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Spatial analyses of health outcomes have long
been recognized in the epidemiologic literature
as playing a specific and important role in
description and analysis. In particular, they can
highlight sources of heterogeneity underlying
spatial patterns in the health outcomes and
consequently are able to suggest important
public health determinants or etiologic clues. A
good example of geographic epidemiology is
the seminal monograph by Doll (1980), which
described some of the first hypotheses concern-
ing the influence of environment and lifestyle
characteristics on cancer mortality and dis-
cussed how these arose from studying the geo-
graphic distribution of various cancers. These
early studies were usually performed on a large
geographic scale, using mostly international or
regional comparisons.

Recently, the availability of local geograph-
ically indexed health and population data,
together with advances in computing and geo-
graphic information systems, has encouraged
the analysis of health data on a small geo-
graphic scale (Elliott et al. 2000). The motiva-
tion is the increased interpretability of
small-scale studies, as they are in principle less
susceptible to the component of ecologic bias
created by the within-area heterogeneity of
exposure or other determinants. They are also
better able to detect highly localized effects
such as those related to industrial pollution in
the vicinity. Conversely, small-scale studies
require more sophisticated statistical analysis

techniques than, for example, an analysis
between countries, because the data are typi-
cally sparse with low (even zero) counts of
events in many of the small areas. Further,
frequently there is evidence of overdispersion
of the counts with respect to the Poisson
model as well as spatial patterns indicating
some dependence between the counts in
neighboring areas.

Faced with these nonstandard characteris-
tics, statistical models have been developed to
address these issues and make best use of
small-area health data. In connection with
generic developments in a flexible modeling
strategy using the paradigm of Bayesian hier-
archical models, hierarchical disease-mapping
models based on conditional autoregressions
(CAR) were proposed in the 1990s through
the work of Besag et al. (1991), Clayton and
Bernardinelli (1992), and Clayton et al. (1993).
These CAR models are now commonly used
both by statisticians and epidemiologists, and
their implementation is facilitated by existing
software such as WinBUGS (Spiegelhalter et al.
2002). Alternative semiparametric formulations
to CAR have also been proposed recently
(Denison and Holmes 2001; Green and
Richardson 2002; Knorr-Held and Rasser
2000) to model more heterogeneous risk sur-
faces and particularly to allow for potential dis-
continuities in the risk. The main characteristic
of all these models is to provide some shrinkage
and spatial smoothing of the raw relative risk

estimates that otherwise would be computed
separately in each area. Such shrinkage gives a
more stable estimate of the pattern of underly-
ing risk of disease than that provided by the
raw estimates. The pattern of the raw risks,
strongly influenced by the size of the popula-
tion at risk, leads to a noisy and blurred picture
of the true unobserved risks.

Within the disease-mapping paradigm,
questions have been raised about the perfor-
mance of these models in recovering the true
risk surface, the influence of the prior structure
specified, and the amount of smoothing of the
risks actually performed by these models. In
other words, it is important to understand
thoroughly the sensitivity (ability to detect true
patterns of heterogeneity of risk) and the speci-
ficity (ability to discard false patterns created
by noise) of Bayesian disease-mapping models.
This is the focus of this article. This under-
standing is crucial for interpretation of any
specific disease pattern derived through the use
of such models. Such a calibration study can-
not be performed on real data because it relies
on knowing the true underlying pattern of
risk. We have thus conducted an extensive
simulation study where the generated data pat-
terns are close to those found in typical disease-
mapping studies. We report here the main
conclusions that can be drawn.

Let us stress that we are not placing our-
selves in the context of cluster detection meth-
ods based on so-called point data, that is, data
where the precise geographic location of all the
cases (and controls) is known. These methods,
which have been reviewed in a number of
monographs or special issues (e.g., Alexander
and Boyle 1996) are typically used on a
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localized scale, mostly to study the spatial distri-
bution of cases around a point source or differ-
ent patterns of randomness or clustering of the
cases in relation to those of controls. Here we
are concerned with methods for describing the
overall spatial pattern of cases aggregated over
small areas and the interpretation of the residual
variations once the Poisson noise has been
smoothed out by the disease-mapping models.
Several simulation exercises to study different
aspects of the performance of disease-mapping
models have been reported recently. For exam-
ple, Lawson et al. (2000) compared a number
of models that could be used for disease map-
ping by goodness of fit criteria that included
correlation between the simulated map and the
smoothed map and a Bayesian information cri-
terion. They concluded that the version of the
CAR model proposed by Besag et al. (1991)
[Besag, Yorke, and Mollié (BYM) model] was
the most robust model among those with spa-
tial structure. We also consider the BYM model
here and compare its performance with two
models not considered by Lawson et al. (2000):
a version of the BYM model that is more
robust to outliers and hence may be better able
to detect abrupt changes in the spatial pattern
of risk, and a spatial mixture model proposed
by Green and Richardson (2002) (see the sec-
tion on Bayesian disease-mapping models for
details). Our study also specifically addresses
the smoothing of high-risk areas and further
use of the posterior distribution of the relative
risks for detecting areas with excess risk—issues
not considered by Lawson et al. (2000). Jarup
et al. (2002) reported the results of a small sim-
ulation study similar to ours; we chose the
same study area and expected counts to carry
out our comprehensive exercise.

In the next section we describe the simula-
tion setup and the Bayesian disease-mapping
methods to be compared. We then discuss the
interpretation of the means of the posterior
distribution of the relative risk estimates typi-
cally reported in disease-mapping studies and
displayed as summary maps, and we illustrate
quantitatively how much smoothing is per-
formed. We then discuss how information on
the whole posterior distribution of the relative
risks can be better exploited to discriminate
between areas displaying higher risk and areas
with relative risk close to background level.
We conclude with a short discussion that
emphasizes the importance of interpreting any
results from a disease-mapping exercise in the
context of the size of expected counts and the
potential spatial structure of the risks.

Materials and Methods

The basic setup of disease-mapping studies is as
follows: The number of cases of a particular
disease Yi occurring in area Ai is recorded,
where the set of areas {Ai},i = 1, 2,…,n repre-
sents a partition of the region under study. For

each area Ai, the expected number of cases Ei is
also computed using reference rates for the dis-
ease incidence (or mortality) and the sociode-
mographic strata (with respect to age, sex, and
perhaps socioeconomic characteristics) where
census data are available.

