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Perfluorooctanesulfonate and its salts
(PFOS) are fully fluorinated organic mole-
cules that were produced synthetically by
electrochemical fluorination or from the
degradation or metabolism of other fluoro-
chemical products produced by electrochem-
ical fluorination. PFOS and its precursors all
belong to the larger class of fluorochemicals
known as perfluoroalkyl substances and were
derived from perfluorooctanesulfonyl fluo-
ride (POSF), the basic chemical building
block for many sulfonyl-based fluorochemi-
cals. POSF is used primarily as an intermedi-
ate to synthesize numerous fluorochemicals,
including PFOS.

3M Company produced POSF, PFOS,
and POSF-related materials for over 40 years.
These materials exhibit chemical and physical
properties that can be substantially different
from hydrogenated analogs, and perfluori-
nated portions of the molecules have extreme
resistance to environmental and metabolic
degradation. The strength of carbon–fluorine
bonds contributes to the extreme stability and
unique properties of PFOS. PFOS, as a sur-
factant, has high surface tension–reducing
properties, lower water and oil solubility, and
is a relatively strong organic acid. The com-
mercial uses of PFOS included predomi-
nantly surface treatments for soil- and
stain-resistant coating on fabrics, carpets, and
leather, coatings on paper and packaging
products for grease and oil resistance, includ-
ing food contact papers, and performance

chemicals uses such as fire-extinguishing foam
concentrates, mining and oil surfactants, elec-
troplating and etching bath surfactants,
household additives, chemical intermediates,
coatings and coating additives, carpet spot
cleaners and insecticide raw materials (3M
Company 2003). Total worldwide POSF
production by 3M Company in 2000 was
approximately 8 million pounds. However,
on 16 May 2000, 3M Company announced
that it would globally phase out the
perfluorooctanyl chemistry used to produce
certain repellents and surfactant products,
which included the manufacture of PFOS
and related compounds (3M Company
2000). 3M steadily reduced their production
volume and discontinued the manufacture of
most PFOS and POSF-based chemicals by
31 December 2002 (3M Company 2001).
Manufacture of PFOS for certain uses
for which no substitutes are available are
continuing by non-U.S. producers [U.S.
Environmental Protection Agency (U.S.
EPA) 2002].

The purpose of this article is to provide a
brief overview of the biomonitoring data for
PFOS in the context of the public health
paradigm as discussed in Albertini et al.
(2006). We place emphasis on reviewing
PFOS data related to those parts of the pub-
lic health paradigm covering exposure, dose,
and potential health outcomes in an effort to
develop a view of the sufficiency of the PFOS
biomonitoring data for use in public health.

Serum PFOS Concentration as
a Biomarker of Exposure
PFOS has been measured primarily in human
blood serum (Harada et al. 2004, 2005a;
Kannan et al. 2004; Kubwabo et al. 2004;
Kuklenyik et al. 2004; Olsen et al. 2003b,
2004b, 2004c); however, data are also avail-
able on PFOS in human whole blood
(Falandysz et al. 2006; Inoue et al. 2004a;
Kannan et al. 2004; Masunaga et al. 2002;
Yeung et al. 2006), plasma (Inoue et al.
2004b; Kannan et al. 2004; Olsen et al.
2005b), liver (Olsen et al. 2003c), cord blood
(Inoue et al. 2004a), breast milk (Kuklenyik
et al. 2004), and seminal plasma (Guruge
et al. 2005). PFOS was measured in the liver
and serum of cadavers (Olsen et al. 2003c).
The average PFOS serum and liver data for
each of 23 paired samples (serum and liver
from the same individual) showed a good cor-
relation for both male and female donors, and
the mean liver to serum ratio was 1.3:1 [95%
confidence interval (CI), 0.9:1–1.7:1). Mean
PFOS levels for male and female donors were
similar for both serum (male = 18.2 ng/mL;
female = 17.2 ng/mL) and liver (male =
19.2 ng/g; female = 28.4 ng/g).

