
Environmental epidemiology is an area of
epidemiology concerned with the study of
associations between environmental exposures
and health outcomes, with the purpose of fur-
ther understanding the etiology of disease.
The term “environment” implies a spatial
context. Thus, the study of interactions
between humans and their environment
requires spatial information and analysis.
Geographic information system (GIS) soft-
ware allows environmental and epidemiologic
data to be stored, analyzed, and displayed spa-
tially. The logical structure and functionality
of a GIS are shown in Figure 1 (Falbo et al.
1991). Data collection can be accomplished
by importing tabular or digital data that are
referenced with map coordinates defining
their geographic position. The data are
entered into a database where they are stored
as a map with a specified theme (termed “data
layer”). Tabular (attribute) data corresponding
to the theme can be stored with each data
layer. Analytical functions within the software
can be used to process and manipulate both
map and attribute data through linkages
established within the GIS. Two types of out-
put are common: tabular (summary data, sta-
tistics, reports) and cartographic (maps, map
files, and map overlays). Several publications
describe the structure and functionality of a
GIS more thoroughly (Chrisman 2002;
DeMers 2000). Vine et al. (1997) provide an
overview of the use of specific functions in

GIS software that could be useful in environ-
mental epidemiologic research. Beyea and
Hatch (1999) provide an in-depth discussion
of geographic modeling for exposure assess-
ment in environmental epidemiology, as well
as an extensive literature review. Briggs and
Elliot (1995) provide a review of spatial analy-
sis and mapping in environmental health.

GIS have been used at different levels of
sophistication in environmental epidemiology
studies. These uses range from simply locating
the study population by geocoding addresses
(assigning mapping coordinates) to using prox-
imity to contaminant source as a surrogate for
exposure (Bell et al. 2001; Comba et al. 2003;
Langholz et al. 2002; Xiang et al. 2000) to inte-
grating environmental monitoring data into the
analysis of the health outcomes (Floret et al.
2003; Gallagher et al. 1998; Reynolds et al.
2002a, 2002b, 2003). However, most of the
latter studies have been ecologic in design; rela-
tively few studies have used GIS in estimating
environmental levels of a contaminant at the
individual level (Nyberg et al. 2000; Reif et al.
2003; Rogers et al. 2000). A number of studies
have used GIS to design exposure metrics for
use in epidemiologic studies (Bellander et al.
2001; Brody et al. 2002; Cicero-Fernandez
et al. 2001; Gunier et al. 2001; Inserra et al.
2002; Kohli et al. 1997; Rull and Ritz 2003;
Swartz et al. 2003; Ward et al. 2000). Although
yet to be applied in the context of an epidemio-
logic analysis, several studies have investigated

the use of GIS in estimating activity patterns of
the study population for potential linkage to
environmental data to refine personal exposure
estimates (Elgethun et al. 2003; Phillips et al.
2001). Similarly, the use of GIS in spatial sta-
tistics for linking exposure and health data in
the context of epidemiologic analysis is a grow-
ing field of research (Ali et al. 2002; Christakos
and Serre 2000; Elliott et al. 2001). This article
is a discussion of the fundamentals of the scien-
tific disciplines required to use GIS in exposure
assessment for epidemiologic studies and
explores how a GIS can be used to accomplish
several steps in the exposure assessment process
(those shaded blue in Figure 2). Specifically
these steps are a) defining the study population,
b) identifying source and potential routes of
exposure, c ) estimating environmental levels
of target contaminants, and d ) estimating
personal exposures. 

Fundamentals of GIS
Application in Exposure
Assessment 
Using GIS in exposure assessment for epi-
demiologic studies requires knowledge and
expertise in at least three core scientific areas:
geospatial sciences, environmental sciences,
and epidemiology. 

Geospatial Science
For a GIS to accurately represent occurrences
on the earth’s surface, the location of data
must be reliable, accurate, and pertinent
(Falbo et al. 1991). Geospatial science is the
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Geographic information systems (GIS) are being used with increasing frequency in environmental
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rogate for exposure, and integrating environmental monitoring data into the analysis of the health
outcomes. Although most of these studies have been ecologic in design, some have used GIS in esti-
mating environmental levels of a contaminant at the individual level and to design exposure metrics
for use in epidemiologic studies. In this article we discuss fundamentals of three scientific disciplines
instrumental to using GIS in exposure assessment for epidemiologic studies: geospatial science, envi-
ronmental science, and epidemiology. We also explore how a GIS can be used to accomplish several
steps in the exposure assessment process. These steps include defining the study population, identify-
ing source and potential routes of exposure, estimating environmental levels of target contaminants,
and estimating personal exposures. We present and discuss examples for the first three steps. We
discuss potential use of GIS and global positioning systems (GPS) in the last step. On the basis of
our findings, we conclude that the use of GIS in exposure assessment for environmental epidemiol-
ogy studies is not only feasible but can enhance the understanding of the association between cont-
aminants in our environment and disease. Key words: environmental epidemiology, exposure
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systematic study of geographic variables relat-
ing to, occupying, or having the character of
space. Fundamental elements of geospatial sci-
ences relevant to GIS applications in exposure
assessment include data representation, scale,
and accuracy. Data representation is the format
of the unit of analysis used in the GIS. The
most commonly used representations of space
in a GIS are the raster and vector data models.
In the raster model, grid cells serve as the basic
units of analysis. An example would be pixels
of remotely sensed imagery from satellite
imagery. The vector model uses points, lines,
or polygons based on continuous geometry of
space to represent data. Other, more special-
ized data models are available in most GIS soft-
ware. For example, the triangulated irregular
network (TIN) model provides an efficient
means of representing elevation data often used
for terrain analysis. GIS software contain algo-
rithms for translating between formats, for
example, raster → vector, vector → raster,
point → TIN, although some error may be
introduced by these data transformation
processes. More complete information on data
models can be found in textbooks such as
those by Chrisman (2002) and DeMers
(2000).

