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Background and Recent
Developments
Airborne contaminant emissions emanating
from concentrated animal feeding operations
(CAFOs) include toxic gases and particulates.
A combination of gases or particulates of suffi-
cient concentration and chemical composition
may also be perceived as an irritant odor
downwind of a CAFO. There is a need to
accurately assess the concentrations of these
contaminants in order to determine the effect
they may have on the health of residents living
in proximity to CAFOs. 

A variety of analytical methods are avail-
able for measuring toxic gases, particulates,
and odor and vary significantly in terms of
cost, precision, accuracy, portability, mainte-
nance requirements, and the ability to con-
duct continuous measurements. When using
these methods, both the spatial and temporal
variability of the pollutant concentrations
must be considered. For example, the tempo-
ral variability for a certain location can be
measured with a direct-reading instrument,
but this will not indicate the level of a conta-
minant over a broad area. Instruments of this
type tend to be accurate but expensive.
Similarly, time-integrating samplers, which
typically are inexpensive but lack accuracy,
can be deployed over a large area to assess the
spatial variability of a pollutant. In a recent

study conducted in the United States, air pol-
lution problems caused by emissions from
animal feeding operations into ambient air
were characterized as “local” scale if neighbors
living near the animal feeding operation were
affected, or “regional” or “national” scale if
the pollution emitted affects the quality of life
in a multistate or national area (National
Research Council Ad Hoc Committee on Air
Emissions from Animal Feeding Operations,
Committee on Animal Nutrition 2003).
Ammonia was classified as a major pollutant
on the regional scale, whereas hydrogen sul-
fide, particulate matter, and odor were classi-
fied as major pollutants at the local scale. 

Another method for determining the spa-
tial variability of an airborne contaminant is to
utilize a plume dispersion model. A model of
this type can develop concentration isopleths
over an area from weather data averaged over a
variety of time periods such as a day, month or
year. The corollary approach is to use a spatial
interpolation method such as kriging (Carletti
et al. 2000; Zirschky 1985) to formulate con-
centration isopleths from measurements
derived from time-integrated samplers.
However, this review focuses on the instru-
ments available for measuring gases, particu-
lates, and odor, and on plume dispersion
models applicable to the determination of
contaminants in the vicinity of CAFOs.

Ammonia monitoring. Relatively accurate
but expensive instruments (> US$10,000) are
available for measuring ammonia and hydro-
gen sulfide at the limit of detection (parts per
billion level) needed to determine the low
concentrations of these gases expected at the
local scale. There are several types of detection
devices available for each gas, including
chemiluminescence analyzers for oxides of
nitrogen (NOx) and pulsed fluorescence
analyzers for sulfur dioxide (SO2) that are
commonly used for ambient air quality moni-
toring and contain thermal oxidizers for the
quantification of ammonia (NH3) and hydro-
gen sulfide (H2S), respectively (Thermo
Electron Inc., Waltham, MA, USA). The U.S.
Environmental Protection Agency (U.S. EPA)
guidance for continuous reference methods
dictates that these monitors must be operated
between 20 and 30°C, necessitating a temper-
ature-controlled enclosure at the monitoring
site. McCulloch and Shendrikar (2000) con-
cluded that an ammonia analyzer of this type
reliably measured hourly ambient ammonia
concentrations with a high degree of accuracy. 

Ammonia monitors based on a photo-
acoustic infrared absorption technique are also
in current use (Innova Air Tech Instruments,
Ballerup, Denmark; Pranalytica Corporation,
Santa Monica, CA, USA). The ammonia mol-
ecule has infrared absorption bands, and
pulses of infrared radiation can be converted
to pressure waves in a measurement cell con-
taining ammonia (Pushkarsky et al. 2002).
Correcting for infrared absorption by water
vapor and carbon dioxide allows for quantifi-
cation of ammonia concentrations. A design
that has been widely used in the Netherlands

This article is part of the mini-monograph
“Environmental Health Impacts of Concentrated
Animal Feeding Operations: Anticipating Hazards—
Searching for Solutions.”

Address correspondence to P.S. Thorne, College of
Public Health, 100 Oakdale Campus, The University
of Iowa, 176 IREH, Iowa City, IA 52242 USA.
Telephone: (319) 335-4216. Fax: (319) 335-4225.
E-mail: peter-thorne@uiowa.edu

This workshop was supported by grant P30
ES05605-14S from the Environmental Health Sciences
Research Center at The University of Iowa and the
National Institute of Environmental Health Sciences.

The authors declare they have no competing
financial interests.

Received 10 November 2005; accepted 13 November
2006.

