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received top grade of ‘A’ from the review board. The board recommenda-
tions which apply to this document are italicized below, followed by the
(non-italicized) responses of the MLS team.

• All aspects of the forward model should be examined. . . As out-
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Chapter 1
Introduction

1.1 The Microwave Limb Sounder experiment

EOS MLS is a successor to the MLS experiment (Barath et al. 1993) that formed part of the Upper
Atmosphere Research Satellite (UARS), launched in September 1991 (Reber 1993; Reber et al. 1993).
The instrument is designed to study aspects of the chemistry and dynamics of the atmosphere, from
the upper troposphere to the lower mesosphere. The microwave heterodyne technique is employed
to observe thermal microwave emission from the Earth’s limb in several spectral bands, designed to
characterize emission from O2 (used to obtain temperature and pressure information), O3, H2O, ClO,
HCl, HNO3, N2O, CO, OH, SO2, BrO, HOCl, HO2, and HCN.

EOS MLS is one of four instruments on the EOS CHEM spacecraft. The launch of the CHEM
platform is planned for late 2002. CHEM will fly in a 98◦ inclined orbit, at a nominal height of 705 km,
with a nominal orbital period of 98.9 minutes.

1.2 The aims of this document

This document describes the theoretical basis for the ‘retrieval’ algorithms to be used in the routine
processing of data from the MLS instrument. The task of the retrieval algorithms is to convert calibrated
measurements of thermal limb emission from MLS into estimates of geophysical parameters such as
temperature and composition.

The MLS calibrated radiance observations are known collectively as Level 1B data. Level 2 data de-
scribe retrieved geophysical parameters at the nominal footprint of the MLS instrument. These Level 2
data are produced using the algorithms described in this document. Level 3 data describe geophysi-
cal parameters on regular latitude/longitude grids. Most of the Level 3 products are generated by the
application of gridding algorithms to the Level 2 data.

Some of the species MLS is designed to measure have very low mixing ratios and/or weak emission
lines. This leads to a comparatively poor signal to noise ratio for the corresponding MLS radiance obser-
vations. The best estimates of the abundance of such species are obtained by using retrieval algorithms
to derive quantities such as daily zonal means, monthly maps, or similar averaged quantities. Such
datasets are by definition Level 3 data. Because the algorithms used to produce these data necessarily
use retrieval theory, they are also described in this document.

1.3 Related Algorithm Theoretical Basis Documents

An overview of the MLS instrument and data processing operations is given in Waters 1999. The
algorithms used in the Level 1 processing to calibrate the raw observations of microwave radiance made
by the instrument are described in Jarnot 1999. An important component of the Level 2 processing
algorithms is theforward model, the theoretical basis for this aspect of the data processing is given

Retrieval Processes Algorithm Theoretical Basis
chapter1.tex v1.6
October 6, 1999 1



Chapter 1. Introduction

Table 1.1: A list of the geophysical products produced by the algorithms described in the docu-
ment. For a definition of the terms used see Waters 1999. The products listed in bold type are the
standard MLS data products, those in non-bold type are additional ‘diagnostic’ products produced
by the algorithms. All the products, both standard and diagnostic, are produced using the same al-
gorithms. The ‘diagnostic’ products are produced for special scientific and/or diagnostic purposes.
Products markedy are best processed using the ‘noisy’ products algorithm to produce Level 3 data
for some or all of their vertical range, although Level 2 data for these may be produced routinely.
The quantities markedz are produced using algorithms that are not based on retrieval theory, but on
analysis of other retrieved products.

Geophysical products:

TEMPERATURE
TEMPERATURE-118-a
TEMPERATURE-118-b
TEMPERATURE-240
GEOPOTENTIAL-HT
GEOPOTENTIAL-HT-
118-a
GEOPOTENTIAL-HT-
118-b
GEOPOTENTIAL-HT-
240
H2O
H2O-TROP-118
H2O-TROP-190
H2O-TROP-240
H2O-TROP-640
H2O-TROP-2.5T
REL-HUM-TROP
REL-HUM-TROP-118
REL-HUM-TROP-190
REL-HUM-TROP-240
REL-HUM-TROP-640
REL-HUM-TROP-2.5T