Selection of scale is perhaps the most
important factor in creating and analyzing

GIS databases for exposure assessment and
epidemiology. The following is a list of defini-
tions of the the scaling factors most likely to
be encountered in an epidemiology study: 
• Cartographic scale: Traditional map scale

ratio relates the size of a feature on the
ground to the size of a feature on the map.
This is the scale normally listed on a road
map. Scale selection results in the amount
of detail including roads, water bodies, and
land use patterns.

• Geographic extent: Refers to the size of the
study area. For example, a study can be
regional scale or global scale. The extent of
the study area and/or its subsets can affect
the analysis results (e.g., different results
might be obtained when looking at cancer
incidence in one state or province versus
nationwide).

• Spatial resolution: Refers to the grain, or
smallest, unit that is distinguishable. Map
data at different scales will allow for resolu-
tion of different objects. For example, a
house site represented on a 1:24,000 scale
map would not appear on a 1:100,000 scale
map. In remotely sensed imagery, resolution
is directly related to the pixel size, the area on
the ground from which the radiances are
integrated. Lower resolution pixel (1 km2)
data may be less useful than higher resolution

pixel Landsat data (30 m2) for some environ-
mental health studies. 

• Operational scale: Refers to the scale at
which the process of interest occurs. For
example, contaminant transport may occur
at a small or large scale. Processes can be res-
olution dependent, that is, they can be
detected at one scale but not another. 

Homogeneity and heterogeneity of spatial
data are affected by scale, and the scale chosen
may affect the ability of the study to detect a
relationship between the environmental expo-
sure and the health outcome. This issue is sim-
ilar to the modifiable areal unit problem, a
term introduced by Openshaw and Taylor
(1979) that has long been recognized as an
issue in the analysis of aggregated data such as
disease incidence rates and census enumera-
tion (Fotheringham and Wong 1991; Holt
et al. 1996). For example, studies of disease
incidence reported at the county level require
the environmental data to be aggregated to an
exposure metric at the same resolution. Such
aggregation may obscure intracounty variation
in exposure (operational scale) and thus the
relationship between the target contaminant
and the disease. 

Accuracy can be defined as how well the
GIS data represent reality in terms of posi-
tional, attribute, and temporal accuracy.
Positional accuracy relates to the agreement
between data representation in the GIS and
actual location of the data, or “ground truth.”
Attribute accuracy is a measure of how well
information linked to the data representation
format is correct (e.g., is the line segment
tagged with the correct street information?).
Temporal accuracy concerns the appropriate-
ness of using a particular snapshot or snap-
shots of time for a particular GIS-based
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Figure 1. Structure and functionality of a GIS. 
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Figure 2. Exposure assessment process. Steps for
which use of GIS is discussed in this article are
highlighted in blue.



analysis or modeling effort. For example, tem-
poral accuracy would reflect how well using a
single-year crop map would reflect proximity
to pesticide use for exposure assessment of a
particular disease outcome. Errors in GIS can
be categorized as source errors or processing
errors. Source errors relate to the accuracy of
the data per se, that is, the differences between
the data in the GIS and reality. For example,
geocoding is often used to estimate the loca-
tion of residences and pollutant sources; how-
ever, the positional error generated at this first
step in the exposure assessment process is
rarely evaluated. A study by Krieger et al.
(2001) compared geocoding firms and found
widely varying geocoding success rates as well
as large differences in the accuracy of census
tract assignment. The positional accuracy of
geocoded addresses in epidemiology studies
was evaluated in a breast cancer case–control
study in western New York (Bonner et al.
2003) and in a non-Hodgkin lymphoma
case–control study in Iowa (Ward et al.,
in press). The positional errors were compara-
ble in the two studies; the majority of homes
were geocoded to within 100 meters of their
location determined by GPS. However, posi-
tional errors were greater for homes outside
the large metropolitan areas (Bonner et al.
2003), and rural addresses in Iowa had a
median positional error of around 200 meters
(Ward et al. submitted). 

Processing errors can be introduced into
the database as a result of GIS-based analysis
and modeling. For each layer of data combined
in a GIS analysis, additional uncertainty in the
analysis process will be introduced because of
error propagation. Beyea and Hatch (1999)
provide an in-depth discussion of uncertainty
in GIS-based exposure modeling.

Environmental Science
Environmental science is the systematic study
of the complex of physical, chemical, and
biotic factors that act upon on an organism or
an ecologic community and ultimately deter-
mine its form and survival. It can include cir-
cumstances, objects, or conditions by which an
organism or community is surrounded and the
aggregate of social and cultural conditions that
influence the life of an individual or commu-
nity. Fundamental elements of environmental
science relevant to GIS applications in expo-
sure assessment include measurement data and
predictive algorithms for fate and transport of
chemical compounds in the environment. 

Environmental science studies rely heavily
on measurement data of the factors that influ-
ence life. Institutions in almost every country
in the world, such as the U.S. Environmental
Protection Agency (U.S. EPA), have been
established with a primary mission of collect-
ing and analyzing environmental samples to
understand the impact of these factors on the

health of the earth’s ecosystem. As a result, an
abundance of measurement data concerning
the chemical composition of air and water
resources is available to environmental epi-
demiology studies. A basic principle in envi-
ronmental sciences is that measurement data
should be used within the bounds of the pur-
pose for which the sample was collected.
Often this purpose is to define regional or sys-
tematic trends in environmental quality at a
scale and resolution that may not be adequate
for epidemiologic studies, especially studies of
individuals. For example, public water utili-
ties operating in the United States with a ser-
vice population > 10,000 are required by
federal law to report levels of certain byprod-
ucts of the disinfection process to the U.S.
EPA. Most utilities meet this requirement by
taking four samples at different locations
in their water distribution system every
3 months. Although this sampling design may
be sufficient to indicate compliance with the
law, it may not be sufficient to adequately
encompass the spatial and temporal variability
in exposure necessary to classify exposure to
individuals using the water.