Monitoring and Modeling of Emissions from Concentrated Animal Feeding
Operations: Overview of Methods

Bryan Bunton,1 Patrick O’Shaughnessy,2 Sean Fitzsimmons,1 John Gering,1 Stephen Hoff,3 Merete Lyngbye,4

Peter S. Thorne,2 Jeffrey Wasson,5 and Mark Werner6

1Iowa Department of Natural Resources, Des Moines, Iowa, USA; 2College of Public Health, The University of Iowa, Iowa City, Iowa,
USA; 3Iowa State University, Ames, Iowa, USA; 4The National Committee for Pig Production, Copenhagen, Denmark; 5University
Hygienic Laboratory, Iowa City, Iowa, USA; 6Wisconsin Department of Health and Family Services, Madison, Wisconsin, USA

Accurate monitors are required to determine ambient concentration levels of contaminants emanating
from concentrated animal feeding operations (CAFOs), and accurate models are required to indi-
cate the spatial variability of concentrations over regions affected by CAFOs. A thorough under-
standing of the spatial and temporal variability of concentration levels could then be associated with
locations of healthy individuals or subjects with respiratory ailments to statistically link the pres-
ence of CAFOs to the prevalence of ill health effects in local populations. This workgroup report,
which was part of the Conference on Environmental Health Impacts of Concentrated Animal
Feeding Operations: Anticipating Hazards—Searching for Solutions, describes instrumentation
currently available for assessing contaminant concentration levels in the vicinity of CAFOs and
reviews plume dispersion models that may be used to estimate concentration levels spatially.
Recommendations for further research with respect to ambient air monitoring include accurately
determining long-term average concentrations for a region under the influence of CAFO emissions
using a combination of instruments based on accuracy, cost, and sampling duration. In addition,
development of instruments capable of accurately quantifying adsorbed gases and volatile organic
compounds is needed. Further research with respect to plume dispersion models includes identify-
ing and validating the most applicable model for use in predicting downwind concentrations from
CAFOs. Additional data are needed to obtain reliable emission rates from CAFOs. Key words:
ammonia, animal feeding operation, dispersion model, hydrogen sulfide, monitor, odor, particulate
matter, poultry, swine. Environ Health Perspect 115:303–307 (2007). doi:10.1289/ehp.8838
available via http://dx.doi.org/ [Online 14 November 2006]



for ambient ammonia monitoring involves the
use of a semipermeable membrane (Mecha-
tronics Instruments, Hoorn, the Netherlands).
The membrane selectively passes gaseous
ammonia, which is then absorbed into a liquid
reagent inside the sampler. A conductivity
detector records the changing conductivity of
the reagent solution, which is proportional to
the ammonia concentration (Erisman et al.
2001). This measurement method compared
favorably with others in a European study
(Mennen et al. 1996). Another design incorpo-
rating a semipermeable membrane and a special
liquid reagent has been proposed by Li et al.
(1999). After the reagent reacts with ammonia,
it forms a compound (1-sulfonatoisoindole),
which when illuminated with ultraviolet light,
fluoresces at a known wavelength. A photo-
diode records the amount of fluorescent light,
which is proportional to the ammonia concen-
tration. A fluorimetric enzyme method with a
limit of detection of 110 µg/L was used to
measure ambient ammonia levels in the vicinity
of a swine facility (Subramanian et al. 1996). 

Open-path monitoring methods for
ammonia are commercially available and have
been used extensively by the state of Missouri
and the U.S. EPA for investigative surveys
and emission factor development near
CAFOs (Childers et al. 2001; Harris et al.
2001; Hashmonay et al. 1999a, 1999b).
Open-path monitoring methods measure the
absorption of light as the light beam traverses
the path between the light source and a reflec-
tor. The absorption spectra obtained from
these instruments is used to uniquely identify
ammonia among other light-absorbing gases,
and the amount of absorption measured may
be used to determine the average ammonia
concentration along the path. An open-path
monitor produces path-average concentra-
tions, and this average may be higher or lower
than the concentrations measured at particu-
lar points along the path. 

At the regional scale, a nationwide monitor-
ing network designed to measure the deposition
of ammonia and other ions in rainfall has been
constructed as part of the National Atmospheric
Deposition Program. Atmospheric deposition
of ammonia or ammonium gives rise to the
eutrophication of ecosystems (Bouwman and
Van Vuuren 1999; Burkholder et al. 2006;
Sheppard 2002). Ammonium nitrate and
ammonium sulfate are also significant contribu-
tors to regional fine particulate pollution prob-
lems present in California and in parts of the
eastern and southeastern United States (U.S.
EPA 2003a) and contribute to visibility reduc-
tion at national parks in the United States
(National Research Council Committee on
Haze in National Parks and Wilderness Areas
1993). The U.S. EPA also funds the operation
of a nationwide network of fine particulate
speciation samplers known as the Speciation

Trends Network. Chemical analyses of filters
from these samplers are used to establish levels
of ammonium sulfate and ammonium nitrate
and other constituents of fine particulate. The
National Park Service operates a similar
nationwide network of speciated fine particu-
late samplers as part of the Interagency
Monitoring of Protected Visual Environments
(IMPROVE) Program. 

Hydrogen sulfide monitoring. A variety of
analytical methods ranging in cost from
US$5,000 to US$20,000 are available for mea-
suring hydrogen sulfide. Parbst et al. (2000)
has compared the variability obtained from dif-
ferent portable and nonportable hydrogen sul-
fide monitoring equipment. Some agricultural
states, including Nebraska, Minnesota, and
Missouri, have established their own air quality
standards for hydrogen sulfide or total reduced
sulfur. Monitoring networks established by
these states use pulsed fluorescence analyzers to
determine subhourly concentrations for com-
parison with state standards (State of Colorado
1999; State of Minnesota 2003; State of
Missouri 2004; State of Nebraska 2002). 