The distribution of the counts Yi is typi-
cally assumed to come from a Poisson distribu-
tion, as the diseases usually considered in such
studies are rare and this distribution gives a
good approximation to the underlying bino-
mial distribution that would hold for each risk
stratum. The local variability of the counts is
thus modeled as follows:

Yi ~ Poisson(Ei θi), [1]
independently for i = 1, 2,…,n.

The parameter of interest is θi, the relative
risk that quantifies whether the area i has a
higher (θi > 1) or lower (θi < 1) occurrence of
cases than that expected from the reference
rates. It is this parameter that we are trying to
estimate to quantify the heterogeneity of the
risk and to highlight unusual patterns of risks.

Data Generation
The spatial structure used throughout the sim-
ulations is that of the 532 wards in the county
of Yorkshire, England. Wards are administra-
tive areas in the United Kingdom, with a total
population of approximately 5,000 on aver-
age. We base our expected counts Ei on those
calculated by Jarup et al. (2002) for prostate
cancer in males 45–64 years of age over the
period from 1975 to 1991. We then simulate
three spatial patterns of increased risks. For
each pattern, we examine three magnitudes for
the elevated risks. We also examine how the
inference is changed if the expected counts are
multiplicatively increased by a scale factor (SF)
varying from 2 to 10.

Three spatial patterns for areas of elevated
risk were chosen. The choice of patterns was
intended to span a spectrum ranging from a
scenario with single isolated areas with ele-
vated risks (the hardest test case for any
smoothing method) to a scenario with a num-
ber of larger clusters of several contiguous
areas with elevated risks (a situation with a
substantial amount of heterogeneity). In all
cases the elevated areas were selected in turn at
random from the set of areas with the required
expected counts. In the Simu 1 and Simu 3
cases, once an area was selected, a buffer of
neighboring areas with background risk
(excluded thereafter from the random selec-
tion) was placed around it to produce the
required pattern of isolated high-risk clusters.
The three generated patterns were defined
as follows:
• Simu 1: five isolated single wards with

expected counts ranging from 0.8 to 7.3
corresponding, respectively, to the 10th,

25th, 50th, 75th, and 90th percentiles of
the distribution of the expected counts

• Simu 2: a group of contiguous wards repre-
senting 1% of the total expected counts. In
effect, this chosen 1% cluster grouped four
wards with fairly comparable expected
counts ranging from 3.6 to 7.0, giving an
average expected count per ward of 5.4 over
the four wards

• Simu 3: a situation with high heterogeneity
comprising 20 such 1% clusters that are
nonoverlapping.

Note that for Simu 3, the twenty 1% clus-
ters each have a total expected count close to
17 but a large disparity in terms of numbers of
constitute areas: 10 clusters had 2 or 3 areas,
whereas 8 clusters had more than 8 areas, up to
a maximum of 18 areas. Correspondingly, the
expected counts in each of the wards in the
clusters ranged from 0.3 for some wards in the
18-area cluster to 12 for the cluster with
2 areas. Simu 3 thus corresponds to a realistic
situation of heterogeneity of risk where both
small clusters with high expected counts, for
example, typically a populated area, and large
clusters each with small expected counts, for
example, in rural areas, are present. This high
degree of heterogeneity has to be considered
when interpreting the results for the Simu 3
case where an average over all the 20 clusters
is presented. Note also that contrary to the
Simu 2 case, about half the background areas
in Simu 3 have a neighbor that belongs to one
of the 20 clusters. In each case, apart from the
elevated risk areas described above, all other
areas are called background areas.

For each spatial pattern in Simu 1 and
Simu 2, counts Yi were generated as follows:
Counts in all background areas were generated
from a Poisson distribution with mean Ei. For
all the other areas, an elevated relative risk with
magnitude θi > 1 was used and counts were
simulated as Poisson variables with mean θiEi .
The simulation was repeated for three values of
θi (1.5, 2, and 3) and for different SFs that
multiply the expected counts Ei for all areas.
Thus, results reported, for example, for an area
with E = 1.92, θ = 2, and SF = 4, correspond
to counts generated from a Poisson with mean
15.36 (2 × 4 × 1.92).

For Simu 3 a slightly different procedure
for generating the cases was used to ensure that
∑Yi = ∑ Ei (Appendix A). Note that for Simu 1
and Simu 2, the simulation procedure meant
only that ∑Yi ≈ ∑Ei. This corresponds, for
instance, to an epidemiologic situation where
expected counts Ei are calculated based on an
external reference rate. However, Simu 3 uses
internal reference rates because otherwise ∑Yi
would have been much larger than Ei , which
could distort the overall risk estimates. The
multinomial procedure used in Simu 3 and
detailed in Appendix A implies that, in effect,
the multiplicative contrast between areas of
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elevated risk and background areas is still 3, 2,
and 1.5, respectively, but the corresponding
relative risks in each area (denoted θ*

i ) relative
to the internal (i.e., study region average) refer-
ence rates are now 2.1, 1.65, and 1.35 for the
elevated areas and 0.7, 0.82, and 0.9 for the
background areas.

To allow for sampling variability, each sim-
ulation case was replicated 100 times. The
results presented are averaged over these 100
replications. A total of 36 simulation scenarios
were investigated, corresponding to three spa-
tial patterns (Simu 1, 2, and 3) × three differ-
ent magnitudes of elevated risk (θ = 3, 2, and
1.5) × 4 SFs for the expected counts Ei (SF = 1,
2, 4, and 10).

Bayesian Disease-Mapping Models
Bayesian disease-mapping models treat the rel-
ative risks {θi } as random variables and specify
a distribution for them. This part of the model
is crucial, as the distributional assumptions
thus made allow borrowing of information
across the areas. The distribution specified is
referred to as the second hierarchical level of
the model to distinguish it from the first-level
distribution specified in equation 1 that per-
tains to the random sampling variability of the
observed counts about their local mean. It is at
this second level that the spatial dependence
between the relative risks is introduced. This
spatial dependence is represented by means of
a prescribed neighborhood graph that defines
the set of neighbors (denoted by �i) for each
area i.

The most commonly used parametric
model at the second level of the hierarchy is
the CAR model. This specifies the distribu-
tion of the log relative risks vi = log(θi ) by

p(vi |vj , j ≠ i) ~ N(–vi , σ2 ⁄ni ), [2]

where σ 2 is an unknown variance parameter,
and –vi = ∑j∈�ivj ⁄ ni , where ni is the number
of neighbors of area i. Thus, essentially the
log relative risk in one area is influenced by
the average log relative risk of its neighbors,
with variability characterized by a conditional
variance σ 2/ni .