Quantitative analysis of PFOS from
selected matrices is challenging and has
been conducted using various extraction
techniques and instrumentation methods
(Ellefson and Reagen 2005; Martin et al.
2004). Matrix effects (Ellefson and Reagen
2005) and isomeric forms (Kärrman et al.
2005) should be taken into account.
Extracted matrix calibration curves (i.e., not
just water blanks) should be used to ensure
the accuracy of laboratory analysis. Limits of
quantitation are in the low nanogram per
milliliter range; however, interlaboratory vari-
ability is significant, based on the results of
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the PERFORCE (PERFluorinated ORganic
Chemicals in the European environment)
interlaboratory study (PERFORCE 2005). In
the PERFORCE study, 17 participating labo-
ratories produced values for a spiked serum
standard that varied with a relative standard
deviation of 31.5%. For whole blood, 11 par-
ticipating laboratories produced values that
varied with a relative standard deviation of
56.1%. Liquid–liquid extraction techniques,
or a variation thereof that involves ion pairing
(Hansen et al. 2001), have been used for
extraction of PFOS from biological matrices
and have involved internal standards through
the complete extraction. Chromatography
and quantitation have typically been accom-
plished using high-performance liquid chro-
matography–mass spectrometry (HPLC-MS)
in negative ion mode, with quantitation of
the parent ion (LC-MS) or transition ions
(HPLC-MS/MS). Solid-phase extraction tech-
niques (Kuklenyik et al. 2004; Taniyasu et al.
2003) and column-switching methods (Inoue
et al. 2004a, 2004b) are examples of recent
improvements in the quantitation of PFOS.
Mass-labeled internal standards such as 18O2-
PFOS will result in improved quantitation.

Organically bound fluorine was reported
in human blood in 1968 (Taves 1968) and
before the development of analytical tech-
niques for specific fluorochemical analytes,
total organic fluorine was used to measure
organic fluorine in human blood (3M
Company 2003). In an attempt to speciate
the organic fluorine in blood using 19F
nuclear magnetic resonance, Taves et al.
(1976) tentatively suggested the presence of
perfluorooctanoate and also noted that
branching or the presence of a sulfonate was a
possible interpretation of their findings. As
HPLC-MS methods were developed, “blank”
human serum was found to contain PFOS in
1997. Subsequently, PFOS was found distrib-
uted widely in human serum and fish-eating
wildlife serum and liver (Giesy and Kannan
2001; Hansen et al. 2001).

Pharmacokinetics

The pharmacokinetic properties of PFOS are
favorable for using serum PFOS concentration
as a measure of internal dose. Good absorption,
lack of known metabolism, distribution primar-
ily in extracellular space, high serum protein
binding (albumin and beta-lipoproteins), and
poor elimination in all species studied combine
to establish serum PFOS concentration as an
integration of exposures from various sources.
In addition, serum PFOS concentrations can be
directly associated with effects in toxicology
studies. PFOS serum concentrations can be
used as a marker for total exposure in occupa-
tional medical surveillance studies.

Animal studies indicate that PFOS is well
absorbed orally and distributes mainly in the

serum and liver, with liver concentrations
being potentially several times higher than
serum concentrations (Johnson et al. 1979a;
Seacat et al. 2002b, 2003). The volume of dis-
tribution at steady state, as measured in
cynomolgus monkeys, is approximately
200 mL/kg, suggesting distribution primarily
in extracellular space (Noker and Gorman
2003). PFOS is highly bound to albumin and
has affinity for binding to β-lipoproteins (Jones
et al. 2003; Kerstner-Wood et al. 2003) as well
as albumin and liver fatty acid–binding protein
(Luebker et al. 2002a). PFOS is poorly metab-
olized and excreted and undergoes extensive
enterohepatic circulation (Johnson et al. 1984).
The elimination half-life of PFOS is approxi-
mately 100 days in rats (Johnson et al. 1979b)
and 100–200 days in cynomolgus monkeys
(Noker and Gorman 2003; Seacat et al.
2002b) and appears to be approximately
5 years in human serum (Olsen et al. 2005a).