HNO3
O3
O3-190
O3-240-4
O3-240-9
O3-640
O3-STRAT-COLUMN
HCl
ClO
ClO-240
ClO-640
N2O
N2O-190
N2O-640
OHy
OH-2514-H y

OH-2514-V y

OH-2510-H y

OH-2510-V y

HO2y
HO2-650 y

HO2-660 y

BrOy

BrO-625 y

BrO-650 y

CO
HOCly
HCNy
SO2
SO2-204
SO2-640
CIRRUS-ICE z

CLOUD-EXT-COEFF-
118
CLOUD-EXT-COEFF-
190
CLOUD-EXT-COEFF-
240
CLOUD-EXT-COEFF-
640
CLOUD-EXT-COEFF-
2.5T
TROPOPAUSE-
PRESSUREz

in Read et al. 1999. The precisions to be expected from the EOS MLS observations of geophysical
parameters are given in Filipiak 1999.

1.4 EOS MLS data products for which this document applies

The algorithms described here are used in the production of all the EOS MLS geophysical products.
For a complete list of the products see Table 1.1. The majority of the products in the table will be
produced using the retrieval algorithms described in Chapters 4 and 5. Cirrus ice products are described
in Chapter 6. Tropopause pressure, and products such as column ozone are described in Appendix A.
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Chapter 2
Overview of EOS MLS Level 2 data processing

Most of this document describes the algorithms used in the production of the Level 2 data. This chapter
gives a brief overview of the components of the algorithms and the software which implements them.

2.1 The aims of retrieval theory

The methods used to convert remote measurements of radiation emitted by the atmosphere into estimates
of geophysical parameters are known asretrieval algorithms. Retrieval theory is a well-established field
in atmospheric science and is covered in the standard literature (Rodgers 1976; Rodgers 1990). A
mathematical discussion of retrieval theory is given in Section 3.2. This section gives a brief outline of
the fundamental principals involved.

In a retrieval algorithm a quantity known as thestate vectoris used to describe the current knowl-
edge of the state of the atmosphere and relevant aspects of the instrumental calibration and state (known
collectively as the measurement system). Typically the state vector is initialized witha priori infor-
mation such as climatological datasets. Given the state vector, aforward modelcalculation can be
applied to predict what radiances the instrument would observe, were the measurement system in the
state described by the state vector. By comparing these predicted radiances with the radiances actu-
ally observed, and by making use of additional information provided by the forward model calculation
(namely derivatives of radiance with respect to the state vector), the retrieval algorithm computes a better
estimate of the state vector, i.e. one for which the predicted radiances will be closer to those observed.
Often retrieval algorithms use an iterative approach to continuously refine the state vector until appro-
priate convergence has been achieved. For various reasons, including numerical stability, most retrieval
algorithms includevirtual measurements. These are typicallya priori estimates of the contents of the
state vector; usually, but not in all cases, the same estimates used as initial values in the iterations.

2.2 Structure of the Level 2 data processing software

The main components of the Level 2 data processing software are shown in Figure 2.1. The principal
components are the retrieval and forward model calculations described above. Before these are invoked,
operational meteorological data are combined with climatological datasets anda priori knowledge of
the state of the instrument, in order to construct an initial value for the state vector. After the retrieval
and forward model calculations are complete, an additional process produces other products (such as
cloud parameters, tropopause pressure and stratospheric ozone column), and outputs the Level 2 data
along with appropriate diagnostics.

2.3 Heritage of the MLS retrieval algorithms

The EOS MLS instrument is a successor to the MLS instrument that formed part of the Upper Atmo-
sphere Research Satellite (UARS) mission, launched in September 1991. The data processing algo-
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Chapter 2. Overview of EOS MLS Level 2 data processing

Operational
meteorological

data
Level 1B data

Obtaina priori
state vector

Forward model
calculation

Retrieval
calculation and

control

Post analysis,
diagnostics and

output

Level 2 data and
diagnostic

output

Initial state

Final state

Current state

Fitted radiances

Figure 2.1: This figure shows the essential components and data flow for the EOS MLS Level 2
data processing software.
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2.3. Heritage of the MLS retrieval algorithms

rithms envisaged for EOS MLS have essentially the same theoretical basis as those implemented for
UARS MLS (notably those used to produce the latest version, v5, of the UARS MLS dataset). For
information on the earlier versions of the MLS retrieval algorithms see Fishbein et al. 1996; Froidevaux
et al. 1996 and Waters et al. 1996. The version 5 data processing algorithms for UARS MLS will be
described in Livesey et al. (manuscript in preparation).