This CAR model makes a strong spatial
assumption and has only one free parameter
linked to the conditional variance σ 2. To
increase flexibility, Besag et al. (1991) recom-
mend modeling log (θi ) as the sum of a CAR
process and an unstructured exchangeable com-
ponent δi ~ N(0,τ2), i = 1, …,n independently:

log (θi ) = vi + δi . [3]

This is the BYM model introduced by Besag
et al. (1991) that we referred to earlier. We use
this model as a benchmark, as its use in
disease-mapping studies has been widespread
since 1991.

The Gaussian distribution used in the
CAR specification above induces a high level
of smoothness. In the same 1991 article, Besag
et al. (1991) discussed an alternative specifica-
tion using the heavier-tailed, double-exponen-
tial distribution rather than the Gaussian
distribution in Equation 2. In effect, this is
similar to performing a median-based local
smoothing (or L1 norm) rather than a mean-
based smoothing, thus allowing more abrupt
changes in the geographical pattern of risk.
We will refer to this model as L1-BYM.

With any such parametric specification, the
amount of smoothing performed (e.g., con-
trolled by the parameters σ 2 and τ 2) is affected
globally by all the areas and is not adaptive.
Concerns that such parametric models could
oversmooth have led several authors to develop
semiparametric spatial models that replace the
continuously varying spatial distribution for
{θi} by discrete allocation or partition models.
Such models allow discontinuities in the risk
surface and make fewer distributional assump-
tions. Partition models that allow a variable
number of clusters have been proposed by
Denison and Holmes (2001) and Knorr-Held
and Rasser (2000).

In this article we investigate the perfor-
mance of a related spatial mixture model
recently proposed by Green and Richardson
(2002) that we refer to as MIX. This model
leads to good estimation of the relative risks
compared with the BYM model for a variety
of cases of discontinuities of the risk surface.
The idea underlying the MIX model is to
replace a continuous model for θi by a mix-
ture model that uses a variable number of risk
classes and a spatially correlated allocation
model to distribute each area to a class. By
averaging over a large number of possible con-
figurations, the marginal distribution of the
relative risk is nevertheless smooth. To be pre-
cise, it is assumed that θi = θZi , where Zi, i =
1, 2,…,n are allocation variables taking values
in 1, 2,…,k and θj, j = 1,2,…,k are the values
of the relative risks that characterize the k dif-
ferent components or risk classes. To have
maximum flexibility, the number of compo-
nents k of the mixture is treated as unknown.
Given k, the allocations Zi follow a spatially
correlated process, the Potts model, which has
been used in image processing and other
spatial applications and involves a positive
interaction parameter ψ (similar to an auto-
correlation parameter) that influences the
degree of spatial dependence of the allocations.
Specifically, the allocation of an area to a risk
component will be favored probabilistically by
the number of neighbors currently attributed
to that component scaled multiplicatively by
ψ. In this way the prior knowledge that areas
close by tend to have similar risks can be
reflected through the allocation structure. The
interaction parameter ψ is treated as unknown

and jointly estimated with the number of
components and their associated risk. The
MIX model can adapt to various patterns of
risk and model discontinuities by creating a
new risk class if there is sufficient information
in the data to warrant this. Further details on
the specification of the model are given in
Green and Richardson (2002). Thus, in the
comparison described later, we have imple-
mented one reference model BYM and two
alternative models, the parametric L1-BYM
and the semiparametric MIX model.

Implementation
Bayesian inference is based on the joint poste-
rior distribution of all parameters given the
data. In our case this joint distribution is
mathematically intractable and is simulated
using the framework of Markov chain Monte
Carlo techniques now commonly used in
Bayesian analyses (Gilks et al. 1996). All para-
meters involved in the models described
above, for example, the variances σ 2 or τ 2 or
the interaction parameter ψ, are given prior
distributions at a third level of the hierarchy.
Implementation of the BYM and L1-BYM
was carried out using the free software
WinBUGS (Spiegelhalter et al. 2002).
Implementation of the MIX model was car-
ried out using a purpose-built Fortran code.

Results

How Smooth Are the Posterior Means?

The results of a Bayesian disease-mapping
analysis are typically presented in the form of a
map displaying a point estimate (usually the
mean or median of the posterior distribution)
of the relative risk for each area. To interpret
such maps, one needs to understand the extent
to which the statistical model is able to smooth
the risk estimates to eliminate random noise
while at the same time avoiding oversmoothing
that might flatten any true variations in risk.
To address this issue, we consider the two
aspects separately: a) do the Bayesian methods
provide adequate smoothing of the back-
ground rates, and b) to what extent is the pos-
terior mean estimate different from the
background risk in the small number of areas
simulated with a true elevated risk?

In all the cases simulated, we found sub-
stantial shrinkage of the relative risk estimates
for the background rates. This is well illus-
trated in Figure 1, which displays raw and
smooth estimates for all the background areas
of Simu 2 and an SF of 1 or 4. Note that when
SF = 1, the histogram of the raw standardized
mortality or morbidity ratio (SMR) estimates is
very dispersed (Figure 1A), with a range of
0–11, and shows a skewed distribution. Clearly,
mapping the raw SMRs would present a mis-
leading picture of the risk pattern, whereas any
of the three Bayesian models give posterior
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mean relative risk estimates for the background
areas that are well centered on 1 (Figure 1B–D),
with just a few areas having estimates outside
the 0.9–1.1 range. When the expected counts
are higher (SF = 4), the histogram of the raw
SMRs is less spread but still substantially
overdispersed, whereas those corresponding to
the three models are even more concentrated
on 1 than when SF = 1 (Figure 1F–H). Thus

the false patterns created by the Poisson noise
are adequately smoothed out by all the disease-
mapping models.