Environmental scientists often use
computer-based simulation models to supple-
ment measurement data in environmental
studies. These models are generally composed
of mathematic algorithms designed to predict
interaction between, and effect of the complex
factors on, an organism or ecologic commu-
nity. The models can be stochastic (based on
statistical probability) or deterministic (based
on physical processes). In either case the mod-
els are dependent on measurement data for
calibration of the predictive algorithms and
validation of the predicted results. A funda-
mental rule in environmental modeling is not
to transfer use of a model from one geographic
region to another without validating it with
measurement data from the new study area.
Often such model transfer will require recali-
bration of the model as well. It is also a general
rule in environmental modeling to reserve a
statistically sufficient portion of available mea-
surement data for model validation. Caution
should also be employed in using a model at a
spatial scale or temporal pattern for which it
was not designed. A number of textbooks
address environmental science and modeling
(Clark 1996; Crawford-Brown 2001).

“Geophysical plausibility” is the term we
have coined for use in application of environ-
mental science to exposure assessment for epi-
demiology. In simplest terms this axiom
would dictate that an association between a
contaminant source and exposure to an organ-
ism or ecologic community cannot exist unless
there is a plausible geophysical route of trans-
port for the contaminant between the source
and the receptor. For example, assume we are
conducting a study of drinking water as the

sole source of exposure to a specific contami-
nant and a disease outcome. If a landfill is
leaching the contaminant into a groundwater
resource (aquifer) in our study area, but our
study population has always used another
water supply source with no geophysical con-
nectivity to the aquifer, it is implausible that
the contaminant from the landfill is causing
the adverse health outcome through a drink-
ing water route of exposure. This axiom is par-
ticularly relevant in the use of GIS-based
processing functions (e.g., kriging on measure-
ment data) to develop exposure estimates in
environmental epidemiology studies.

Epidemiology
The fundamental guidelines for the design of
an environmental epidemiology study are rel-
evant whether or not GIS technology is being
used for exposure assessment. A well-designed
epidemiologic study takes into account poten-
tial confounding factors, including other
exposures that may co-occur with the expo-
sure of interest. The study should be designed
to have adequate power to detect an associa-
tion between the exposure and health out-
come and to evaluate exposure–response
relationships. For many environmental expo-
sures the anticipated magnitude of the associ-
ation with disease is likely to be modest,
therefore a careful evaluation of the expected
prevalence of exposure is critical to determin-
ing adequate study power.

A GIS can be used to evaluate the popula-
tion potentially exposed and to determine if
there is likely to be adequate variation in expo-
sure across a study area. Wartenberg et al.
(1993) used a GIS to develop an automated
method for identifying populations living near
high-voltage lines for the purpose of evaluat-
ing childhood leukemia and electromagnetic
radiation. Another example is the use of a GIS
to link disease registry information with public
water supply monitoring and location data to
determine potential study areas for evaluating
the relation between disinfection byproducts
exposure and adverse reproductive outcomes
and cancer (Raucher et al. 2000).

The epidemiologic study should have the
capability to evaluate the exposure in relation
to an appropriate latency for the disease and
to evaluate critical time windows of exposure.
One limitation of a GIS is that mapped data
often represent only one snapshot in time.
However, several recent efforts have used GIS
to reconstruct historical exposure to pesticides
(Brody et al. 2002) and drinking water conta-
minants (Swartz et al. 2003) over a period of
decades for a study of breast cancer on Cape
Cod, Massachusetts. A study of fetal death in
California (Bell et al. 2001) used an exposure
metric based on agricultural pesticide use near
the mother’s residence during specific time
periods during the pregnancy.
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Misclassification of exposure is of particular
concern in environmental epidemiology
studies because of the challenges in estimating
exposure to environmental contaminants,
which can occur across multiple locations
and often at low levels. Exposure errors in
time–series studies can occur as a continuum
of measurement errors between classic-type
errors and Berkson errors, as has been pre-
sented in detail by Zeger et al. (2000) regard-
ing air pollution and health. Each type of error
has different effects on the estimation of risk.
Berkson error occurs when the exposure metric
is at the population level, and individual expo-
sures vary because of different activity patterns.
An example of a population-level or aggregate
exposure metric is the assignment of air pollu-
tant levels from a stationary air monitor to the
population living in the vicinity of the moni-
tor. Berkson error does not lead to bias in the
risk estimate although the variance of the risk
estimate is increased (Zeger et al. 2000).

In a classic error model the exposure metric
used in an epidemiologic study is measured
with error and is an imperfect surrogate for the
true exposure. If misclassification of exposure is
nondifferential in terms of the health outcome,
the effect is generally to bias risk estimates
toward the null, thus potentially missing true
associations (Copeland et al. 1977; Flegal et al.
1986). To evaluate the degree of misclassifica-
tion that may occur in an epidemiologic study,
it is important to consider the sensitivity and
specificity of the exposure metric employed.
Sensitivity is the ability of an exposure metric
to correctly classify as exposed those who are
truly exposed. Specificity is the ability of the
metric to correctly classify as unexposed those
who are unexposed. Most epidemiologists do
not formally assess the validity of their expo-
sure metric before a study is launched; how-
ever, small reductions in sensitivity and/or
specificity of the exposure metric can have sub-
stantial effects on the estimates of risk. When
the true prevalence of exposure is low (e.g., less
than 10%) small reductions in specificity cause
substantial reductions in the risk estimates,
whereas reductions in sensitivity have smaller
effects. When the exposure is common in the
study population, the sensitivity of the expo-
sure metric becomes more important (Stewart
and Correa-Villasenor 1991). 