Exposure Assessment

The mechanisms and pathways leading to the
presence of PFOS in human blood are not well
characterized but likely involve environmental
exposure to PFOS or to precursor molecules
and residual levels of PFOS or PFOS precur-
sors in industrial and commercial products.
Potential sources of human exposure to PFOS
may have included manufacturing operations
and waste streams of POSF-based fluorochem-
ical products and the use or degradation of
some final commercial and consumer prod-
ucts, including indirect food-contact applica-
tions (3M Company 2003). Other potential
sources may include exposure to airborne
PFOS, POSF, and N-alkyl-perfluorooctanesul-
fonamides (Martin et al. 2002; Sasaki et al.
2003; Stock et al. 2004), surface water
(Boulanger et al. 2004; Saito et al. 2004; So
et al. 2004), sediments and sludge (Higgins
et al. 2005), and indoor air and dust (Shoeib
et al. 2004, 2005; Strynar and Lindstrom
2005). PFOS has been identified in serum and
tissue samples from both occupationally and
nonoccupationally exposed human popula-
tions in various countries, in various species of
wildlife in many parts of the world, and in sur-
face waters and other environmental media in
various countries (3M Company 2003; Giesy
and Kannan 2001; Hansen et al. 2001, 2002;
So et al. 2004). PFOS is highly persistent in
the environment and has also been shown to
bioconcentrate in fish and biomagnify to an
extent in the food chain.

The only two countries in which multiple
biomonitoring investigations of general popu-
lation PFOS levels have been undertaken are
the United States (Table 1) and Japan
(Table 2). The total number of samples pre-
sented in these two countries represents
approximately 90% of the individual analyses
published in the literature. The similar

distribution of averages (as well as similar
ranges) from individual studies presented in
Table 1 suggests that serum PFOS concentra-
tions are relatively comparable across geo-
graphic regions and age groups in the United
States. However, the most recent pooled serum
data indicate modest differences by sex as well
as ethnicity (Calafat et al. 2006). In addition,
the range of serum concentrations in the U.S.
populations indicates that some individuals,
albeit a small number, may have had relatively
higher exposure levels than the majority 
of individuals sampled. Average PFOS concen-
trations were lower among the Japanese popu-
lations presented in Table 2. In one Japanese
study, Harada et al. (2004) observed sex-
related differences in serum PFOS concentra-
tions, with males approximately 2-fold higher
than females. Furthermore, Harada et al.
(2005a) reported higher concentrations among
premenopausal than postmenopausal women
in another study. These findings were not seen
in general populations in the United States
(Kannan et al. 2004; Kuklenyik et al. 2004;
Olsen et al. 2003b). In the only published
study of its kind, PFOS was measured in
15 pairs of maternal and cord blood (fetal)
samples from Japan (Inoue et al. 2004a).
PFOS concentrations in maternal samples
ranged from 4.9 to 17.6 ng/mL, whereas those
in fetal samples ranged from 1.6 to 5.3 ng/mL,
with a high degree of correlation between pairs
(r = 0.94). Only two studies in Tables 1 and 2
examined time trends. Serum PFOS concen-
trations increased 3-fold over a 25-year time
period in Miyaga, Japan (Harada et al. 2004).
Median PFOS concentrations increased
approximately 25% between 1974 (median,
25 ng/mL) and 1989 (median, 33 ng/mL) for
58 individuals living in the vicinity of
Hagerstown, Maryland (Olsen et al. 2005b).
However, only a 9% increase in median PFOS
concentrations occurred in two nonpaired
populations (n = 120 each) residing in the
same area and time period. PFOS concentra-
tions did not appear to increase between 1989
and 2001 for this region (Olsen et al. 2003b,
2005b). Individual samples from three large
data sets with different age groups predominate
the United States findings, as reported in
Table 1 (Olsen et al. 2003b, 2004b, 2004c).
Sera from children (age 2–12 years, n = 598) in
23 states, adult blood donors (age 20–69 years,
n = 645) from six municipalities in the United
States, and elderly (age 65–96 years, n = 238)
Seattle residents were analyzed for PFOS using
identical laboratory methods with comparable
findings. Geometric means were 38 (95% CI,
36–39), 35 (95% CI, 33–37), and 31
(95% CI, 29–33) ng/mL, respectively.