Details of the performance of the BYM
model in estimating the relative risk of the high-
risk areas are presented in Table 1, with findings
for L1-BYM and MIX shown in Tables 2 and 3,
respectively. Overall, for the BYM model, a
great deal of smoothing of the relative risks is

apparent. For the isolated areas in Simu 1, one
can see that relative risks of 1.5 in any single area
are smoothed away, even in the most favorable
case of an area with expected counts of 70 (90%
area SF = 10). When the simulated relative risk
is 2, the posterior mean risk estimate is above
1.2 only when the expected count is around 50
or more (e.g., 75% area with SF = 10). Relative
risks of 3 are smoothed to about half their values
when the expected counts are around 10 (e.g.,
25% area with SF = 10 or 75% area with
SF = 2). Comparison of Simu 2 with Simu 1
(75% area) shows that having a cluster of high-
risk areas rather than a single area with elevated
risk slightly decreases the amount of smoothing
for the same average expected count. Again, this
is apparent in the many-cluster situation of
Simu 3, where even though the true θ*i are
smaller, the relative risk estimates are higher
than those for Simu 2.

Overall, the performance of the L1-BYM
model (Table 2) is similar to that of the BYM
model. However, as expected, the L1-BYM
model effects a little less smoothing in cases of
large expected counts or high relative risk esti-
mates. For Simu 3 the estimates are nearly
identical to those of the BYM model. Thus,
simply changing the distributional assump-
tions in the autoregressive specifications results
in only a small modification in the estimates.

The results for the MIX model given in
Table 3 show a different pattern than those for
the BYM or L1-BYM. For Simu 1 and an ele-
vated relative risk of 1.5, strong smoothing
toward 1 is apparent as for BYM. However, for
Simu 2, posterior mean relative risks become
higher than 1.2 for the largest SF. At the other
end of the spectrum, relative risks of 3 are well
estimated with posterior means above 2.5 as
soon as the expected count is above 10 either
for single areas (e.g., 50% area with SF = 4) or
for the 1% clustered areas with SF = 2. These
results are in accordance with the nature of the
MIX model. When there is sufficient evidence
in the data to create a group of areas with
higher risk, the posterior mean risks for the
areas in this group are well estimated and close
to the simulated values. Otherwise, all areas are
allocated to the background category and
smoothed toward 1.
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Figure 1. Histograms of the raw SMRs (A,E ) and posterior means of the relative risks (B–H ) for all the back-
ground areas of Simu 2 derived by each of the three models. Note that the crosses on the x-axes indicate the
minimum and maximum values obtained. SF indicates the scale factor used for the expected values.
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Table 1. Posterior mean relative risk estimates for the raised-risk areas for the BYM model (average over replicate data sets).

SF = 1 SF = 2 SF = 4 SF = 10
Raised-risk area θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3

Simu 1
10% area (E = 0.84) 1.01 1.02 1.06 1.01 1.02 1.12 1.01 1.03 1.20 1.01 1.07 1.40
25% area (E = 1.10) 1.03 1.04 1.10 1.00 1.03 1.15 1.01 1.05 1.28 1.02 1.09 1.52
50% area (E = 1.92) 1.02 1.05 1.15 1.00 1.05 1.28 1.02 1.08 1.46 1.03 1.16 1.79
75% area (E = 5.37) 1.03 1.05 1.31 1.03 1.07 1.55 1.04 1.12 1.86 1.05 1.33 2.35
90% area (E = 7.38) 1.03 1.07 1.34 1.03 1.10 1.62 1.04 1.15 2.07 1.07 1.40 2.47

Simu 2
1% cluster (E– = 5.42) 1.04 1.08 1.45 1.04 1.14 1.76 1.05 1.23 2.11 1.09 1.45 2.43

Simu 3 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1
20 × 1% clusters 1.04 1.23 1.63 1.07 1.3 1.74 1.12 1.38 1.84 1.19 1.48 1.95
(E– range: 0.77–11.6)



Having many heterogeneous clusters as in
Simu 3 does not improve the MIX perfor-
mance as much as that of BYM. Because of the
more diffuse nature of some of the clusters,
more areas in the background are randomly
included in the group of areas with higher risk.
Thus, the MIX model still has a mode close to
the true relative risk, but the histogram of the
mean posterior risks for all the high-risk areas
has a longer left-hand tail than in the Simu 2
scenario (Figure 2).

The difference in performance of the three
models is further illustrated in Figure 3, which
displays, for the three models, box plots of the
posterior mean estimates of the relative risk in
the raised-risk areas over the 100 replicates for
Simu 2 with true relative risks of 3 and 2.
When the true relative risk is 3, the MIX
model is clearly performing better than the
other two models, whereas for a relative risk
of 2 and the lowest SF, the MIX model is the
model that produces the most smoothing.

Interpreting the Posterior
Distribution of the Risk
Mapping the posterior mean relative risk as
discussed previously does not make full use of
the output of the Bayesian analysis that pro-
vides, for each area, samples from the whole
posterior distribution of the relative risk.
Mapping the probability that a relative risk is
greater than a specified threshold of interest has
been proposed by several authors [e.g., Clayton
and Bernardinelli (1992)]. We carry this fur-
ther and investigate the performance of deci-
sion rules for classifying an area Ai as having an

increased risk based on how much of the pos-
terior distribution of θi exceeds a reference
threshold. Figure 4 presents an example of the
posterior distribution of the relative risk for such
an area. The shaded proportion corresponds to
the posterior probability that θ > 1. To be pre-
cise, to classify any area as having an elevated
risk, we define the decision rule D(c, R0), which
depends on a cutoff probability c and a refer-
ence threshold R0 such that area Ai is classified
as having an elevated risk according to D(c, R0)
↔ Prob(θi > R0) > c. The appropriate rules to
investigate will depend on the shape of the pos-
terior distribution of θi for the elevated areas.
We first discuss rules adapted to the autore-
gressive BYM and L1-BYM models. For these
two models we have seen that, in general, the
mean of the posterior distribution of θi in the
raised-risk areas is greater than 1 but rarely
above 1.5 in many of the scenarios investi-
gated. Thus, it seems sensible to take R0 = 1 as
a reference threshold. We would also expect
the bulk of the posterior distribution to be
shifted above 1 for these areas, suggesting that
cutoff probabilities well above 0.5 are indi-
cated. In the first instance, we choose c = 0.8.
Thus, for the BYM and L1-BYM models, we
report results corresponding to the decision
rule D(0.8, 1). See Appendix B for a detailed
justification of this choice of value of c and the
performance of different decision rules.