While the theoretical foundation of the EOS MLS retrieval algorithms is the same as that of the
UARS algorithms, several aspects of the EOS MLS instrument design and intended scientific use differ
from those of the UARS instrument, necessitating a somewhat different implementation of the algo-
rithms. The major differences, in regards to the implication for algorithms are:

• The UARS instrument performs a ‘stop and stare’ scan, whereby the instrument views essentially
the same region of the atmospheric limb for a brief period before moving onto a new region. The
EOS MLS instrument performs a continuous scan, where the height of the limb path is continu-
ously varied. This factor must be taken into account in the forward model calculation.

• The UARS MLS instrument observes limb emission in a direction perpendicular to the spacecraft
flight direction, while the EOS MLS instrument observes emission from the region of the atmo-
sphere directly ahead of the satellite. This geometry can, if properly exploited, yield significantly
more information about the horizontal atmospheric variability along the measurement track.

• UARS MLS was designed to study processes mainly in the upper stratosphere. In recent years,
scientific studies have become increasingly focused on the lower stratosphere and upper tropo-
sphere. The EOS MLS instrument targets this region specifically by the use of high bandwidth
radiometers. Such observations however, can be affected by the presence of cloud (though not
to the same degree as observations made using infrared/visible techniques). In addition, in these
regions, the retrieval problem is typically more non-linear than in the upper stratosphere, due to
the increased optical depth of the atmosphere at the wavelengths under consideration.

Retrieval Processes Algorithm Theoretical Basis
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Chapter 3
The EOS MLS measurement system

This chapter outlines the physics behind the limb sounding technique and derives the algebraic expres-
sions used in retrieval calculations. The aspects of the MLS instrument design that are relevant to the
retrieval algorithms are summarized. The chapter then considers in detail how the state vector used in
the MLS retrieval algorithms is constructed, and considers some implications of the MLS observation
geometry.

3.1 The physics of limb sounding

Limb sounding of the atmosphere is a well established technique whereby the emission (or absorption
in the case of occultation measurements) of electromagnetic radiation from the atmosphere at the limb
of the earth is observed from a satellite platform. The radianceP observed by the instrument is given
by the integral form of the radiative transfer equation

P =
∫

t

∫
�

∫
ν

A [ν,�(t)]

{
I∞(ν,�)τ (ν,∞)+

∫ s=0

s=∞
τ (ν, s)

d B [ν, T(s)]

ds
ds

}
dν d� dt, (3.1)

whereν is frequency and� is solid angle, withA (ν,�) describing the instrument’s spectral and field
of view response, and�(t) describing the movement of the MLS field of view as a function of time.
I∞(ν,�) represents the background emission, in this case the microwave background field.s is the
distance along a given ray path, where the spacecraft is ats = 0, T(s) is the atmospheric temperature
along this ray path.B(ν, T) is the blackbody function, which describes the thermal emission of the
atmosphere as a function of temperature and frequency (for this discussion local thermodynamic equi-
librium has been assumed, and the effects of scattering have been neglected.) The quantityτ describes
the transmission of the atmosphere from the points to the spacecraft. This is defined by

τ(ν, s) = exp

[
−

∫ s′=0

s′=s
k

(
ν, T(s′), f (s′)

)
ρ(s′)ds′

]
. (3.2)

The quantityk is the absorption coefficient as a function of frequency, temperature and atmospheric
composition described by the functionf (s). ρ(s) is the atmospheric density.