Although comparable in average PFOS
concentrations, a small number of individuals
in each studied population had relatively
higher levels than the majority of individuals
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sampled. The factors that would lead to
higher serum PFOS concentrations in some
individuals are not completely understood.
Some factors that may affect serum PFOS
concentrations include proximity to sources of
manufacture and use, length of residence in
these latter areas, potential product exposures,
and possible food and environmental sources.
Analysis of 54 pooled serum samples collected
from 1,832 participants ≥ 12 years of age
in the National Health and Nutrition
Examination Survey (NHANES; Calafat et al.
2006) collected in 2001–2002 suggested possi-
ble concentration differences by sex (males
higher) and ethnicity, in that non-Hispanic
whites had statistically significantly higher con-
centrations compared with non-Hispanic
blacks and Mexican Americans (Calafat et al.
2006). An association of higher PFOS serum
concentrations with higher fish consumption
has been noted in humans (Falandysz et al.
2006) as well as wildlife (Giesy and Kannan
2001). It is notable that PFOS serum concen-
trations did not strongly correlate with serum
concentrations of metabolites of N-alkyl-
perfluorooctanesulfonamide molecules (Xu
et al. 2004) known to be present in products as
manufacturing residuals or from degradation

of products (Olsen et al. 2003b, 2004b,
2004c). This lack of correlation could be due
to differences in the pharmacokinetic behavior
of N-alkyl-perfluorooctanesulfonamides com-
pared with PFOS or suggest that product
exposures may not be a primary source of
PFOS in the body.

PFOS data sets have been published for
other countries; however, few individual sam-
ples have been analyzed. Most of these data
were reported by Kannan et al. (2004). In
general, the majority of these PFOS concen-
trations were less than those reported for the
U.S. general populations displayed in Table 1.
The highest mean PFOS concentration
reported by Kannan et al. was found in sam-
ples collected from Poland [male, 55 ng/mL
(n = 10); female, 33 ng/mL (n = 15)]. Lower
mean PFOS concentrations were reported by
Kannan et al. for Korea [male, 27 ng/mL (n =
25); female, 15 ng/mL (n = 25)]; Belgium
[male, 18 ng/mL (n = 16); female, 11 ng/mL
(n = 4)]; Malaysia [male, 13 ng/mL (n = 16);
female, 12 ng/mL (n = 7)]; Brazil [male,
14 ng/mL (n = 10); female, 11 ng/mL (n =
17)]; Italy [male, 4 ng/mL (n = 42); female,
4 ng/mL (n = 8)]; Colombia [male, 8 ng/mL
(n = 31); female, 8 ng/mL (n = 25)]; and India

[male, 3 ng/mL (n = 34); female, 3 ng/mL
(n = 11)]. In a pilot study, Kubwabo et al.
(2004) reported mean concentrations of 30
and 28 ng/mL in 21 and 35 female and male
Canadians, respectively. Kärrman et al. (2006)
reported geometric mean concentrations of 17
and 16 ng/mL in 40 men and 26 women,
respectively, from Sweden. Guruge et al.
(2005) reported a mean concentration of
5 ng/mL in 30 adults from Sri Lanka and
0.1 ng/mL in seminal plasma, with a cor-
relation of 0.6 for PFOS between the two
matrices. Yeung et al. (2006) reported a
mean concentration of 52.76 ng/mL from
85 Chinese samples with considerable differ-
ences between nine cities (ranges of means
between 3.7 and 79.2 ng/mL). The higher
mean PFOS serum concentration was attrib-
uted to proximity to industrial production.
Other findings reported by 3M (2003)
included several blood bank pooled serum
samples obtained in 1998 from Belgium, the
Netherlands, and Germany that had mean
(range in parentheses) serum PFOS concentra-
tions of 17 (5–22) ng/mL, 53 (39–61) ng/mL,
and 37 (32–46) ng/mL, respectively.

PFOS serum levels have been measured
in 3M employees involved in both the
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Table 1. PFOS concentrations (ng/mL) measured in general populations in the United States; samples collected 1974–2003.

Location Demographic Type of sample Year of collection No. Average Range Reference

Atlanta, GA Adult females Serum 2003 10 54a 4–164 Kuklenyik et al. 2004
Adult females Breast milk 2003 2 < 1 < 1
Adult males Serum 2003 10 58a 20–94

Boston, MA Adult blood donors Serum 2001 109 28b < 4–87 Olsen et al. 2003b
Charlotte, NC Adult blood donors Serum 2001 96 52b 19–166 Olsen et al. 2003b
Hagerstown, MD Adults Serum 1974 58d 25c (21–34)e Olsen et al. 2005b

Adults Serum 1974 120f 33c (22–45)e
Adults Plasma 1989 58d 32c (25–41)e
Adults Plasma 1989 120f 36c (25–46)e
Adult blood donors Serum 2001 108 35c 8–226 Olsen et al. 2003b