A common metric used in studies employ-
ing GIS is the proximity between a pollutant
source and a residence. Simple proximity met-
rics are likely to overestimate the population
truly exposed (high sensitivity but low speci-
ficity). If those truly exposed represent only a
small percent of the study population, there will
be substantial attenuation of the risk estimate if
a true risk exists. Rull and Ritz (2003) com-
pared several methods of classifying a study
population in California on the basis of agricul-
tural pesticide use reported by the California

Pesticide Use Reporting (CPUR) database
(http://www.cdpr.ca.gov/). The prevalence of
exposure differed substantially depending on
the metric used. They assumed that a metric
that accounted for the location of crop fields
more accurately represented true exposures and
this metric resulted in lower exposure preva-
lence compared with a metric based on the
CPUR database alone. In a simulation study
they demonstrated that the reduced specificity
of the CPUR metric resulted in substantial
attenuation of risk estimates. 

Using GIS to Define the 
Study Population in an
Epidemiologic Study
When epidemiologists select a study popula-
tion, they are, by default, defining a system
boundary for the exposure assessment process.
This system boundary is an important element
of source-receptor modeling approaches that
may be used in the exposure assessment
process. Location data for the study population
are typically a set of geopolitical units (census
enumeration unit boundaries) or the actual res-
idences of the study population. Both of these
data types can be represented using functions
common to most GIS software. Usually, the
subjects are identified from health registries or
other records that identify individual cases or
disease rates in a geographic area. Examples
include cancer registry data, hospital records of
a particular disease outcome, or death certifi-
cate data. Many of these data are now stored
digitally, and an increasing percentage are also
georeferenced so that transfer to a GIS database
is possible. Controls are identified and located
by the epidemiologist, often by frequency-
matching characteristics of each case subject
that are relevant to disease etiology, including
age and sex. Controls are usually selected from
the same general geographic region, which
should represent the base population from
which the cases arise. 

Example: Classification of
Populations near Landfill Sites
(Elliott et al. 2001)
Public concern has been raised that living near
a landfill site may be hazardous to health. In
particular, several U.S. and U.K. studies have
shown excess risk of birth anomalies in popu-
lations living near landfill sites (Dolk et al.
1998; Fielder et al. 2000; Vrijheid 2000). To
investigate potential risk of adverse birth out-
comes associated with landfill sites in Great
Britain, investigators had access to an extensive
data set of current and previously opened
landfill sites provided by the environmental
protection agencies in Great Britain. Data
were incorporated in a GIS, resulting in a
database containing 19,196 landfill sites in
England, Wales, and Scotland. Detailed data
on boundaries were unavailable for most sites,

and therefore point locations had to be used.
Site centroids were given for a majority of
sites. The location of the site gateway at the
time of reporting was used for the remainder.
Geocoded data were supplied for landfill
site locations but were of low accuracy
(often rounded to 1,000 m), and area data
were inadequate for most sites. Landfill site
areas also changed considerably over time.
Postcodes, which were used to define the loca-
tion of cases and births, only approximated
the place of residence. When researchers tried
to intersect location of landfill(s) and resi-
dences of study subjects, they found that land-
fill sites are often highly clustered, so that
individual postcodes may lie close to as many
as 30 or more sites. Given that study subjects
may be exposed to several landfill sites, dis-
tance from the nearest landfill site was not
regarded as a meaningful proxy for exposure.
As a compromise between the need for spatial
precision and the limited accuracy of the data,
a 2-km zone was constructed around each site
(Figure 3), giving a resolution similar to or
higher than that of previous studies (Dolk
et al. 1998; Fielder et al. 2000) and at the
likely limit of dispersion for landfill emissions
(WHO 2001). The reference population com-
prised people living more than 2 km from all
known landfill sites during the study period.
Availability of landfills and health outcome
data were restricted to the study period from
1983 to 1998.
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Figure 3. Distribution of landfill sites in the Great
Britain, buffered to 2 km, with an inset showing
details of the buffer zones in pink (SAHSU 2001).
The high density of sites in many areas results in
considerable overlap of the buffer zones used to
define exposures, and thus means that many areas
are classified as exposed from a number of differ-
ent landfill sites (see inset).
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Because health data were available only to
1998 and because of concerns about the qual-
ity of the early landfill data, 9,631 sites that
closed before 1982 or opened after 1997 were
excluded (allowing a 1-year lag period for the
birth outcomes), as were landfill sites for
which there were inadequate data. The
remaining 9,565 sites included 774 sites for
special (hazardous) waste, 7,803 for nonspe-
cial waste, and 988 handling unknown types.

The study was the largest performed on
possible associations between residence near
landfill sites and adverse birth outcomes. A
GIS-based approach was necessary because of
the large number of landfill sites included in
the study; individual investigations of several
thousand landfill sites would have been prac-
tically difficult and prohibitively expensive.
The most striking finding was that approxi-
mately 80% of the British population live
within 2 km of a landfill site. This also
imposed unique challenges for the epidemio-
logic study design, given that 80% of the
study population was potentially exposed and
only 20% could be used as a reference. In
most environmental epidemiology studies,
the situation is the opposite in that the preva-
lence of those potentially exposed is much
lower. This high prevalence of potential
exposure had implications for the statistical
analysis, as the usual reference rates after
stratification by known confounders would
not be estimated with the negligible error
normally associated with such studies.
Despite this, the reference area included over
2 million births over the study period. To
guard against overinterpretation, 99% (rather
than the more commonly used 95%) confi-
dence intervals around the relative risk (RR)
estimates were computed. 