One type of portable hydrogen sulfide
monitor determines hydrogen sulfide concen-
trations from changes in conductivity across a
gold film (Arizona Instruments, Tempe, AZ,
USA). The conductivity of the film varies as a
function of the amount of hydrogen sulfide
that has been deposited on its surface. A sec-
ond portable monitoring design relies on the
color change of a chemically treated tape as it
is exposed to hydrogen sulfide. One type of
tape used to measure hydrogen sulfide is
coated with lead acetate. Upon exposure to
hydrogen sulfide, a color change occurs as a
result of the formation of lead sulfide. A recent
study (Campagna et al. 2004) of ambient and
indoor hydrogen sulfide levels in a community
in Nebraska used a proprietary tape-based
monitor (Zellweger Analytics, League City,
TX, USA). A monitor of this design has been
approved for hydrogen sulfide monitoring in
Minnesota. Toda et al. (2001) have performed
interference and sensitivity tests involving
gold-film and tape-based hydrogen sulfide
monitoring methods.

Odor measurements. The quantitation of
odor is more challenging because it represents
a varying complex mixture of free and parti-
cle-bound compounds. An ideal approach to
odor measurement would begin by character-
izing the chemical constituents associated
with a particular offensive odor. Odors could
then be quantified objectively based on the
identification and quantification of the speci-
ated constituents. However, the correlation
between human response and specific com-
pounds identified by instrumental methods
such as gas chromatography remains quite
poor (Powers et al. 2000). One possible
explanation is that the human nose may be

sensitive to concentrations that lie below
instrumental detection limits. Also, the simul-
taneous instrumental determination of more
than 200 compounds that have been identi-
fied in livestock odors is difficult because dif-
ferent groups of compounds require different
types of columns for efficient separation as
well as different operating parameters and
detectors. Currently, existing limitations of
instrumental methods make the human
observer a necessary part of the odor measure-
ment methods. Livestock odor measurement
techniques currently rely on trained human
raters for odor quantification. In Colorado
and Missouri, measurements are taken using a
scentometer, a simple portable device used
to dilute odorous air with odor-free air
(Barnebey Sutcliffe Corp., Columbus, OH,
USA, and St. Croix Sensory, Inc., Lake Elmo,
MN, USA) (State of Colorado 1999; State of
Missouri 2003). A more accepted method for
odor assessment is olfactometry, which has
been established as American Standards of
Testing and Measurements (ASTM) methods
E1432-91 and E679-91 (ASTM 1997a,
1997b, respectively). Odorous air samples are
taken in the field using Tedlar bags, and
returned to the laboratory for evaluation by a
trained panel of odor observers using a device
known as an olfactometer (St. Croix Sensory
Inc.), which allows the panel members to sniff
increasing dilutions of the odorous air ran-
domly delivered to one port or another with
odor-free air until no odor can be detected.
Comparability of odor measurements taken
with a scentometer with data taken with an
olfactometer is problematic (Bottcher 2001).
While olfactometers filter out particulate mat-
ter, filters are not used in commercially avail-
able scentometers. Scentometers, on the other
hand, have limited resolution. It has been
reported that an important fraction of odor-
ous material may adhere to the surface of
particulate matter (Powers et al. 2000).

Particulate matter monitoring. Particles
may act as carriers for microorganisms and
endotoxin, adsorbed gases and vapors such as
ammonia, and a variety of compounds that
contribute to odor. Instrumentation for the
measurement of ambient particulate concen-
trations are well developed and have been in
use for decades as part of national ambient air
quality sampling networks. Typical gravimet-
ric instruments used for this purpose draw air
through a large filter at a high flow rate
(1–40 cfm or 30–1,200 L/min). Air inlets are
often applied to segregate the smaller, poten-
tially more harmful, particles. Information on
the use of these instruments can be found
through the Technology Transfer Network of
the U.S. EPA (U.S. EPA 2003a). Direct-
reading particulate monitors are also available
(Watson et al. 1998). Although numerous
studies have been conducted to indicate
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particulate concentrations within CAFOs,
very few have involved the detection of dust
levels downwind of these facilities, perhaps
because of the many sources for dust in rural
areas, such as unpaved roads, that would
confound results. 

Dispersion models. Dispersion models
were first approved for regulatory application
in 1977 when they were incorporated into the
Clean Air Act (Jacobson et al. 1999). Since
that time, the state of science of dispersion
modeling has improved greatly. Dispersion
models are a set of mathematical equations
that attempt to simulate (model) the trans-
port, diffusion, chemical transformation,
physical interactions, and removal of pollu-
tants in the atmosphere. Typically, model
solutions are expressed as concentrations for
some time period at “receptor” locations.
Currently, the U.S. EPA has approved a
number of models for regulatory application,
and lists them in Appendix A of the Guideline
on Air Quality Models [published as Appendix
W of 40 CFR Part 51 (U.S. EPA 1998)].
These are divided into three categories: pre-
ferred or recommended refined dispersion
models, screening models that can precede
the use of a refined modeling analysis, and
refined air quality models for use on a case-
by-case basis for individual regulatory applica-
tions. In addition to models developed by the
U.S. EPA, proprietary or research models
have been developed to examine pollutant
dispersion for specific needs. 