In contrast, we have seen that the mean of
the posterior distribution of θi for raised-risk
areas for the MIX model is closer to the true
value for many scenarios, and there is clear indi-
cation that the upper tail of this distribution

can be well above 1. Furthermore, the spread of
this distribution is less than the corresponding
one for the BYM or L1-BYM models, as noted
by Green and Richardson (2002). The choice
of threshold is thus more crucial for this model,
making it harder to find an appropriate deci-
sion rule. After some exploratory analyses of the
simple clusters in Simu 1 and Simu 2, we
found that a suitable decision rule for the MIX
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Table 2. Posterior mean relative risk estimates for the raised-risk areas for the L1-BYM model (average over replicate data sets).

SF = 1 SF = 2 SF = 4 SF = 10
Raised-risk area θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3

Simu 1
10% area (E = 0.84) 1.01 1.02 1.05 1.01 1.02 1.12 1.01 1.02 1.16 1.01 1.07 1.21
25% area (E = 1.10) 1.01 1.03 1.11 1.00 1.04 1.15 1.00 1.06 1.24 1.03 1.09 1.35
50% area (E = 1.92) 1.01 1.03 1.16 1.00 1.05 1.28 1.01 1.08 1.55 1.03 1.17 2.22
75% area (E = 5.37) 1.02 1.05 1.32 1.03 1.08 1.56 1.03 1.13 1.98 1.05 1.35 2.67
90% area (E = 7.38) 1.04 1.07 1.48 1.03 1.13 1.93 1.05 1.25 2.43 1.08 1.60 2.72

Simu 2
1% cluster (E– = 5.42) 1.04 1.08 1.45 1.04 1.14 1.76 1.05 1.23 2.11 1.09 1.45 2.43

Simu 3 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1
20 × 1% clusters 1.04 1.22 1.61 1.07 1.29 1.74 1.12 1.38 1.85 1.19 1.49 1.97
(E– range: 0.77–11.6)

Table 3. Posterior mean relative risk estimates for the raised-risk areas for the MIX model (average over replicate data sets).

SF = 1 SF = 2 SF = 4 SF = 10
Raised-risk area θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3

Simu 1
10% area (E = 0.84) 1.00 1.01 1.02 1.00 1.02 1.27 1.00 1.01 1.53 1.01 1.10 2.50
25% area (E = 1.10) 1.00 1.02 1.09 1.00 1.01 1.17 1.00 1.05 1.80 1.01 1.22 2.67
50% area (E = 1.92) 1.00 1.02 1.25 1.00 1.04 1.88 1.00 1.23 2.78 1.02 1.72 3.02
75% area (E = 5.37) 1.00 1.03 1.57 1.00 1.07 2.44 1.01 1.42 2.91 1.04 1.87 3.02
90% area (E = 7.38) 1.00 1.03 1.60 1.01 1.09 2.46 1.01 1.49 2.91 1.06 1.89 3.02

Simu 2
1% cluster (E– = 5.42) 1.02 1.06 1.98 1.01 1.25 2.66 1.03 1.72 2.92 1.21 1.92 2.98

Simu 3 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1
20 × 1% clusters 1.02 1.19 1.55 1.05 1.31 1.64 1.12 1.44 1.81 1.31 1.55 2.06
(E– range: 0.77–11.6)

Figure 2. Histograms comparing the distribution of
the posterior means of the relative risks estimated
by the BYM or MIX models for the high-risk areas of
Simu 2 or Simu 3 using a scale factor of 4 for the
expected values and a true relative risk (marked by
the vertical line on each plot) of θ = 2 (Simu 2) or
θ*1=1.65 (Simu 3).

Posterior mean

Posterior mean

Posterior mean

Posterior mean

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y

80

60

40

20

0
1.0 1.4 1.8 2.2

Mix
Simu 2

120

100

80

60

40

20

0
1.0 1.4 1.8 2.2

BYM
Simu 2

2,000

1,500

1,000

500

0
1.0 1.5 2.0 2.5

BYM
Simu 3

4,000

3,000

2,000

1,000

0
1.0 1.5 2.0 2.5

Mix
Simu 3



model in these two scenarios is to choose R0 =
1.5. For such a high threshold, one would
expect that it is enough for a small fraction
(e.g., 5 or 10%) of the posterior distribution of
θi to be above 1.5 to indicate that an area has
elevated risk. Thus, for the MIX model we
report results corresponding to the decision rule
D(0.05, 1.5).

Two types of errors are associated with any
decision rule: a) a false-positive result, that is,
declaring an area as having elevated risk when in
fact its underlying true rate equals the back-
ground level (an error also traditionally referred
to as type I error or lack of specificity); and b) a
false-negative result, that is, declaring an area to
be in the background when in fact its underly-
ing rate is elevated (an error also referred to as
type II error or lack of sensitivity). In epidemiol-
ogy, performances are discussed either by report-
ing these error rates or their complementary
quantities that measure the success rates of the
decision rule. The two goals of disease mapping
can be summarized as follows: not to overinter-
pret excesses arising by chance, that is, to mini-
mize the false-positive rate but to detect patterns
of true heterogeneity, that is, to maximize the
sensitivity. We thus choose to report these two
easily interpretable quantities. To be precise, for
any decision rule D(c, R0), we compute
• the false-positive rate (or 1 – specificity),

that is, the proportion of background areas
falsely declared elevated by the decision rule
D(c, R0)

• the sensitivity (or 1 – false-negative rate),
that is, the proportion of areas generated
with elevated rates correctly declared ele-
vated by the decision rule D(c, R0).

It is clear that there must be a compromise
between these two goals: a stricter rule (i.e.,
one with a higher value of c or R0 or both)
reduces the false-positive rate but also decreases
the sensitivity and thus increases the false-
negative rate. Thus, to judge the performance
of any decision rule, one has to consider both
types of errors, not necessarily equally
weighted. See Appendix B for an illustration of
the implication of different weighting on the
overall performance of the decision rule.

Table 4 summarizes the probabilities of
false-positive results for the three models. For
BYM and L1-BYM, the probabilities stay
below 10% with no discernible pattern for
Simu 1 and Simu 2. The error rates are clearly
smaller and around 3% for Simu 3. In this sce-
nario, the background relative risk is shifted
below 1, so a decision rule with R0 = 1 is, in
effect, a more stringent rule than in the case of
Simu 1 and Simu 2 where the background rel-
ative risks are close to 1. For the MIX model,
the false-positive rates are quite low for Simu 1
and Simu 2 and stay mostly below 3%.
However, as shown in the last line of Table 4,
these rates have greatly increased for the
Simu 3 scenario, indicating that the decision
rule D(0.05, 1.5) is no longer appropriate in
this heterogeneous context. The heterogeneity
creates a lot of uncertainty, with some back-
ground areas being grouped with nearby high-
risk areas; consequently, the rule D(0.05, 1.5)
is not stringent (specific) enough. Thus, we
have investigated a series of rules D(c, 1.5) for
c = 0.1–0.4 for the MIX model in the Simu 3
scenario. As c increases, the probability of false
positive decreases; for D(0.4, 1.5), the proba-
bility is, on average, around 3% and always
below 7% (Table 5).