3.2 Introduction to retrieval theory

Equation 3.1 gives an expression for the observed radiance as a function of the state of the atmosphere
(i.e. its temperature and composition). The aim of the algorithms described in this document is to invert
this calculation and obtain an estimate of the state of the atmosphere based on the observed radiances.
Retrieval theory, the method by which these inverse calculations are constructed, has a great heritage
in the remote sounding field (see Rodgers 1976; Rodgers 1990). The essential details of the subject,
required for the MLS Level 2 algorithms, are given here.
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3.2. Introduction to retrieval theory

3.2.1 The state vector, measurement vectors andχ2

It is clearly impossible to invert Equation 3.1 to obtain the functional form of the atmospheric tempera-
ture and composition profiles, as this would involve obtaining infinite degrees of freedom from a finite
series of measurements. The problem can only be solved if astate vectoris used. The state vectorx
is ann element vector which describes all the aspects of the atmosphere and measurement system that
affect the radiance measurements. Typically the state vector will contain profiles of temperature and
composition represented by a finite set of vertical levels. By describing the state using a finite length
vector, the retrieval task has been made tractable.

Measurements are also grouped into vectors,yi . Multiple vectors are used, as this explicitly indicates
which sets of measurements are independent (i.e. have no covariance), and which are interdependent.
For example, it is possible that radiometric noise may be correlated from channel to channel within
an MLS spectral band, but not between radiometers. In such a case, one would use separate vectors to
represent the radiances from each band. The covariance of the measurement vectors is represented by the
matrix Si . In many cases, the measurement covariance matrices are purely diagonal. While it would be
possible to thus split the corresponding measurement vectors up into separate one-element vectors, the
grouping will typically be maintained for clarity. The computer programs that implement the retrieval
algorithm will ensure that unnecessary calculations will be avoided in these cases, by considering only
the diagonal elements of the matrix.

A key component of the retrieval algorithm is theforward model, this is a calculation which gives
an estimate of the radiances that would be observed by the instrument, were the atmosphere in the state
give byx.

ŷi = f i (x), (3.3)

where ŷi denotes an estimate of the vectoryi . These functions are typically discrete forms of the
radiative transfer integration in Equation 3.1. The aim of retrieval theory is to seek a value of the state
vector which is a ‘best estimate’ of the true state of the atmosphere. The ‘best estimate’ is defined as that
which most appropriately fits the observed measurements, by giving the minimum value of the quantity
χ2, defined by

χ2 =
∑

i

[yi − f i (x)]
T S−1

i [yi − f i (x)] . (3.4)

This expression is simply the vector form of the more familiar definition ofχ2 in the scalar case as∑
i ([oi − pi ]/si )

2, whereo is the observed measurement,p is the prediction, ands is the standard
deviation of the uncertainty in the observed data. In this case, the differences between the measured and
fitted observations are weighted according to their covariances, and summed.

3.2.2 Newtonian iteration

Many different techniques exist for finding the minima of quantities such asχ2, the most commonly
used method in retrieval algorithms is Newtonian iteration. The Newtonian minimization method gives
an iterative expression for the best estimate ofx according to

x(r+1) = x(r ) − [∇2χ2]−1 ∇χ2, (3.5)

where∇ is the vector derivative operator

[∇] i = ∂

∂xi
, (3.6)
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Chapter 3. The EOS MLS measurement system

and∇2 is the matrix second derivative operator

[∇2
]

i j
= ∂2

∂xi ∂xj
. (3.7)

Note that much of the retrieval theory literature refers to the retrieved estimate of the state vector asx̂,
with x describing the unknown true state of the atmosphere. However, in this document, due to the large
number of subscripts, superscripts and diacritics thatx will soon gain, the ‘hat’ has been omitted for
clarity. The exception is in Section 3.2.5 where the distinction betweenx andx̂ is important.

The parenthetical superscripts indicate values from different iterations. The vector calculus identi-
ties shown in Appendix C.1, when applied to Equation 3.4 give

∇χ2 = −2
∑

i

KT
i S−1

i [yi − f i (x)] (3.8)

∇2χ2 = 2
∑

i

KT
i S−1

i K i , (3.9)

where

K i = ∂f i (x)
∂x

(3.10)

are known as the matrices ofweighting functions(in some literature referred to as theJacobians) for
the measurement vectors. Note that we neglect second order terms here (i.e. those involving∂K i /∂x),
because we are in an iterative process, assuming linearity each iteration.