Various inputs into these models include
the source type such as point, line, area, pit,
or volume, and source data such as location,
gas temperature and velocity, and pollutant
release rate (mass/time). In addition, hourly
meteorologic data are added to these models
and should contain wind speed and direction,
ambient air temperature, stability class, mix-
ing height, and precipitation, and pressure.
Some models also contain options for inclu-
sion of chemical transformation of gases.
Regional models may contain inputs for geo-
physical data, such as terrain elevations and
land use, surface and upper air meteorology,
precipitation data, cloud observations, and
visibility and deposition flux calculations.

Models can be applied for analysis of dis-
persion on both a local and regional scale.
Local scale dispersion modeling usually pre-
dicts concentrations in an area < 50 km, and
determines ambient impacts from one or more
facilities. For assessing short-range transport of
pollutants, the U.S. EPA recommends the
Industrial Source Complex Short-Term
Model, version 3 (ISC-ST3) (U.S. EPA 1995).
The ISC-ST3 model is a steady-state, Gaussian
plume model suitable for a wide range of
industrial applications and special cases.
Models of this type operate under the assump-
tion that the contaminant disperses from a

source with a concentration profile defined
by a normal or Gaussian curve. It should be
noted that the U.S. EPA recommended a
new Gaussian plume model, the American
Meteorological Society/Environmental
Protection Agency Regulatory Model
(AERMOD), for regulatory applications in
November of 2005. Both ISC-ST3 and
AERMOD may be used for regulatory pur-
poses during a one year transitional period
ending in November 2006, at which time
AERMOD will become the U.S. EPA rec-
ommended model (U.S. EPA 2005).

Regional modeling is used to calculate
pollutant concentrations over a much greater
area (> 50 km). For assessing the long range
transport of pollutants, the U.S. EPA recom-
mends the use of CALPUFF, a non-steady-
state Lagrangian puff dispersion model that
depends on high-definition meteorologic
data. Models of this type can account for an
intermittent release rather than assuming a
steady, continuous stream by simulating pol-
lutant releases as a continuous series of puffs.
More detailed applications of regional pollu-
tant modeling are conducted with photo-
chemical models that incorporate detailed
atmospheric chemistry processes on large
scales. Examples of these models include the
Comprehensive Air Quality Model with
extensions (CAMx) model maintained by the
Environ Corporation (Newark, NJ, USA),
the Community Modeling Air Quality
(CMAQ) model developed by the U.S. EPA,
and the Fine Resolution Atmospheric Multi-
Pollutant Exchange (FRAME) regional
model, developed specifically to describe
atmospheric transport and deposition of
ammonia (Singles et al. 1998). While these
models include sophisticated chemical and
physical processes, application for local-scale
studies likely will be problematic because of
the grid cell-level dilution. 

Modeling pollutants emitted from CAFOs.
Attempts have been made to use air disper-
sion models to estimate concentrations of
both odor and contaminants downwind of
CAFOs. These studies are complicated by
three important factors: there may be several
sources of a contaminant; the emission rate
from each source is difficult to precisely deter-
mine; and the regulatory models do not typi-
cally include provisions for the degradation
and deposition of gases in transport down-
wind from the source. 

The ISC-ST3 model has been recom-
mended for estimating air quality impacts of
feedlot operations (Earth Tech 2001).
However, ISC-ST3 has known deficiencies
during stable or near-calm conditions when
CAFO odors are most offensive, and it can-
not directly account for effects of vegetation
on concentrations or small-scale effects of ter-
rain on the wind fields. In addition, Gaussian

plume models may not adequately predict
concentrations of compounds that are
heavier than air, such as hydrogen sulfide, a
pollutant of concern near animal feeding
operations. Modifications to the Gaussian
plume model that better represent agri-
cultural sources have been investigated
(Gassman and Bouzaher 1995; Keddie 1980;
Rege and Tock 1996). A detailed discussion
of transport from ground-level agricultural
sources can be found in Smith (1993) with
an emphasis on the dispersion of particulates
from low-level sources given by Fritz et al.
(2002). The AERMOD model may have
particular applicability to modeling emissions
from animal agriculture by including the air
boundary layer above surface releases, such as
from manure storage basins (Jacobson et al.
1999). There have also been efforts to use
computational fluid dynamics to model the
dispersion of contaminants from agricultural
buildings (Quinn et al. 2001). These need
further development.

CALPUFF has recently been used to
model ammonia and hydrogen sulfide in the
vicinity of a CAFO (Minnesota Pollution
Control Agency 2003). Some of the attri-
butes of CALPUFF are especially pertinent
to conditions associated with CAFOs: vari-
able wind directions, calm-wind algorithm,
buoyant area and line sources, nonuniform
land patterns, and multifacility applications.
The state of Minnesota has opted to use the
ISC-ST3 model for single facilities and the
CALPUFF model for multi-facility applica-
tions (Earth Tech 2001) and the U.S. EPA
has adopted CALPUFF as the preferred
model for assessing long-range transport of
pollutants (U.S. EPA 2003b).