The authors were aware of the relative
inaccuracy of postcodes (used to define the
location of cases and births), as these give
only an approximation of place of residence,
accurate to 10–100 m in urban areas but
> 1 km in some rural areas. Furthermore, it is
well known that postcodes are afflicted
with several other problems: they may change
over time, be terminated, or even recycled.
However, such problems affect only a small
minority (approximately 1%) of U.K. post-
codes. Thus, given the size of the study
(national rather than local), this is not a major
problem. For further details the reader is
referred to the original article (Elliott et al.
2001).

Using GIS to Identify Source and
Potential Routes of Exposure in
an Epidemiologic Study 
The exposure or agent of interest in an envi-
ronmental epidemiology study may be a
chemical (a single compound or, rarely, a
mixture) or physical agents (particulates, radi-
ation, noise). Once the agent is identified, a
GIS can be instrumental in identifying
sources and potential routes of exposure.
Source identification is a function of the
occurrence of the target agent in a specified
environmental medium (air, water, food,
dust, etc.). Identifying the sources enables
assessment of the likelihood of exposure
across the study population and provides data
on the route of exposure information neces-
sary for calculating personal exposure. 

Example: Neurobehavioral Effects
of Exposure to Trichloroethylene
through a Municipal Water Supply
(Reif et al. 2003) 
The basis for this study was initially a cross-
sectional study of exposure to a number of
chemicals with documented release in a com-
munity adjacent to a Superfund waste site, the
Rocky Mountain Arsenal (RMA) near
Denver, Colorado, USA. Study participants
were randomly selected from an area within
1.61 km (1 mile) that abutted to the north,
northwest, and west boundaries of the site,
where fugitive chemicals had been detected in
ground and surface waters, sediments, and
soils (Figure 4). A total of 585 persons who
had lived at their current residence for at least
2 years were eligible for the study; 472 partici-
pated. Results of the initial study warranted a
second study, conducted in 1991, during
which the researchers interviewed and con-
ducted neurobehavioral testing of 204 adults
originally identified by the first study
(ATSDR 1996). Results of the 1991 study
showed a trend toward an increased preva-
lence of neurologic disorders and adverse
reproductive outcomes, particularly in the area
north/northwest of the RMA, compared with

communities at a greater distance from RMA,
presumed to be unexposed to the site.
However, the researchers again relied on prox-
imity to the RMA as a surrogate for exposure,
and there was evidence that this may have
resulted in nondifferential misclassification of
exposure, which tends to drive the effect esti-
mate or relative risk toward the null value
(Copeland et al. 1977). The researchers initi-
ated a revised exposure assessment using a
GIS-based analysis of fate and transport of
chemicals in the groundwater regimen
hydraulically downgradient from the RMA
site. The researchers selected trichloroethylene
(TCE) as the marker contaminant for the
exposure assessment because of its neurotoxi-
cologic properties, and because it had been
detected in water supply wells in the study
area. The researchers constructed an operable
MODFLOW (U.S. Geological Survey,
Reston, Virginia, USA) simulation model that
accurately reflected hydraulic characteristics of
groundwater regime in the study area and
used a GIS to develop input variables to the
model, including source location of TCE on
the RMA site. However, the researchers could
not validate TCE levels measured in water
wells used by the local water district (LWD),
where 90% of the study population resided.
The researchers expanded the geographic
extent of their study area, and determined that
the source of TCE in the groundwater was
from multiple hazardous waste sites, including
some located outside the original study area.
Once the primary source was properly identi-
fied, the researchers confirmed the measure-
ment results of TCE in the LWD supply wells
by the groundwater model. TCE levels in the
wells were then used as input to a hydraulic
and water quality simulation model, EPANET
(Rossman 1994), to predict TCE levels in
the distribution system of the LWD. The
researchers used GIS to geocode the study
population, develop input data for the simula-
tion model, and assign individual exposure to
TCE by linking results of the model to the
census block group of residence (Figure 4).
The study with the refined exposure assess-
ment found a stronger association of risk for
neurobehavioral disorders in the study popula-
tion than was found in the 1991 study, in
which exposure was based primarily on prox-
imity to a source of chemical contamination,
including TCE. The study demonstrates that
GIS-based technology can be used to refine
exposure for epidemiologic investigations,
improving sensitivity and specificity beyond a
simple proximity metric. It also demonstrates
the effect that selection of operational scale
can have on exposure assessment in an epi-
demiology study. The operation of the water
distribution system could not be discerned
when proximate census blocks were used as a
surrogate for exposure.
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Figure 4. Exposure zone in original RMA study
(ATSDR 1996) and refined resolution of predicted
exposure to TCE by census block as reported by
Reif et al. (2003).



Using GIS to Estimate
Environmental Levels of 
Target Contaminants in
an Epidemiologic Study 

Exposure is a function of the concentration of
target contaminant in the environment of the
study population. The optimal method for
quantifying levels of the target agent is the
measurement of the environmental media
associated with each potential route of expo-
sure during the critical time period for expo-
sure. However, rarely is there an opportunity
to make such measurements. Alternatively,
predicted environmental levels of the target
agent can be estimated using source-receptor
modeling. Computer-based models designed
to predict levels of contaminants due to point
sources (smokestack) or nonpoint sources
(drift from aerial spraying of pesticides) are
available. Often these predictions are used as a
surrogate for exposure in the epidemiologic
analysis. In either case, validation of the esti-
mates is important to understand the results
of the epidemiologic study. Validation is
often overlooked in the exposure assessment
process. It is also important that the environ-
ment depicted in the modeling period be rep-
resentative of the environment during the
exposure period necessary for the epidemio-
logic study. Generally, the degree to which
validation can be accomplished is a function
of measurement data available for the time
period of interest. Most source-receptor mod-
els require some measurements for construct-
ing (calibrating) the predictive algorithms. 