Concerning the detection of truly
increased relative risks and sensitivity, we first
discuss the results for the BYM and L1-BYM
models. As expected from the posterior means
shown in Tables 1 or 2, the ability to detect
true increased risk areas is limited when the
increase is only of the order of 1.5. If one takes
as a guideline the cases where the detection of
true positive is 50% or more, Tables 6 and 7
show that this sensitivity is reached for an
expected count of around 50 in the case of a
single isolated area and around 20 for the 1%
cluster scenario. This shows that for rare dis-
eases and small areas, there is little chance of
detecting increased risks of around 1.5 while
adequately controlling the false-positive rate.

True relative risks of 2 are detected with at
least 75% probability when expected counts
are between 10 and 20 per area, depending on
the spatial structure of the risk surface, whereas

true relative risks of 3 are detected almost
certainly when expected counts per area are 5
or more. There is no clear pattern of difference
between the results for BYM and L1-BYM;
overall, the sensitivity is similar. For Simu 3 we
see that the sensitivity is lower than for the
other simulation scenarios with equivalent
expected counts (as were the rates of false posi-
tive in Table 4), in line with the true relative
risks being closer to 1 than for Simu 1 and
Simu 2. Hence, the decision rule D(0.8, 1) is
more specific but less sensitive in this scenario.
In situations comprising a large degree of het-
erogeneity akin to Simu 3, it thus might be
advantageous to consider alternative rules, even
if the rate of false positive is less well con-
trolled. For example, in the case of a true rela-
tive risk (θ) = 1.65 and SF = 4, the use of rule
D(0.7, 1) for the BYM model leads to a higher
probability of false positive (6% compared
with the 3% shown in Table 4). However, the
corresponding gain in sensitivity is more than
10%, with the probability of detecting a true
positive increasing to 82% compared with
71% when using the rule D(0.8, 1) (Table 5).
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Figure 3. Box plots of the posterior means of the relative risks estimated by the three models for the high-risk areas of Simu 2 as a function of the scaling factor.
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Nevertheless, even with this relaxed and more
sensitive rule, the chance of detecting a true
relative risk as small as 1.3 is only around 50%
if the SF is 4 (i.e., average cluster with total
expected count around 80). On the other
hand, true relative risks of around 2 are
detected with high probability as soon as the
SF is 2 (which corresponds, on average, to a
cluster with total expected count of 40).

The contrasting behavior of the MIX
model is again apparent in Table 8 when one
compares the results for the θ =1.5 scenario
with the other columns. For Simu 1 and Simu
2 the sensitivity is generally below that of the
BYM model and especially when the true rela-
tive risk is 1.5; single clusters with θ = 1.5 are
simply not detected. In the 1% cluster case
expected counts of at least 20 (10) are necessary
to be over 95% certain of detecting a true rela-
tive risk of 2 (3) (Table 8). Note that the
results of the last line of Table 8 should be
discounted in view of the high probability of
false-positive results corresponding to this sce-
nario (Simu 3) for the D(0.05, 1.5) rule shown

in Table 4. Thus, it is apparent that for the
MIX model, it is hard to calibrate a good deci-
sion rule appropriate for a variety of spatial
patterns of elevated risk. In Table 5 we sum-
marize the results corresponding to the deci-
sion rule D(0.4, 1.5), which offers a reasonable
compromise between keeping the rate of false
positives below 7% and an acceptable detec-
tion rate of true clusters. With this rule true
relative risks of 1.65 with an SF of 2 (i.e., aver-
age cluster with total expected count slightly
under 40) or larger have more than a 50%
chance of being detected, and true relative
risks of around 2 are nearly always detected.
However, this model does not detect a true
relative risk as small as 1.3.

Discussion

This comprehensive simulation study high-
lights some important points to be considered
in interpreting any disease-mapping exercise
based on hierarchical Bayesian procedures.
First, the necessary control of false positives is
indeed achieved using any of the models

described. However, this is accompanied by a
strong smoothing effect that renders the detec-
tion of localized increases in risk nearly impos-
sible if these are not based on large (3-fold or
more) excess risks or, in the case of more mod-
erate (2-fold) excess risks, substantial expected
counts of approximately 50 or more. Thus, in
any study it is important to report the range of
expected counts across the map and to calibrate
any conclusions regarding the relative risks
with respect to these expected counts.

In general Bayes procedures offer a tradeoff
between bias and variance reduction of the esti-
mates. Particularly in cases where the sample
size is small, they produce a set of point esti-
mates that have good properties in terms of
minimizing squared error loss (Carlin and
Louis 2000). This variance reduction is
attained through borrowing information
resulting from the adopted hierarchical struc-
ture, leading to Bayes point estimates shrunk
toward a value related to the distribution of all
the units included in the hierarchical structure.
The effect of shrinkage is thus dependent on

Mini-Monograph | Richardson et al.

1022 VOLUME 112 | NUMBER 9 | June 2004 • Environmental Health Perspectives

Table 4. False-positive rates (1 – specificity) for the three models.a

SF = 1 SF = 2 SF = 4 SF = 10
Background θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3

BYM
Simu 1 0.08 0.10 0.05 0.04 0.06 0.04 0.03 0.08 0.06 0.03 0.05 0.08
Simu 2 0.07 0.06 0.06 0.05 0.05 0.06 0.05 0.05 0.07 0.04 0.08 0.10
Simu 3b 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.03 0.01 0.03 0.02 0.01

L1-BYM
Simu 1 0.05 0.09 0.06 0.06 0.10 0.05 0.03 0.06 0.06 0.05 0.05 0.08
Simu 2 0.07 0.09 0.06 0.05 0.07 0.06 0.05 0.06 0.06 0.04 0.07 0.08
Simu 3b 0.04 0.03 0.02 0.02 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.01

MIX
Simu 1 0.00 0.04 0.00 0.01 0.04 0.00 0.03 0.02 0.00 0.02 0.00 0.08
Simu 2 0.00 0.01 0.11 0.00 0.04 0.04 0.00 0.06 0.01 0.01 0.02 0.00
Simu 3b 0.02 0.51 0.44 0.02 0.52 0.25 0.01 0.33 0.12 0.00 0.14 0.03

aDecision rules are D(0.8, 1) for BYM and L1-BYM and D(0.05, 1.5) for MIX. bFor Simu 3, θ* = 1.35, 1.65, or 2.1 instead of θ = 1.5, 2, or 3, respectively.