Other studies have focused on the disper-
sion of odor primarily to determine setback
distances between CAFOs and local resi-
dences (Heber 1997; Jacobson et al. 2001;
Zhu et al. 2000). Gaussian plume models that
have been widely used for odor dispersion
modeling include the Australian Plume
(AUSPLUME) model (Environmental
Protection Authority–Victoria 2000),
ISC-ST3 (U.S. EPA 1995), and STINK
(Smith and Watts 1994). Studies have shown
varying degrees of agreement between model
results and odor measurements (Carney and
Dodd 1989; Gassman 1992; Guo et al. 2001;
Li et al. 1994). Gassman (1992) reviewed lit-
erature on odor modeling using the Gaussian
plume method and concluded that the
method was best applied on a relative basis for
comparing differences between different facil-
ities. Koppolu et al. (2002) compared results
obtained from AERMOD and STINK after
modeling the dispersion of low molecular
weight volatile odorous fatty acids. They
found better agreement between model
results and measured values when using
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AERMOD. The Gaussian Integrated Puff
(INPUFF-2) model has also been used to pre-
dict odor dispersion (Zhu et al. 2000).

Workshop Recommendations

Priority research needs.
• Monitoring networks: There is a need to

accurately determine long-term average con-
centrations for a region under the influence
of CAFO emissions using a combination of
instruments based on accuracy, cost, and
sampling duration. This may include an
array of passive monitors in combination
with occasional spot-checks using portable
devices, co-located instruments and labora-
tory testing for quality control. Passive
monitors for hydrogen sulfide are available
with detection limits of 0.1 ppb (Radiello
Inc., Italy; MAXXAM Analytics, Inc.,
Calgary, Alberta, CN). Information of this
type could be used to correlate contaminant
exposures to chronic health effects through
the use of community surveys, question-
naires, medical examinations, or other vali-
dated methods with contaminant exposures.
Similar correlations could be made using
existing direct-reading instruments to gather
short-term data coincidental with acute
effects. Monitoring networks have been
established to measure gases and odors in
the vicinity of CAFOs, but few have incor-
porated particulate measurements, especially
the components of particles that contribute
to odor such as adsorbed gases and volatile
organic compounds. Instruments are needed
to accurately detect these compounds.
Furthermore, spatiotemporal geostatistical
techniques for accurately placing monitors
and interpolating concentration measure-
ments derived from monitoring networks
are needed. Similarly, the integration of data
from a variety of sources such as model pre-
dictions, satellite data, and monitored values
should be explored.

• Background levels: Research is needed to
determine background levels in rural areas
as well as to obtain a better understanding
of concentrations inside residences and
schools relative to outdoor concentrations.
This work should also include an assessment
of how far gases and particulates travel from
CAFOs to determine their area of influence. 

• Causative agents: Epidemiologic studies are
needed to determine the actual causative
agents related to health outcomes to ensure
that the most-important contaminants are
being measured. A metric to relate odor
with health symptoms is needed. 

• Model selection: Research should be con-
ducted to identify and validate the most
applicable model for CAFO emissions.
Specifically, models that account for the
chemical transformation of pollutants, such
as ammonia and hydrogen sulfide, are

needed. Model accuracy should be evaluated
and prediction error determined through
comparison of predicted values with actual
monitoring data. In addition, future research
that involves dispersion modeling is needed
to assess public health concerns by determin-
ing long-term concentrations within a region,
providing exposure data for health outcomes
research, assessing meteorologic conditions
during the past that could induce events, and
forecasting future events. There is further
need for models that will enable evaluation of
concentration/exposure scenarios after an
event that triggered hospital visits (e.g.,
asthma attack) and nuisance complaints.

• Toxicant emissions: Tied to the develop-
ment of accurate dispersion models is the
need for improved understanding of the rate
of contaminant emissions from CAFOs.
Research is needed to obtain reliable emis-
sion rates that consider temporal variations
and the influence of management practices
in addition to current knowledge concern-
ing emissions related to the CAFO type, the
number of animals, and the manure storage
and handling. 

Translation of science to policy. Modeling
is an important tool for use in regulatory
applications regarding industrial sources, but
its use should be expanded to CAFOs. For
existing livestock facilities, modeling could be
used to determine the results of best manage-
ment practices through estimation of potential
reductions or expected concentrations on
downwind receptors. For proposed livestock
facilities, modeling could be used by local zon-
ing officials or state or federal regulatory agen-
cies to assess potential impacts on surrounding
rural populations or environmentally sensitive
areas prior to construction. Additionally, the
use of modeling could enable policy makers to
establish setback distances prior to construc-
tion of a livestock facility that are based on
predicted concentration profiles, and would
therefore be protective of public health.
Finally, modeling could be used to survey
situations affecting a single community, elimi-
nating some across the board regulations for
more of a case-by-case approach.