Example: The Lung Cancer in
Stockholm Study (Bellander et al.
2001; Nyberg et al. 2000) 
A population-based case–control study, the
Lung Cancer in Stockholm Study (LUCAS),
was designed to investigate whether urban air
pollution increases lung cancer risk. Previous
studies had commonly used crude surrogates
for individual exposure, limiting the power of
detecting any risk associated with air pollu-
tion. The LUCAS study used advanced mod-
eling techniques to assess individual exposure
for relevant time periods (several decades
before diagnosis). Detailed emission data, dis-
persion models, and GIS were used to assess
historical exposure to several components of
ambient air pollution. The study base con-
sisted of all men 40–75 years of age who lived
in Stockholm County at any time between
1985 and 1990 and who had lived in the
county since 1950, with a maximum of
5 years of residence outside the county. A
total of 1,042 lung cancer cases diagnosed
between 1985 and 1990 were included, as
well as 2,364 controls. Information on resi-
dence from 1955 to the end of follow-up for
each individual, 1990–1995, was collected

using a questionnaire. Nitrogen oxides (NOx
and NO2) and sulfur dioxide (SO2) were cho-
sen as indicators of air pollution from road
traffic and residential heating, respectively.

Ambient air concentrations of NOx , NO2,
and SO2 were assessed throughout the study
area for three points in time (1960, 1970, and
1980) using reconstructed emission data for
these index pollutants together with dispersion
modeling (Figure 5). The modeled NO2 esti-
mates for 1980 were validated with available
measurement data. Linear intra- and extrapola-
tion were used to obtain annual estimates for
the remainder of the exposure period
(1955–1990). Individual addresses were
geocoded with an estimated error of < 100 m
for 90% of the addresses. Annual air pollution
estimates were then linked to residence coordi-
nates, yielding cumulative residential exposure
indices for each individual. There was a wide
range of individual long-term average expo-
sure, with an 11-fold interindividual difference
in NO2 and an 18-fold difference in SO2. 

The detailed individual exposure assess-
ment made it possible to assess relative risk
potentially associated with road traffic.
Average traffic-related NO2 exposure over 30
years was associated with a relative risk of 1.4
and a 95% confidence interval 1.0, 2.0 for the
top decile of exposure, adjusted for tobacco
smoking, socioeconomic status (SES), resi-
dential radon, and occupational exposures,
and taking into consideration a latency period
of 20 years (Nyberg et al. 2000). The signifi-
cance of these results was recognized in an
accompanying editorial as being the first
study that had used this advanced exposure
assessment, making the detailed analysis pos-
sible (Rothman and Cann 2000).

The results indicate that GIS can be use-
ful for exposure assessment in environmental
epidemiology studies, provided that detailed
geographically related exposure data are avail-
able for relevant time periods.

Using GIS to Estimate
Personal Exposure in
an Epidemiologic Study 
A key issue in exposure assessment is how well
an exposure metric estimates exposure to the
individual. Exposure has been defined as “the
contact of a chemical, physical, or biological
agent with the outer boundary of an organism”
(Berglund et al. 2002). Exposure is a function
of concentration and time: “An event that
occurs when there is contact at a boundary
between a human and the environment with a
contaminant of a specific concentration for an
interval of time” (NRC 1991). Thus, in the
context of exposure assessment for an epidemi-
ologic study, it is important to distinguish
between environmental concentration, expo-
sure concentration, and dose. The environ-
mental concentration of an agent refers to its

presence in a particular carrier medium [for
example, polycyclic aromatic hydrocarbons
(PAH) in ambient air], expressed in quantita-
tive terms (for example, micrograms per cubic
meter). Similarly, the exposure concentration of
an agent refers to its presence in its carrier
medium at the point of contact (for example,
PAH in breathing zone air) expressed in quanti-
tative terms (for example, micrograms per cubic
meter). Finally, the dose refers to the amount of
a pollutant that actually enters the human
body, i.e., is taken up through absorption barri-
ers. A number of variables can influence the
exposure and dose. These include physiologic
factors such as age, sex, physical condition, dis-
ease, and genetics, as well as exposure factors
related to human behavior and activities (e.g.,
the amount of time spent commuting to work
each day), and contact rates (e.g., the amount
of drinking water ingested per day). In epi-
demiologic studies, environmental concentra-
tion will often be used as a surrogate for both
exposure concentration and dose. 

We could not find an example of the use of
GIS to estimate personal exposure for an epi-
demiologic study. In our review of the litera-
ture, questionnaire data were generally used as
a surrogate for deriving personal exposure.
Only recently have researchers started using
GIS to study activity patterns in a study popu-
lation, which conceivably could be linked to
environmental data for exposure assessment.
Phillips et al. (2001) reported on a test of GPS
data recorders as a means of validating time-
location data recorded in study diaries of a sub-
set of participants enrolled in the Oklahoma
Urban Air Toxics Study. Elgethun et al.
(2003) describe the development and testing of
a data-logging GPS unit designed to be inte-
grating into clothing. Both studies concluded
that GPS units could be useful in developing
time–location information for use in exposure
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Figure 5. Modeled ambient air concentrations of
NO2 emissions from all sources (1980 data) using
reconstructed emission data for this index pollutant
together with dispersion modeling (Bellander et al.
2001).



assessment. GPS is a satellite-based technology
composed of a system of satellites encircling
earth and emitting a radio frequency detectable
by GPS receivers. GPS receivers are designed
to use this information and calculate coordi-
nates of the receiver location. Precision of these
coordinates can vary based on receiver design
and signal quality. Phillips et al. (2001)
reported precision of about 10 m for most
readings, whereas Elgethun et al. (2003)
reported mean root mean square error of 3.2 m
outdoors and 5.8 m indoor in positional accu-
racy for two GPS units tested. This level of
precision should be sufficient for most studies
attempting to link location of a participant
with a particular environmental setting where
contaminant monitoring or modeling data are
available for linkage using a GIS. A major
advantage of the technology, as reported by
Phillips et al. (2001), was not only that its use
confirmed all reported trips over a 12- to 23-hr
monitoring period, but it provided time–
location data on travel events not recorded in
the participant diary. 