Table 5. Simu 3: performance of the BYM and MIX models under alternative decision rules.

SF = 1 SF = 2 SF = 4 SF = 10
θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1

BYM – D (0.7, 1)
Probability (false detection) 0.10 0.07 0.05 0.07 0.07 0.04 0.08 0.06 0.03 0.08 0.05 0.02
Probability (true detection) 0.23 0.51 0.71 0.36 0.68 0.84 0.56 0.82 0.93 0.81 0.95 0.99

MIX – D (0.4,1.5)
Probability (false detection) 0.00 0.03 0.07 0.00 0.06 0.05 0.00 0.07 0.03 0.00 0.03 0.01
Probability (true detection) 0.00 0.23 0.76 0.00 0.62 0.88 0.00 0.84 0.93 0.00 0.93 0.98

Table 6. Sensitivity (1 – false-negative rate) for the BYM model.a

SF = 1 SF = 2 SF = 4 SF = 10
Raised-risk area θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3

Simu 1
10% area (E = 0.84) 0.08 0.06 0.08 0.04 0.02 0.36 0 0.06 0.68 0.02 0.42 0.98
25% area (E = 1.10) 0.36 0.48 0.38 0.20 0.24 0.36 0.20 0.50 0.82 0.28 0.54 1
50% area (E = 1.92) 0.32 0.48 0.40 0.16 0.32 0.66 0.24 0.66 0.98 0.30 0.96 1
75% area (E = 5.37) 0.08 0.30 0.74 0.12 0.52 0.98 0.22 0.76 1 0.66 1 1
90% area (E = 7.38) 0.12 0.22 0.74 0.10 0.64 0.98 0.34 0.88 1 0.88 1 1

Simu 2
1% cluster (E– = 5.42) 0.18 0.42 0.95 0.30 0.74 1 0.53 0.97 1 0.90 1 1

Simu 3 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1
20 × 1% clusters 0.09 0.34 0.56 0.17 0.51 0.74 0.37 0.71 0.88 0.66 0.90 0.94
(E– range: 0.77–11.6)

aDecision rule is D(0.8, 1).



the prior structure that has been assumed and
conditional on the latter being close to the true
model in some sense. Consequently, different
prior structures will lead to different shrinkage.
Note that the desirable properties of the esti-
mates thus obtained will depend on the ulti-
mate goal of the estimation exercise. If
producing a set of point estimates of the rela-
tive risk is the aim, then posterior means of the
relative risk are best in squared error loss terms.
However, if the goal is to estimate the his-
togram or the ranks of the area relative risks,
different loss function should be considered.
The desirability and difficulty of simultane-
ously achieving these triple goals has been dis-
cussed by Shen and Louis (1998) and has been
illustrated in spatial case studies by Conlon and
Louis (1999) and Stern and Cressie (1999). In
our study, we focus on the goal of estimating
the overall spatial pattern of risk, which
involves producing and interpreting a set of
point estimates that will not only give a good
indication of the presence of heterogeneity in
the relative risks but also highlight where on
the map this heterogeneity arises and whether
this is linked to isolated high- and/or low-risk
areas or to more general spatial aggregation of
areas of similar high or low risk. Inference
about the latter will depend on the sensitivity
and specificity of the posterior risk estimates, as
discussed in this article. If the goal is purely the
testing of heterogeneity, other methods could
be used, such as the Potthoff-Whittinghill test
or scan statistics [see Wakefield et al. (2000)

for review] that test for particular prespecified
patterns of overdispersion. Conversely, if the
aim is a local study around a point source, then
again, the disease-mapping framework is not
appropriate, and focused models that make use
of the additional information about the loca-
tion of the putative cluster of high risk are
required (Morris and Wakefield 2000).

We have shown that besides reporting and
mapping the mean posterior relative risk, the
whole posterior distribution can be usefully
exploited to try to detect true raised-risk areas.
For the BYM model, decision rules based on
computing the probability that the relative risk
is above 1 with a cutoff between 70 and 80%
gives a specific rule. With this type of rule an
average expected count of 20 in each of the
raised-risk areas leads to a 50% chance of
detecting a true relative risk of 1.5, but at least
a 75% chance if the true relative risk is 2. For
the same scenarios, the posterior mean relative
risks are 1.05 and 1.23, respectively, showing
that the posterior probabilities rather than the
mean posterior relative risks are crucial for
interpreting results from the BYM model. On
the other hand, 3-fold increases in the relative
risk are detected almost certainly with average
expected counts of only 5 per area, although
the mean of the posterior distribution is typi-
cally smoothed to about half the true excess.
Note that the performance of the BYM model
does improve when the risk is raised in a small
group of contiguous areas with similar
expected counts rather than in a single area

because of the way spatial correlation is taken
into account in these models.

We found no notable difference in perfor-
mance between the BYM model, which uses a
Gaussian distribution, and the L1 BYM version,
which uses a heavier-tailed, double-exponential
distribution. This finding is in agreement with
that of an earlier simulation study (Best et al.
1999) that compared these two models.
However, there were some clear differences
between the BYM models and the spatial alloca-
tion model MIX. The performance of the latter
model is characterized by an all-or-none feature
in the sense that it tends to allocate the true
raised-risk areas to either an elevated risk group
or to a background group, depending on how
much uncertainty is present in the data. If the
information from the data is sufficient (i.e.,
moderate-size expected counts and/or high true
excess risks) the MIX model is able to separate
the raised-risk and background areas quite well,
producing considerably less smoothing of the
raised-risk estimates than BYM. When the
information in the data is sparse, uncertainty in
the groupings leads to more smoothing than
the BYM. This type of dichotomy makes any
decision rule exploiting the posterior distribu-
tion of the relative risks hard to calibrate and
less useful than for the BYM model. The MIX
model is best used for providing estimates of
the underlying magnitude of the relative risks if
those are clearly raised rather than as a tool for
detecting the presence of areas with excess risk
in a decision rule context.
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Table 8. Probability of true detection (sensitivity) for the MIX model.a