REFERENCES

ASTM (American Standards of Testing and Measurement.
1997a. E1432-91: Standard Practice for Defining and
Calculating Individual and Group Sensory Thresholds from
Forced-Choice Data Sets of Intermediate Size. West
Conshohocken, PA:ASTM International.

ASTM (American Standards of Testing and Measurement).
1997b. E679-91: Standard Practice for Determination of Odor
and Taste Thresholds by a Forced-Choice Ascending Con-
centration Series Method of Limits. West Conshohocken,
PA:ASTM International.

Bottcher RW. 2001. An environmental nuisance: odor concen-
trated and transported by dust. Chem Senses 26:327–331.

Bouwman AF, Van Vuuren DP. 1999. Global Assessment of
Acidification and Eutrophication of Natural Ecosystems.
UNEP/DELA&EW/TR-996 and RIVM 402001012. Nairobi,
Kenya/Bilthoven, the Netherlands:United Nations

Environment Programme/National Institute of Public Health
and the Environment. Available: http://www.mnp.nl/
e n / p u b l i c a t i o n s / 1 9 9 9 / G l o b a l _ A s s e s s m e n t _ o f _
acidification_and_eutrophication_of_natural_ecosystems.
html [accessed 31 October 2006].

Burkholder J, Libra B, Weyer P, Heathcote S, Kolpin D, Thorne
PS, Wichman M. 2006. Impacts of waste from concen-
trated animal feeding operations on water quality. Environ
Health Perspect 115:308–312.

Campagna D, Kathman SJ, Pierson R, Inserra SG, Phifer BL,
Middleton DC, et al. 2004. Ambient hydrogen sulfide, total
reduced sulfur, and hospital visits for respiratory diseases
in northeast Nebraska, 1998–2000. J Expo Anal Environ
Epidemiol 14(2):180–187.

Carletti R, Picci, M, Romano D. 2000. Kriging and bilinear meth-
ods for estimating spatial pattern of atmospheric pollu-
tants. Environ Monitor Assess 63(2):341–359.

Carney PG, Dodd VA. 1989. A comparison between predicted
and measured values for the dispersion of malodours from
slurry. J Agric Eng Res 44(1):67–76.

Childers JW, Thompson EL Jr, Harris DB, Kirchgessner DA,
Clayton M, Natschke DF, et al. 2001. Multi-pollutant con-
centration measurements around a concentrated swine
production facility using open-path FTIR spectrometry.
Atmos Environ 35:1923–1936.

Earth Tech. 2001. Final Technical Work Paper for Air Quality and
Odor Impacts. Prepared for the Generic Environmental
Impact Statement on Animal Agriculture. St. Paul,
MN:Environmental Quality Board. Available: http://www.
eqb.state.mn.us/geis/TWP_AirQuality.pdf [accessed
26 September 2005].

Environment Protection Authority–Victoria. 2000. Ausplume
Gaussian Plume Dispersion Model Technical User Manual.
Melbourne, Australia:Environment Protection Authority,
Government of Victoria.

Erisman JW, Otjes R, Hensen A, Jongejan P, van den Bulk P,
Khlystov A, et al. 2001. Instrument development and appli-
cation in studies and monitoring of ambient ammonia.
Atmos Environ 35:1913–1922.

Fritz BK, Shaw BW, Parnell CV Jr. 2002. Dispersion Modeling of
Particulate from Low-Level Point Sources. ASAE Paper no.
024019. St. Joseph, MI:American Society of Agricultural
and Biological Engineers.

Gassman PW. 1992. Simulation of Odor Transport: A Review.
ASAE Paper no. 92-4517. St. Joseph, MI:American Society
of Agricultural and Biological Engineers.

Gassman PW, Bouzaher A. 1995. Livestock pollution: lessons
from the European Union. In: Animal Waste and the Land-
water Interface (Steele K, ed). Boca Raton, FL:Lewis
Publishers, 215–222.

Guo H, Jacobson LD, Schmidt D, Nicolai RE. 2001. Simulation of
odor dispersions as impacted by weather conditions. In:
Livestock Environment VI: Proceedings of the 6th
International Symposium, 21-23 May 2001, Louisville, KY
(Stowell RR, Bucklin R, Bottcher RW, eds). St. Joseph,
MI:American Society of Agricultural and Biological
Engineers, 687-695.

Harris D, Thompson B, Vogel C, Hashmonay R, Natschke D,
Wagoner K, et al. 2001. Innovative approach for measuring
ammonia and methane fluxes from a hog farm using open-
path fourier transform infrared spectroscopy. In:
Proceedings of the 94th Annual Conference of the Air and
Waste Management Association. VIP-102-CD. Pittsburgh,
PA:Air and Waste Management Association.

Hashmonay RM, Yost M, Mamane Y, Benayahu Y. 1999a.
Emission rate apportionment from fugitive sources using
open-path FTIR and mathematical inversion. Atmos
Environ 33:735–743.

Hashmonay RM, Yost M, Wu C. 1999b. Computed tomography
of air pollutants using radial scanning path-integrated
optical remote sensing. Atmos Environ 33:267–274.