Both Phillips et al. (2001) and Elgethun
et al. (2003) reported limitations of the tech-
nology as a sole source of space–time data for
an exposure assessment study. Both studies
found the reception of the satellite signals to
be adversely impacted by shielding from
buildings of certain materials (concrete, steel),
electrical power stations, and to some extent
vehicle body panels. Signal blockage con-
tinues to be an issue with GPS today. Phillips
et al. (2001) also reported extensive failure
including battery failure, data-logging failure,
and data storage limitations, which resulted in
capturing only about 30% of the total moni-
toring time attempted in 25 trials. Elgethun
et al. (2003) reported reception efficiencies of
79% outdoors, 20% in homes, 12% in vehi-
cles, and 6–9% in schools and businesses.
These findings indicate that although GIS
using GPS technology hold promise in terms
of integrating study population activity data
with measured or predicted levels of environ-
mental contaminants in the exposure assess-
ment process, their use is still very much in
the developmental research stage for use in
epidemiology studies.

Discussion

Our findings indicate that GIS can greatly
enhance epidemiologic research in terms of
definition of source and routes of potential
exposure and estimation of environmental lev-
els of target contaminants in the exposure
assessment process. We found over 15 studies
published since 1998 that describe the success-
ful use of GIS for one or more of these pur-
poses. Across all of these studies, there was
consensus that the use of GIS was instrumental
in achieving optimal exposure assessment. In
our example studies, GIS improved resolution

of the source of potential exposure (Elliott
et al. 2001; Reif et al. 2003), identified the
most likely route of exposure (Reif et al. 2003),
and estimated levels of target contaminants for
use in estimating exposure to the study popula-
tion (Nyberg et al. 2000; Reif et al. 2003).
Our examples of environmental epidemiology
studies using GIS also emphasize the impor-
tance of interdisciplinary study teams. 

GIS have been used to evaluate environ-
mental justice issues, usually by linking
information about potential sources of envi-
ronmental pollutants to census information
on sociodemographic characteristics of a pop-
ulation (Perlin et al. 2001; Waller et al.
1999). However, only recently have GIS been
used in the design of environmental epidemi-
ology studies. Each example in our article
demonstrates that GIS can (and perhaps
should) be used in the early planning stages of
an environmental epidemiology study to help
locate a potential study population with a
wide range of exposure. The statistical power
of an epidemiologic study and the precision
of the risk estimates are optimized when the
study population includes adequate numbers
of those with both high and low exposures.
An example of how GIS have been used to
identify a study population with a range of
exposures is a feasibility study of childhood
leukemia and electromagnetic radiation from
power transmission lines in New Jersey
(Wartenberg et al. 1993). A GIS was used to
identify the population living close to trans-
mission lines and a comparison population
farther away. Demographic information was
evaluated for both the exposed and unexposed
populations to determine potential confound-
ing factors. Other examples include the use of
GIS for surveillance and study of lead poison-
ing from residential exposures (Roberts et al.
2003; Wartenberg 1992).

The increasing availability of environmental
databases in a geographic format (Paulu et al.
1995), including the location of industrial
sites and releases (Toxic Release Inventory
Program 2004), should make it feasible to
incorporate these potential exposure data into
epidemiologic studies. For example, in a
recently started cross-sectional study on poten-
tial adverse health effects (primarily hyperten-
sion) of airport-related noise exposure, study
populations are being selected using modeled
noise contours around the participating air-
ports (European Commission 2003). Such
models are particularly applicabile in the selec-
tion of study populations exposed to different
levels of the pollutants under study, using a
cross-sectional or cohort study approach. A
case–control design, in which cases are
selected from, for example, hospital data or
cancer registries, will usually have a predefined
area (hospital catchment or cancer registry
area); thus, preexisting exposure information

may be less relevant in the study population
selection. However, exposure information can
be used to delimit the study area within the
bounds of the catchment area or disease reg-
istry. For example, AWWA (2000) demon-
strated the feasibility of linking environmental
monitoring data with birth and cancer registry
data to identify optimal geographic locations
for epidemiologic studies of by-products of
chlorination in public water supplies in the
United States. GIS also have potential uses in
the selection of controls for an epidemiologic
study, as they are usually randomly selected
from the same geographic area as the cases. As
frequency matching (on age and sex) is com-
monly applied for study efficiency reasons,
GIS could also be used for further frequency
matching on SES, where areas are classified
according to a georeferenced SES index. 

There are, of course, a number of caveats
regarding use of GIS for exposure assessment
in environmental epidemiologic studies. We
reviewed fundamental principles of three
scientific disciplines critical to such applica-
tions: geospatial science, environmental sci-
ence, and epidemiology. Axiomatic themes
from each of these scientific disciplines should
be adhered to in any case, but they are particu-
larly relevant when using a GIS. These themes
include accuracy and validity of data (raw and
calculated), appropriate selection of mathe-
matic formulas and models, and scientific
plausibility. The application of these axiomatic
themes can be very different across the scien-
tific disciplines, which reinforces the need for
multidisciplinary teams in conducting envi-
ronmental epidemiology studies. For example,
researchers in each of the disciplines are
trained in determining the accuracy and preci-
sion of measurement data. However, only the
geospatial scientist or geographer is generally
trained to rectify geographic data so that two
or more GIS-based data layers such as health
outcome and environmental data can be
merged and the resulting data layer used to
determine the association more accurately.
Similarly, only the epidemiologist is likely to
be trained to search for and identify other data
layers that, if omitted from the test of associa-
tion, could confound the results. 