SF = 1 SF = 2 SF = 4 SF = 10
Raised-risk area θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3

Simu 1
10% area (E = 0.84) 0 0 0.05 0 0.02 0.35 0 0.04 0.56 0 0.31 0.54
25% area (E = 1.10) 0 0.02 0.20 0 0.01 0.30 0 0.16 0.72 0.06 0.53 0.98
50% area (E = 1.92) 0 0.02 0.33 0 0.10 0.77 0 0.51 0.98 0.05 0.94 1
75% area (E = 5.37) 0 0.02 0.51 0 0.18 0.90 0 0.67 0.99 0.10 0.98 1
90% area (E = 7.38) 0 0.05 0.55 0 0.19 0.93 0 0.68 0.99 0.14 0.98 1

Simu 2
1% cluster (E– = 5.42) 0.02 0.10 0.86 0.01 0.46 0.99 0.05 0.95 1 0.47 1.00 1.00

Simu 3 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1
20 × 1% clusters 0.04 0.85 0.99 0.04 0.99 0.99 0.06 0.99 0.99 0.0 0.99 1.00
(E– range: 0.77–11.6)

aDecision rule is D(0.5, 1.5).

Table 7. Probability of true detection (sensitivity) for the L1-BYM model.a

SF = 1 SF = 2 SF = 4 SF = 10
Raised-risk area θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3 θ = 1.5 θ = 2 θ = 3

Simu 1
10% area (E = 0.84) 0.02 0.04 0.04 0.04 0.08 0.32 0.02 0.02 0.54 0.04 0.28 0.54
25% area (E = 1.10) 0.26 0.34 0.38 0.24 0.38 0.40 0.16 0.46 0.88 0.44 0.52 0.98
50% area (E = 1.92) 0.28 0.38 0.42 0.30 0.42 0.66 0.26 0.56 0.96 0.44 0.86 1
75% area (E = 5.37) 0.08 0.24 0.74 0.06 0.50 0.94 0.20 0.78 1 0.68 1 1
90% area (E = 7.38) 0.16 0.22 0.76 0.10 0.68 0.98 0.24 0.90 1 0.86 1 1

Simu 2
1% cluster (E– = 5.42) 0.17 0.35 0.91 0.23 0.64 1 0.39 0.95 1 0.85 1 1

Simu 3 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1 θ* = 1.35 θ* = 1.65 θ* = 2.1
20 × 1% clusters 0.10 0.31 0.55 0.16 0.48 0.75 0.35 0.70 0.89 0.65 0.90 0.98
(E– range: 0.77–11.6)

aDecision rule is D(0.8, 1).



Conclusion
We have quantified to what extent some usual
and some more recently developed Bayesian
disease-mapping models are conservative, in the
sense that they have low sensitivity for detecting
raised-risk areas that have only a small excess
risk but that, conversely, any identified patterns
of elevated risk are, on the whole, specific. We
would view this amount of conservatism as a
positive feature, as we wish to avoid false alarms
when investigating spatial variation in disease
risk. However, the magnitude of the risk in any
areas identified as raised is likely to be consider-
ably underestimated, and it is worth investigat-
ing a range of spatial priors that produce
different amounts of smoothing. Given that
most environmental risks are small, it is clear
that such methods are seriously underpowered
to detect them. This represents a major lim-
itation of the small-area disease-mapping
approach, although exploiting the full posterior
distribution of the relative risk estimates using
the decision rules proposed here can improve
the discrimination between areas with back-
ground and elevated rates. For localized excesses
where the geographic source of the risk can be
hypothesized, these methods are not appropri-
ate, and focused tests should be used instead.
Future applications of small-area disease-
mapping methods should therefore consider
carefully the tradeoff between size of the areas,

size of the expected counts, and the anticipated
magnitude and spatial structure of the putative
risks. Recently proposed multivariate extensions
of Bayesian disease-mapping models (e.g.,
Gelfand and Vounatsou 2003; Knorr-Held and

Best 2001) also deserve further consideration, as
they may lead to improved power by enabling
risk estimates to borrow information across
multiple diseases that share similar etiologies as
well as across areas.
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Appendix A

Generation of the observed cases
for Simu 3 using the multinomial
distribution.
For Simu 3, the number of cases for each
of the 532 areas is generated using the
multinomial distribution as follows:

where N is the total number of cases in the
study region and is set equal (to the near-
est integer) to the sum of the expected
counts across all 532 areas. Hence N =
1,732 for the SF = 1 scenario and appro-
priate multiples of this for the other SFs.

The parameter θi represents the rela-
tive risk in area i relative to some nominal
external reference rate. However, the con-
straint ∑i Yi = N = ∑i Ei imposed by the
multinomial sampling effectively rescales
the true relative risk in each area to be

The interpretation of θi
* is the relative risk

in area i relative to the average risk in the
study region.
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Appendix B

Tradeoff between false-positive and false-negative rates for different decision
rules.

Figure B1 shows three different loss functions representing weighted tradeoffs between the two
types of errors: false positive and false negative, associated with the D(c, 1) decision rule for
detecting raised-risk areas using the BYM model, plotted against cutoff c. Defining as in the text
the false-negative rate to be the probability of failing to detect a true raised risk (i.e., 1 – sensitivity),
and the false-positive rate to be the probability of false detection of a background area as corre-
sponding to a raised risk (i.e., 1 – specificity), the three loss functions used are as follows:

with each error being equally weighted.

where we weight the false negative error as twice as bad as the lack of specificity.

where we weight the lack of specificity as twice as bad as the false negative.

We wish to choose c to minimize the losses, and the graphs show that, on average, a
value of around 0.7–0.8 is appropriate. Note that the plots in Figure B1 are based on
Simu 2 with SF = 2 or 4. For a small number of other scenarios (mainly with SF = 1), a
value of c < 0.7 was needed to minimize the loss. However, for consistency, we have used
the same value of c (= 0.8) for all the BYM and L1-BYM results presented in this article.
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Figure B1. Variation of the total error rate (loss function) as function of the cutoff probability c for differ-
ent weighting of the two types of errors (false positive and false negative). Results shown are for the
Simu 2 using the BYM model.
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