low-glycemic load-based patterns in
women of child-bearing age were associated
with improved fibrinolysis (Jarvi et al. 1999).
Glycemic load may be determined using the
updated table that provides glycemic index
scores for 1,300 international food entries
(Foster-Powell et al. 2002) (Appendix 1). 

Recommendations Related to
the Proposed Framework
In Appendix 2, we recommend strategies for
developing future research efforts in three over-
arching areas. Certainly many factors could
function as mediators of the association
between PM and birth outcomes. However,
few studies are sufficiently comprehensive to
understand the multifactorial etiologies and
pathways. In particular, the confounding nature
of SES and air pollution should be explored in
future work. Future studies that include

biomarkers of exposure/effect and are informed
by biologic pathways will help tease out those
aspects of SES that explain differences in PM
birth effects among population subgroups. 

The current framework may be advanced
by biomonitoring women with unique circum-
stances (e.g., genetic polymorphisms). Further
research will help identify susceptible popula-
tion subgroups, such as for the potential for
genetic variation in metabolic pathways (e.g.,
detoxifying enzymes such as cytochrome P450)
that could underlie differences in susceptibility
to toxicities related to PM exposures (Perera
et al. 1999; Šrám 1998). Altered expressions of
DNA repair and other defense genes have yet to
be studied for up-regulation of the involved
enzymes that may alleviate effects of repeated
PM exposures (Risom et al. 2005). 

The available data are consistent with the
occurrence of PM-related systemic oxidative,
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Appendix 1. Measurement Indices
Assessing Nutrients, Foods, Food 
Groups, and Dietary Patterns

Dietary Intakes of Nutrients
• Dietary Antioxidant Index (Wright et al. 2004): carotenoids,

flavonoids, tocopherols, tocotrienols, selenium, and vitamin C
• Oxidative Balance Score (Van Hoydonck et al. 2003): vita-

min C, β-carotene, and iron 
• Oxygen Radical Absorbance Capacity (ORAC) (Cao et al.

1993, 1996): ORACROO (peroxyl radical), ORAC·OH
(hydroxyl radical), and ORACCu (copper) 

Dietary Intakes of Foods and Food Groups
• Dietary Diversity Score (Kant 1996): foods from dairy,

meat, grain, fruit, and vegetable groups
• Recommended Foods Score (Kant 1996): weekly consump-

tion of fruits, vegetables, lean poultry and alternates, low-fat
dairy, and whole grains

Combined Dietary Intakes of Nutrients, Foods,
and Food Groups
• Dietary Approaches to Stop Hypertension (Appel et al.

1999): 4–5 servings fruits; 4–5 servings vegetables; 2–3 serv-
ings low-fat dairy products; 7–8 servings of grain products;
2 or less servings of meats, poultry, fish/day; 4–5 servings of
nuts, seeds, legumes/week

• Alternate Healthy Eating Index (Fung et al. 2005): protein
source, trans fat, PFA:SFA, cereal fiber, moderate alcohol,
and long-term multivitamin use

• Alternate Mediterranean Diet (Fung et al. 2005): excludes
potato products from vegetable group, separates fruit and
nuts into two groups, eliminates dairy group, includes
“whole grain” products only, only red and processed meats
for meat group

• Prudent Pattern (Tseng and De Villis 2000): fruits, vegetable,
fish, whole grains, and legumes

• Western Pattern (Tseng and De Villis 2000): red and
processed meat, high-fat dairy products, sugar-containing
beverages, sweets, and desserts

• Glycemic Load (Foster-Powell et al. 2002): glycemic quality
and quantity 

Appendix 2. Recommendations for Advancing the
Current Framework

Sampling, Measurement, and Characterization of PM
Exposures
• Consider the roles of co-pollutants (e.g., ozone, carbon monoxide, nitrogen

dioxide) with PM and use multiple-influence chemical characterization
models.

• Incorporate trace elements that are characteristic to their specific source
type and emissions through specific source “fingerprints.” 

• Integrate personal PM exposures with fixed-site and community-level
assessment.

• Consider the geographical and seasonal toxicity profiles for PM and con-
stituents. 

• Collect continuous ambient PM exposure over and beyond “daily” PM
data.

• Explore the intracellular pathways by which PM and constituent transition
metals may modulate the gene expression of biologic responses.

Assessing Nutritional Status, Biologic Pathways, and
Biomarkers of Response
• Explore the possible dietary influences by incorporating a priori

approach, which builds on previous knowledge concerning the cardiac
and pulmonary effects, and birth outcomes.

• Assess specific food features, depending on the contexts relevant to PM
monitoring area, and construct dietary indices accordingly.

• Enhance the reliability and validity of self-reported nutrition measures
by incorporating relevant biologic measures.

Clarifying the Temporal and Spatial Vulnerabilities and
Unique Circumstances
• Expand the proposed framework using the definition of maternal health

that fosters linkages with a woman’s health during her reproductive years.
• Consider all gestational time windows of PM and in utero nutrition

exposures.
• Explore susceptibility resulting possibly from compromised maternal

health, in addition to effects exerted directly across the placenta.
• Clarify the roles of multiple determinants (SES and other stressors) in

causing adverse birth outcomes.
• Biomonitor women for gene polymorphisms (gene–gene, gene–nutrient,

gene–nutrient–environment) by which PM and constituent transition
metals may modulate the gene expression of biological responses.



Nutrition biomarkers, PM, and perinatal outcomes

Environmental Health Perspectives • VOLUME 114 | NUMBER 11 | November 2006 1641

inflammatory, and hemodynamic responses,
but evidence on endothelial dysfunction and
procoagulatory states is limited. In addition to
these pathways, other alternate mechanisms
(e.g., disruption in iron homeostasis) (Ghio
and Cohen 2005) should be studied. Although
mechanisms underlying the adverse effects of
PM on the cardiopulmonary systems remain a
primary focus of research, additional hypothe-
ses suggest the involvement of neurogenic
processes (Campbell et al. 2005; Pope et al.
2004b). Finally, researchers should also con-
sider the synergistic interactions among the
various biologic mechanistic pathways. 

Conclusion

Several ongoing U.S. population-based
research projects funded through the National
Institute of Environmental Health Sciences
(e.g., the Health Disparities Initiative) provide
unique opportunities to apply and evaluate the
current framework. The resulting findings
would be relevant for PM regulation and pri-
mary prevention of CVD and other diseases
influenced by the pathways proposed in the
current framework and reducing the risks for
adverse birth effects. If exposure interactions
are found for PM with nutrition, they may also
offer geographically relevant nutrition–envi-
ronment interactions-based intervention
opportunities through various federal food and
nutrition assistance venues including the
Special Supplemental Nutrition Program for
Women, Infants, and Children. 
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