Heber AJ. 1997. Setbacks for sufficient swine odor dispersion
and dilution. In: Livestock and Environment Symposium,
10–11 December 1997, Columbus, Nebraska. Lincoln,
NE:University of Nebraska Cooperative Extension Service.
Available: http://pasture.ecn.purdue.edu/~heber/setba.htm
[accessed 26 September 2005].

Jacobson LD, Guo H, Schmidt DR, Nicolai RE. 2001. Influence of
weather conditions on field evaluation of odor dispersions
from animal production sites. In: Livestock Environment VI:
Proceedings of the 6th International Symposium, 21–23
May 2001, Louisville, KY (Stowell RR, Bucklin R, Bottcher
RW, ed). St. Joseph, MI:American Society of Agricultural
and Biological Engineers, 679–686.

Bunton et al.

306 VOLUME 115 | NUMBER 2 | February 2007 • Environmental Health Perspectives



Modeling and monitoring of emissions from CAFOs

Environmental Health Perspectives • VOLUME 115 | NUMBER 2 | February 2007 307

Jacobson LD, Moon R, Bicudo J, Janni K, Noll S, Shurson G,
et al. 1999. Generic Environmental Impact Statement on
Animal Agriculture: Summary of the Literature Related to
Air Quality and Odor. Prepared for the Minnesota
Environmental Quality Board. Minneapolis, MN:University
of Minnesota, College of Agriculture, Food, and
Environmental Sciences. Available: http://www.mnplan.
state.mn.us/pdf/1999/eqb/scoping/aircha.pdf [accessed
26 September 2005].

Keddie AWC. 1980. Dispersion of odors. In: Odour Control: A
Concise Guide (Valentine FHH, North AA, eds). Stevenage,
Hertfordshire, UK:Warren Springs Laboratory, Department
of Industry.

Koppolu L, Schulte DD, Lin S, Rinkol MJ, Billesbach D, Verma SB.
2002. Comparison of AERMOD and STINK for dispersion
modeling of odorous compounds. Paper no. 024015. In: 2002
American Society of Agricultural and Biological Engineers
Annual International Meeting, July 2002, Chicago, IL.
St. Joseph, MI:American Society of Agricultural and
Biological Engineers

Li J, Dasgupta PK, Zhang G. 1999. Transversely illuminated liq-
uid core wave guide based fluorescence detection,
Fluorometric flow injection determination of aqueous
ammonium/ammonia. Talanta 50:617–623.

Li JD, Bundy DS, Hoff SJ, Liu Q. 1994. Field Odor Measurement
and Applications of Gaussian Plume Model. ASAE Paper
no. 944054. St. Joseph, MI:American Society of Biological
and Agricultural Engineers.

McCulloch RB, Shendrikar AD. 2000. Concurrent atmospheric
ammonia measurements using citric-acid-coated diffusion
denuders and a chemiluminescence analyzer. Atmos
Environ 34:4957–4958.

Mennen MG, Van Elzakker BG, Van Putten EM, Uiterwijk JW,
Regts TA, Van Hellemond J, et al. 1996. Evaluation of auto-
matic ammonia monitors for application in an air quality
monitoring network. Atmos Environ 30(19):3239–3256.

Minnesota Pollution Control Agency. 2003. Draft Environmental
Impact Statement on the Hancock Pro Pork Feedlot Project,
Stevens and Pope Counties. St. Paul, MN:Minnesota
Pollution Control Agency. Available: http://www.pca.state.
mn.us/news/eaw/hancock-eis.pdf [accessed 26 September
2005].

National Research Council. 2003. Air Emissions from Animal
Feeding Operations: Current Knowledge, Future Needs.
Washington, DC:National Academy Press.

National Research Council. 1993. Protecting Visibility in National
Parks and Wilderness Areas. Washington, DC:National
Academy Press. 

Parbst KE, Keener KM, Heber AJ, Ni JQ. 2000. Comparison
between low-end discrete and high-end continuous meas-
urements of air quality in swine buildings. Appl Eng Agric
16(6):693–699. 

Powers WJ, Bundy DS, van Kempen T, Sutton A, Hoff SJ. 2000.
Objective measurement of odors using gas chromatogra-
phy/mass spectrometry and electronic nose technologies.
In: Air Pollution from Agricultural Operations: Proceedings
of the Second International Conference, 9–11 October
2000, Des Moines, IA. St. Joseph, MI:American Society of
Agricultural and Biological Engineers.

Pushkarsky MB, Webber ME, Baghdassarian O, Narasimhan
LR, Patel CKN. 2002. Trends in laser sources, spectro-
scopic techniques and their applications to trace gas
detection. Appl Phys B 75(spec iss, 2–3):391–396.

Quinn AD, Wilson M, Reynolds AM, Couling SB, Hoxey RP.
2001. Modeling the dispersion of aerial pollutants from
agricultural buildings—an evaluation of computational
fluid dynamics (CFD). Comp Electr Agric 30:219–235.

Rege MA, Tock RW. 1996. Estimation of point-source emissions of
hydrogen sulfide and ammonia using a modified Pasquill-
Gifford approach. Atmos Environ 30(18):3181–3195.

Sheppard SC. 2002. Three approaches to define the ecotoxicity
threshold for atmospheric ammonia. Can J Soil Science
82:341–354.