Los Angeles, CA Adult blood donors Serum 2001 125 40c 7–205 Olsen et al. 2003b
Portland, OR Adult blood donors Serum 2001 107 27c 6–1,656 Olsen et al. 2003b
Minneapolis–St. Paul, MN Adult blood donors Serum 2001 100 33c 8–207 Olsen et al. 2003b
Murray, KY Adult females Whole blood 2002 11 66a 11–130 Kannan et al. 2004

Adult males Whole blood 2002 19 73a 19–164
New York City, NY Adults Plasma 2002 79 43a 16–83 Kannan et al. 2004
Seattle, WA Elderly females Serum 2001 120 32b 10–175 Olsen et al. 2004c

Elderly males Serum 2001 118 30b < 4–161
Michigan (central) Adult females Serum 2000 46 33a < 2–92 Kannan et al. 2004

Adult males Serum 2000 29 33a < 2–124
23 states Girls (age 2-12 years) Serum 1994–1995 298 35b 7–165 Olsen et al. 2004b

Boys (age 2-12 years) Serum 1994–1995 300 40b 11–515
United States NHWF Serum 2001–2002 14 (pooled) 24a NR Calafat et al. 2006

NHBF Serum 2001–2002 6 (pooled) 18a NR
MAF Serum 2001–2002 8 (pooled) 10a NR
NHWM Serum 2001–2002 13 (pooled) 40a NR
NHBM Serum 2001–2002 6 (pooled) 18a NR
MAM Serum 2001–2002 7 (pooled) 14a NR

Unknown Adults Serum 1998 65 28a 7–82 Hansen et al. 2001
Unknown Adult females Serum 2000 11 17a < 6–32 Olsen et al. 2003c

Adult females Liver 2000 14 18a < 7–43
Adult males Serum 2000 13 18a < 7–25
Adult males Liver 2000 16 19a < 5–57

Abbreviations: MAF, Mexican-American female; MAM, Mexican-American male; NHBF, non-Hispanic black female; NHBM, non-Hispanic black male; NHWF, non-Hispanic white
female; NHWM, non-Hispanic white male. 
aMean. bGeometric mean. cMedian. dPaired samples (1974 and 1989) from area in vicinity to Hagerstown, Maryland. eInterquartile range of Hagerstown, Maryland, data. fNonpaired
samples (1974 and 1989), from area in vicinity of Hagerstown, Maryland.



manufacturing of perfluorochemicals and the
processing of these compounds into products.
Beginning in the late 1970s, measurements
were for total organofluorine (Ubel et al. 1980).
Since the mid-1990s, measurement of serum
PFOS concentrations have been performed as
part of employee medical surveillance examina-
tions at the 3M manufacturing facilities in
Decatur, Alabama, and Antwerp, Belgium
(Olsen et al. 1999, 2003a). Between 1994 and
2000, mean PFOS concentrations approxi-
mated 1.0–2.5 µg/mL (1,000–2,500 ng/mL)
and ranged between < 0.1 and 12.8 µg/mL,
depending upon the job classification. Because
employee participation is voluntary, biomoni-
toring data from these medical surveillance
programs may not have provided an adequate
characterization of the distribution of serum
PFOS concentrations because of possible non-
response bias (Olsen et al. 2003d). A study
that randomly sampled the Decatur worker
population (Olsen et al. 2003d) indicated that
serum PFOS concentrations measured during
the course of medical surveillance examina-
tions likely presented an unbiased analysis of
the overall serum PFOS distribution of the
workers. This study showed that mean PFOS
serum concentrations for cell and chemical
operators were 2.90 µg/mL (geometric mean =
1.97 µg/mL; range, 0.33–6.84 µg/mL) and
1.78 µg/mL (geometric mean = 1.48 µg/mL;
range, 0.47–7.26), respectively. These values
are approximately 50 times higher than mean
(arithmetic or geometric) concentrations mea-
sured in the U.S. general population.

Because multiple sources and routes
of exposure were probable, estimating exter-
nal worker PFOS exposure is problematic.