Thus Newtonian iteration can be expressed as

x(r+1) = x(r ) +
[∑

i

KT
i S−1

i K i

]−1 ∑
KT

i S−1
i

[
yi − f i (x(r ))

]
(3.11)

The covariance matrix of the solution can be shown to be given by

Sx =
[∑

i

KT
i S−1

i K i

]−1

(3.12)

3.2.3 The need for virtual measurements

In many cases the matrix inversion in Equation 3.11 is impossible as the matrix is singular. This indicates
that the ‘direct’ measurements (radiances etc.) have provided insufficient information to completely
determine the state vector; there are some components (or, more correctly, eigenvectors) of the system
about which no information has been obtained.

The solution to this problem is to introducevirtual measurements. These are additional measurement
vectors included in the retrieval calculation in order to assure successful matrix inversion, and to ensure
reasonable values for comparatively poorly-measured aspects of the system. In the MLS case, as is
typical, these virtual measurements take the form ofa priori estimates of the state vector or individual
components of the state vector, constructed from datasets such as climatologies. The covariance of the
a priori information is chosen so as to limit the amount of bias in the resulting state vector.

Introducing a priori information in this manner can lead to incorrect interpretation of retrieved
results. The covariance of the retrieved state vector should always be compared with thea priori co-
variance; if only a small amount of error reduction has been achieved, this indicates that the direct
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3.2. Introduction to retrieval theory

measurements (i.e. radiances etc.) have failed to contribute significant information to the knowledge of
the state vector.

In order to simplify later results, thea priori information is explicitly separated from the other
measurement vectors. Thea priori state vector is denoted bya, with covariance given by the matrixSa.
The forward model for this quantity is simplyfa(x) = x giving a correspondingK matrix equal to the
identity. This gives a modified form of Equation 3.11 as

x(r+1) = x(r ) +
[

S−1
a +

∑
i

KT
i S−1

i K i

]−1 {
S−1

a

[
a − x(r )

] +
∑

i

KT
i S−1

i

[
yi − f i (x(r ))

]}
. (3.13)

The solution covariance is in this case given by

Sx =
[

S−1
a +

∑
i

KT
i S−1

i K i

]−1

(3.14)

These equations form the basis of all the MLS retrieval calculations.
In some retrieval situations there are elements ofx for which the use of ana priori as a virtual

measurement is inappropriate, for these elements, the corresponding rows and columns ofS−1
a are set to

zero1.

3.2.4 Retrieval phases and errors on constrained quantities

In many cases, the retrieval calculations are performed in separate phases, with the results from one
phase being used in the forward model calculations for later phases. For example, in the UARS MLS
data processing algorithms, a retrieval of temperature and tangent point pressure was obtained from the
63 GHz O2 radiances. These results were then used in retrievals of the constituent information from the
other spectral bands.

However, when performing a retrieval calculation in separate phases, the measurement covariance
matricesSi should be modified to allow for the fact that there are uncertainties in the knowledge of the
previously-retrieved quantities. The modification should be made according to

Si → Si + K i [c]ScKT
i [c], (3.15)

whereSc describes the covariance of the quantitiesc that were previously retrieved (i.e. the covariances
obtained from Equation 3.14,) and the matricesK i [c] are the weighting functions for these quantities,
such that [

K i [c]
]
α j

= ∂ (yi )α

∂c j
. (3.16)

This calculation is sometimes referred to asconstrained quantity error propagation.
As described in Section 3.2.1, in many retrieval problems the measurement covariance matrices are

diagonal (or can be assumed to be diagonal to a reasonable level of approximation.) This is the case for
most of the MLS spectral bands (see the discussion in Sections 3.5.3 and 3.5.4). If a diagonal covariance
matrix can be assumed, then computation time can be saved by optimizing the algorithm to take advan-
tage of this fact. However, a constrained quantity error propagation calculation will typically produce
a new set of measurement covariance matrices that are not diagonal. As these measurement covariance

1Note that strictly speaking, this makesS−1
a singular. A more detailed discussion of the construction of thea priori state

vector and its covariance matrix is given in Section 4.2.3.
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matrices have to be inverted as part of Equations 3.13 and 3.14, this can represent a significant amount
of computational effort. In particular, in the case where the number of measurements greatly exceeds
the size of the state vector (as in the MLS case), it is generally preferable to avoid constrained quantity
error propagation. Instead, the most efficient approach is to retrieve all the elements of the state vector
simultaneously, using all the measurement vectors. In this manner, the measurement covariance matri-
cesSi remain diagonal. This does not preclude the use of phasing, however. Phase can be implemented
in a different manner, such that more quantities are added to the state vector each phase, rather than
considering a completely different set of quantities each phase. Sections 4.4.2 and 7.1 deal with these
issues in more detail.