Use of measured environmental data and
mathematic algorithms for estimating contami-
nant levels in exposure assessment is another
area requiring specialized expertise in most
cases. Since the advent of the computer age,
packaged software has become more and more
prevalent for such applications, but the old
modeler adage “garbage in, garbage out” is per-
petual truth. Even with the color maps pro-
duced using a GIS, “mapped garbage” is still
“garbage.” In this article we propose several
fundamental principles of environmental sci-
ence and modeling that should be adhered to
when using GIS in exposure assessment for
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epidemiology studies. Perhaps the most impor-
tant of these principals can be captured by the
term “validation.” In each of our example stud-
ies, environmental data were used to develop
an exposure metric for use in epidemiology.
The data used were collected for other pur-
poses, commonly for administrative or regula-
tory use. These studies demonstrate the range
of measurement data quality and degree of val-
idation that may be possible from relatively
low (Elliott et al. 2001) to high (Nyberg et al.
2000). They also demonstrate the likely conse-
quences across this range in terms of risk esti-
mates in an epidemiology study. In Elliott et
al. (2001), a database on landfill sites was
obtained from the environmental protection
agencies, which collected the data from site
operators in the licensing process. Thus, data
that would have been useful for exposure
assessment were not readily available (e.g., vol-
umes and types of waste actually received at the
landfill sites, measurement data for specific
chemicals being released into the environment,
or the extent of contamination). Instead, the
likely limit of dispersion for landfill emissions
(2 km) was estimated based on published
information and used as an exposure boundary
around each site, degree of hazard for exposure
was derived from the type of license held by
the operator, and the epidemiologic analysis
assumed a common relative risk for all landfill
sites. The researchers did not validate these
exposure metrics. It is likely that sites licensed
to carry special (hazardous) waste did not nec-
essarily do so, and that sites licensed to carry
nonspecial waste actually did carry some haz-
ardous waste as well. The resulting exposure
misclassification was most likely nondifferen-
tial, which could result in a bias risk estimate
toward the null (Copeland et al. 1977). The
findings of the study, small excess risks for
some birth outcomes after exposure to landfills,
seem to verify this conclusion. 

The study reported by Reif et al. (2003)
concerning TCE and neurobehavioral
demonstrated that improvement in exposure
assessment techniques “refined exposure . . .
with adequate specificity to reveal adverse
effects [of TCE] in the nervous system.” In
that study, the researchers refined exposure
assessment by replacing a proximity metric
such as the one used in Elliott et al. (2001)
with exposure predictions based on validated
environmental measurements (TCE levels in
groundwater at source wells for a municipal
water system) and validated transport model-
ing (water pressure and volume in the munic-
ipal water system) during the exposure period
for the study. However, data were not avail-
able to validate predicted TCE levels at study
participants’ residences. 

In the final example study that we reviewed,
Bellander et al. (2001) had sufficient source
emission and environmental measurement data

to calibrate and validate predicted levels of
NO2 in the environment of Stockholm,
Sweden, for at least a portion of the exposure
period in an epidemiologic study of lung can-
cer (1955–1990). They also validated their
predicted location of residence in Stockholm
for each participant in the study by cross-
checking results using external geocoding ser-
vice companies. The resolution and precision of
this exposure assessment process resulted in the
capability to detect a wide range of individual
long-term average exposure and to detect risk of
lung cancer to average traffic level exposure to
NO2 within a 95% confidence limit. The pro-
cedures and results of these studies clearly indi-
cate the need for expertise in environmental
science and related disciplines in epidemiologic
studies involving pollutant emissions.

Conclusion

In summary, we have reviewed the recent
literature on the use of GIS in exposure
assessment for environmental epidemiology
and described principles and applications of
three core scientific disciplines needed, in our
opinion, to successfully implement such stud-
ies: geospatial science, environmental science,
and epidemiology. This by no means pre-
empts the need for other scientific disciplines
in the execution of such studies. In particular,
statistics is a core science that would benefit
every study, and other disciplines should be
included based on the focus and objective of
the study. Based on our findings, we offer the
following conclusions:
• The use of GIS in exposure assessment for

environmental epidemiology studies is not
only feasible but can enhance the understand-
ing of the association between contaminants
in our environment and disease.

• A good environmental epidemiology study
design should aim to maximize exposure con-
trasts and thus study population selection
should be based on an a priori conception of
the geographic distribution of exposures in
the study area whenever possible (even if
crude). For this purpose, GIS-based exposure
mapping can be useful, given that geo-
referenced data are available at a relevant scale.

• It is preferable in an environmental epidemi-
ology study to estimate and validate levels of
the agent (contaminant) of interest in the
environment of the study population. These
levels are the basis for estimating personal
exposure and dose and for classifying expo-
sure across a study population. GIS and
related technology (source/receptor model;
environmental simulation models) can
improve accuracy in identifying source and
route of potential exposure in a study area and
in estimating levels of target contaminants.

• When environmental levels of the agent
(contaminant) of interest in the environment
of the study population cannot be measured

or accurately predicted, GIS provide the
optimal technology for using proximity to
contaminant source in an environmental
epidemiology study. It is well established as a
viable tool in ecologic study design. 

• GIS and related technologies such as the
GPS are useful for providing precise loca-
tions of study participant residences and
other stationary data. Research is needed on
how to integrate this use of the technology
with epidemiologic questionnaire and envi-
ronmental data for exposure assessment.

• Environmental epidemiology studies
require interdisciplinary expertise and
adherence to the fundamental principles of
geospatial science, environmental science,
and epidemiology. 
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