Employees may have been exposed to POSF
and/or other perfluorochemicals in the manu-
facturing environment by one or more routes.
The primary route of exposure may have var-
ied among employees and depended on sev-
eral factors, including process conditions, job
tasks, work location, personal hygiene, per-
sonal habits, and general work practices.
Biomonitoring allows for the assessment from
all routes of exposure.

Toxicity and Human Health Data

The toxicological profile of PFOS has been
studied extensively (3M Company 2003; Lau
et al. 2004; Organisation for Economic Co-
operation and Development 2002). Several
repeat-dose toxicology studies with PFOS in
rodents and nonhuman primates have indicated
the potential to reduce body weight and body-
weight gain, increase liver weight, and reduce
serum cholesterol. The dose–response curve for
mortality in repeat-dose studies is very steep for
sexually mature rats and primates (Goldenthal
et al. 1978a, 1978b; Seacat et al. 2002b) as well
as neonatal rats and mice exposed in utero (Lau
et al. 2003, Luebker et al. 2005b). Microscopic
changes attributable to PFOS include hepato-
cellular hypertrophy and vacuolation in rats
(Seacat et al. 2003) and monkeys (Seacat et al.
2002b), and hepatic necrosis at lethal doses in
rats (Goldenthal et al. 1978a). PFOS has been
tested for genotoxic activity in a battery of
microbial and mammalian systems that
included assays for induction of gene mutation
(Salmonella typhimurium and Escherichia coli),
gene conversion (Saccharomyces cerevisiae D4),
chromosomal aberrations (human lymphocytes
and mouse bone-marrow micronuclei), and

unscheduled DNA synthesis (primary rat hepa-
tocytes) (3M Company 2003). PFOS did not
show genotoxic activity in any of these assay
systems. In a 2-year dietary study of PFOS in
Sprague-Dawley rats (3M Company 2002;
Seacat et al. 2002a), hepatocellular adenoma
was increased in the high-dose (20 µg potas-
sium PFOS/g feed) males and females. Thyroid
follicular cell adenomas were observed in male
rats in the high-dose, stop-dose group for which
PFOS was eliminated from the diet after 1 year.
Decreased serum estradiol was noted in a
6-month monkey study at treatment levels that
had a corresponding reduction in serum total
cholesterol (Seacat et al. 2002b). Alterations in
serum thyroid hormones have been reported
(Lau et al. 2003; Luebker et al. 2005b; Seacat
et al. 2002b; Thibodeaux et al. 2003) and may
be due in part to negative bias in analog mea-
surements and competition between PFOS and
thyroid hormones for binding in serum
(Tanaka et al. 2005).

In a two-generation reproduction study in
rats, mating and fertility were not affected;
however, neonatal survival, pup birth weight,
and growth of pups in lactation were
decreased, and developmental delays were
noted (Luebker et al. 2005a). The no
observed adverse effect level for these effects
was 0.1 mg/kg/day. Reduced postnatal sur-
vival and body weight gains may result from
in utero exposure (Grasty et al. 2003; Lau
et al. 2003; Luebker et al. 2005a, 2005b;
Thibodeaux et al. 2003). Prenatal develop-
mental toxicity studies of PFOS have been
conducted in rats, mice, and rabbits (Case
et al. 2001; Lau et al. 2004; Thibodeaux et al.
2003). Prenatal effects in rats administered
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Table 2. PFOS concentrations (ng/mL) measured in general populations in Japan; samples collected 1977–2004.

Location Demographic Type of sample Year of collection No. Average Range Reference

Akita Adult females Serum 1991 40 8b NR Harada et al. 2004
Adult females Serum 1996 60 7b NR
Adult females Serum 2003 66 8b NR
Adult males Serum 2003 50 13b NR

Hokkaido Adult females Whole blood 2003 15 9a 5–18 Inoue et al. 2004a
Fetus (cord blood) Whole blood 2003 15 3a 2–5

Kyoto Adult females Serum 2003 20 14b NR Harada et al. 2004
Adult males Serum 2003 14 28b NR
Young adult females Serum 2004 5 11a 9–16 Harada et al. 2005a
Elderly females Serum 2004 5 24a 16–33
Young adult males Serum 2004 5 13a 9–19
Elderly males Serum 2004 5 26a 11–49

Miyagi Adult females Serum 1977 39 1b NR Harada et al. 2004
Adult females Serum 2003 23 4b NR
Adult males Serum 2003 32 6b NR