Singles R, Sutton MA, Weston KJ. 1998. A multi-layer model to
describe the atmospheric transport and deposition of
ammonia in Great Britain. Atmos Environ 32(3):393–399.

Smith RJ. 1993. Dispersion of odours from ground level agricul-
tural sources. J Agric Eng Res 54:187–200.

Smith RJ, Watts PJ. 1994. Determination of odour emission
rates from cattle feedlots. Part 2—Evaluation of two wind
tunnels of different size. J Agric Eng Res 58:231–240.

State of Colorado. 1999. Colorado Regulation #2: Odor Emission.
Denver, CO:Air Quality Commission, Colorado Department of
Public Health and Environment. Available: http://www.cdphe.
state.co.us/op/regs/airregs/100104aqccodoremission.pdf
[accessed 26 September 2005].

State of Minnesota. 2003. Measurement Methodology for
Hydrogen Sulfide. Minnesota Rule 7009.0060. St. Paul, MN.
Minnesota State Legislature. Available: http://www.
revisor.leg.state.mn.us/arule/7009/0060.html [accessed
26 September 2005].

State of Missouri. 2003. Restriction of Emission of Odors.
Missouri 10 CSR 10-4.070. Jefferson City, MO:State of
Missouri. Available: http://www.sos.mo.gov/adrules/csr/
current/10csr/10c10-4.pdf [accessed 4 January 2007].

State of Missouri. 2004. Reference Methods. In: Air Quality
Standards, Definition, Sampling, and Reference Methods
and Air Pollution Control Regulations for the Entire State of
Missouri. Missouri 10 CSR 10-6.040(5). Jefferson, MO:State
of Missouri. Available: http://www.sos.mo.gov/adrules/csr/
current/10csr/10c10-6a.pdf [accessed 4 January 2007].

State of Nebraska. 2002. Nebraska Air Quality Regulations, Title
129, Chapter 4 Ambient Air Quality Standards - Revised 4-01-
2002. Lincoln, NE:Nebraska Department of Environmental

Quality. Available: http://www.deq.state.ne.us [accessed
26 September 2005].

Subramanian P, Reynolds S, Thorne PS, Donham K, Stookesberry
J, Thu K. 1996. Assessment of airborne ammonia in a swine
environment by the fluorimetric enzyme method. Int J
Environ Anal Chem 64:301–312.

Toda K, Dasgupta PK, Li J, Tarver GA, Zarus GM. 2001. Fluoro-
metric field instrument for continuous measurement of
atmospheric hydrogen sulfide. Anal Chem 73:5716–5724.

U.S. EPA. 1995. User’s Guide for the Industrial Source Complex
(ISC3) Dispersion Models. Research Triangle Park, NC:U.S.
Environmental Protection Agency, Office of Air Quality
Planning and Standards Emissions, Monitoring, Analysis
Division. Available: http://www.epa.gov/scram001/userg/
regmod/isc3v2.pdf [accessed 26 September 2005].

U.S. EPA (U.S. Environmental Protection Agency). 1998. Guideline
on Air Quality Models. Appendix W. U.S. Code of Federal
Regulations, 40 CFR Part 51 Available: http://www.epa.gov/
scram001/guidance/guide/appw_98.pdf [accessed 18
October 2006].

U.S. EPA. 2003a. Air Trends Report. EPA 454/K-03-001.
Washington, DC:U.S. Environmental Protection Agency,
Technology Transfer Network Ambient Monitoring
Technology Information Center. Available: http://www.epa.
gov/ttn/amtic/ [accessed 26 September 2005].

U.S. EPA. 2003b. Revision to the Guideline on Air Quality
Models: Adoption of a Preferred Long Range Transport
Model and Other Revisions; Final Rule. 40 CFR Part 51.
Washington, DC:U.S. Environmental Protection Agency.
Available: http://www.epa.gov/EPA-AIR/2003/April/Day-15/
a8542.htm [accessed 11 January 2007].

U.S. EPA. 2005. Revision to the Guideline on Air Quality Models:
Adoption of a Preferred General Purpose (Flat and Complex
Terrain) Dispersion Model and Other Revisions; Final Rule.
40 CFR Part 51. Washington, DC:U.S. Environmental
Protection Agency. Available: http://www.epa.gov/ttn/
scram/guidance/guide/appw_05.pdf [accessed 13 February
2006].

Watson JG, Chow JC, Moosmüller H, Green M, Frank N, Pitchford
M. 1998. Guidance for Using continuous Monitors in PM2.5
Monitoring Networks. Research Triangle Park, NC:U.S.
Environmental Protection Agency, Office of Air Quality
Planning and Standards. Available: http://www.epa.gov/
ttnamti1/files/ambient/pm25/r-98-012.pdf [accessed
September 26, 2005].

Zhu J, Jacobson L, Schmidt D, Nicolai R. 2000. Evaluation of
INPUFF-2 model for predicting downwind odors from ani-
mal production facilities. Appl Eng Agric 16(2):159–164.

Zirschky J. 1985. Geostatistics for environmental monitoring
and survey design. Environ Int 11(6): 515–524.