Tokyo Bay area Adult females Whole blood 2002 3 11a 5–14 Taniyasu et al. 2003
Adult females Whole blood 2002 5 6a 2–9
Adult females Serum 2002 3 27a 19–41
Adult males Whole blood 2002 2 10a 9–11

Tsukuba and Yokohama Adult females Serum 2002 13 18a 6–40 Kannan et al. 2004
Adult males Serum 2002 25 14a 4–38

Yokohama Adults Whole blood 2001 26 8a 2–20 Masunaga et al. 2002
Unknown Adult females Plasma 2002 10 15a 10–19 Inoue et al. 2004b

Adult males Plasma 2002 11 19a 12–32

NR, not reported. 
aMean. bGeometric mean.



PFOS during gestation included statistically
significant decreases in fetal body weight and
statistically significant increases in external
and visceral anomalies, delayed ossification,
and skeletal variations (Case et al. 2001;
Thibodeaux et al. 2003). Maternal toxicity in
rats exposed to PFOS during gestation
included clinical signs of toxicity and reduc-
tion in body weight and food consumption.
In rabbits administered PFOS during gesta-
tion, statistically significant reductions in fetal
body weight and statistically significant
increases in delayed ossification were
observed; signs of maternal toxicity consisted
of abortions and reductions in body weights
and food consumption (Case et al. 2001). On
the whole, the prenatal developmental effects
noted in these studies are consistent between
studies, and their significance is somewhat
mitigated by the fact that they occur in the
presence of maternal deficits in weight gain
and feed consumption.

A number of studies have been conducted
to investigate the possible modes of action 
of PFOS. Induction of peroxisome proliferation
and associated peroxisomal enzymes
(Berthiaume and Wallace 2002; Ikeda et al.
1987; Sohlenius et al. 1993), activation of
nuclear receptors (Shipley et al. 2004), interfer-
ence in lipid metabolism and decreases in
serum cholesterol (Haughom and Spydevold
1992; Luebker et al. 2002a, 2002b), inter-
ference in mitochondrial bioenergetics
(Berthiaume and Wallace 2002; Starkov and
Wallace 2002), delays in lung maturation
(Grasty et al. 2003), inhibition in gap junc-
tional intercellular communication processes
(Hu et al. 2002, 2003), alterations in calcium
channels (Harada et al. 2005b), and alterations
in thyroid hormone homeostasis (Lau et al.
2003; Luebker et al. 2005b; Tanaka et al. 2005;
Thibodeaux et al. 2003) have all been investi-
gated as possible modes of action; however, at
present, the mechanisms of action related to the
toxicity of PFOS are still not clearly under-
stood. Gene array studies have also been con-
ducted in the rat to investigate changes in
mRNA transcriptional responses to PFOS
treatment (Hu et al. 2005a, 2005b). Gene
expression studies have demonstrated up-regu-
lation of transcription products primarily
related to fatty acid metabolism, e.g., β-oxida-
tion pathways, as well as cytochromes P450 and
some hormonal regulatory gene transcripts.

In addition to toxicologic studies, epidemi-
ological and medical surveillance studies of
exposed 3M Company fluorochemical workers
have been conducted by 3M Company for
over 25 years. This set of POSF production
workers (with potential exposure to PFOS) is
the only group reported on from a human
health perspective. Clinical tests in medical sur-
veillance examinations in workers have not
shown consistent patterns of associations

between PFOS serum levels and hematology,
hormonal, and clinical chemistry parameters
(Olsen et al. 1999, 2003a). A cohort mortality
study of the 3M Decatur (Alabama) manufac-
turing facility showed no statistically significant
excess mortality for most types of cancer and
for nonmalignant causes (Alexander et al.
2003). However, bladder cancer mortality was
elevated (three observed vs. 0.2 expected; stan-
dardized mortality ratio 16.12; 95% CI,
3.32–47.14) among male workers who had
worked in high PFOS exposure jobs for a min-
imum of 1 year. It was unclear whether PFOS
or other fluorochemicals contributed to the
excess of bladder cancer deaths. To further
investigate this association, Alexander (2004)
mailed a questionnaire to all living members of
the original cohort with validation of reported
bladder cancers through medical record review
when permitted by the subject. A total of
11 cases of primary bladder cancer were identi-
fied for the cohort compared with 8.6 expected
(standardized incidence ratio 1.28; 95% CI,
0.64–2.29) based on U.S. National Cancer
Institute incidence rates. Analyses by duration
worked showed no definitive trend.

Worker insurance claims data categorized
as episodes of care have also been evaluated
(Olsen et al. 2004a). For a priori interests, the
observed to expected episodes of care experi-
ence were comparable for the Decatur fluoro-
chemical and a neighboring film plant
(control) employee population for liver
tumors, bladder cancer, thyroid and lipid
metabolism disorders, and reproductive, preg-
nancy, and perinatal disorders, and higher for
biliary tract disorders and cystitis recurrence.
Non-a priori associations among the fluoro-
chemical plant workers included benign colon
polyps, malignant colorectal tumors, and
malignant melanoma. Research is currently
being conducted to further investigate these
associations.

Environmental Public Health
Use of Biomonitoring Data
Biomonitoring data can be used to examine
regional differences and time trends. PFOS
concentrations in Charlotte, North Carolina,
were the highest of the geographical regions
investigated by 3M (Olsen et al. 2003b), and
a preliminary screening study conducted by
Centers for Disease Control and Prevention
to validate methodology showed slightly
higher values in Atlanta, Georgia (Kuklenyik
et al. 2004). Of six North American areas
tested, Stock et al. (2004) reported the largest
mean concentration in the troposphere of
N-methyl perfluorooctanesulfonamidoethanol
(359 pg/m3) was from the Griffin, Georgia,
location. Although the southeastern United
States is an area of high carpet and fabric pro-
duction, it was not possible to establish that
this was the reason for the somewhat higher

values measured. In addition few data are
available that can describe exposure trends. It
is assumed that with the voluntary discontin-
uation of manufacturing of PFOS and POSF-
based chemicals by 3M Company, PFOS
exposures will eventually diminish.

Discussion

A review of the data for PFOS related to the
exposure, dose, and potential health outcomes
parts of the public health paradigm suggest
that the PFOS biomonitoring data are rele-
vant for use in public health. Pharmacokinetic
data are available to relate serum PFOS con-
centrations to toxicity and, therefore, to
potential health outcomes that may occur
across the spectrum of development from
in utero through adulthood as depicted in the
Public Health Paradigm. Analytical methods
are sufficiently sensitive, precise, and accurate
for the measurement of general-population
serum PFOS as a biomarker of exposure. The
database for potential health effects is reason-
ably robust and includes most toxicologic end
points as well as several studies of individuals
occupationally exposed to PFOS.

The biomonitoring and toxicology data
related to PFOS were presented at the
International Biomonitoring Workshop on
21–22 September 2004 at Research Triangle
Park, North Carolina. Based on the outcomes
of that workshop (Albertini et al. 2006) and a
general review of the data available for PFOS,
the following types of information are consid-
ered to be of additional value in understand-
ing the distribution of PFOS in general
populations.
• Strengthen the database to allow conversion

of whole blood and plasma PFOS concen-
tration values to serum PFOS concentra-
tion. Various reports give whole blood
measurements converted to estimate serum
concentrations by making the assumption
that all PFOS is in serum.

• Strengthen the relationship between serum
and liver concentrations of PFOS. Although
this information is available from toxicology
studies, the human data are very limited.

• Bank samples of blood, plasma, or serum
for future needs, including early screening
investigations (e.g., NHANES).

• Obtain additional data for children,
especially children < 2 years of age [e.g.,
National Children’s Study (2006)].

• Obtain matched serum and urine samples
from humans and research animals, where
possible (e.g., NHANES), to better under-
stand toxicokinetics.

• Obtain more placental, cord blood, and
milk samples [e.g., National Children’s
Study (2006)].

• Confirm potential ethnic and sex differences
in distributions of blood PFOS concentra-
tions (Calafat et al. 2006).
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• Biomonitor additional populations with
specific potential occupational, dietary, or
consumer exposures to PFOS and related
materials; e.g., high consumers of fish
(Falandysz et al. 2006), workers with down-
stream exposure to POSF-based products,
and consumers of POSF-based products.

• Build a physiologically based pharmacoki-
netic (PBPK) model for human handling of
PFOS that could explain uptake, clearance,
and distribution and exposure pathways by
reverse PBPK modeling.
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