3.2.5 Diagnosing retrieval performance

Averaging Kernels

When examining the results of a retrieval calculation it is important to check the retrieved error estimate
and compare them with anya priori information as outlined in Section 3.2.3. One way in which to do
this comparison is to look at theaveraging kernelmatrix. This is defined as

A = ∂ x̂
∂x

=
[

S−1
a +

∑
i

KT
i S−1

i K i

]−1 ∑
i

KT
i S−1

i K i , (3.17)

where for the sake of this discussion,x is the true state vector, witĥx as the retrieved state from Equa-
tion 3.14. In this calculation, as well as distinguishing between the true and retrieved state vectorsx and
x̂, it is necessary to distinguish between theforward model̂yi = f̂ i

(
x̂
)
, which provides an estimate of the

observed radiance given an estimate of the state vector, and theforward functionyi = f i (x), which de-
scribes the actual physical process taking place in the atmosphere, aspects of which (e.g. spectroscopic
constants) are uncertain.

A describes the sensitivity of the retrieval to the true atmospheric state, as opposed to its sensi-
tivity to the a priori. One could consider it as the ‘ratio’ of the information contributed by the direct
measurements compared to the total contributed by both the direct measurements and thea priori.

Columns of theA matrix represent the response of the retrieval system to a ‘delta function’ distur-
bance in the atmosphere (i.e. a change in a single element ofx.) Rows of the matrix indicate the amount
each element of the true state vector has contributed to the retrieved estimate.

The use ofχ2 as a diagnostic

In addition to examining these quantities, theχ2 value for a retrieval (or for each measurement vector
independently) should also be examined. Ideally, the value ofχ2 should be aboutm, wherem is the
number of elements in the measurement vector(s) under consideration (χ2 is sometimes divided bym
to yield a ‘normalized’χ2 value.)

A value ofχ2 significantly larger thanm indicates that the radiance measurements have not been fit-
ted to a sufficient level of accuracy. This can be due to errors in the forward model, or poor convergence
in the retrieval algorithm. Aχ2 significantly lower thanm on the other hand usually indicates that the
measurement precisions used are too pessimistic.

3.2.6 Other minimization techniques

In many cases, (e.g. for some of the MLS observations) the retrieval calculation is sufficiently linear that
a small number of Newtonian iterations can yield the correct result. However, in some cases, such as
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3.3. Radiance measurements

those where the system is moderately non-linear, and the initial value of the state vector is comparatively
far from the solution, other techniques may be more appropriate.

The steepest descent approach is a simple algorithm which makes small steps each iteration in the
direction of the steepest descent of the cost function (χ2 in this case.)

x(r+1) = x(r ) − γ −1∇χ2, (3.18)

whereγ is a scalar value describing the size of step to be taken. This is typically a slow algorithm, as it
takes no advantage of possible linearity in the system.

The Marquardt-Levenberg approach is faster, as it is a combination of the ‘cautious’ steepest de-
scent method and the ‘aggressive’ Newtonian method. As the iterations proceed, and the solution is
approached, the steps taken each iteration become smaller, making linearity an increasingly better as-
sumption, and allowing the minimization to become more aggressive. The iterations proceed according
to

x(r+1) = x(r ) − [
γ I + ∇2χ2

]−1 ∇χ2. (3.19)

For small values ofγ this is equivalent to the Newtonian iteration in Equation 3.5, while for large
values ofγ this is equivalent to steepest descent with a small step size. As the iterations proceed the
value ofγ is changed according to the convergence behavior. Ifχ2 increases, the new value ofx is
rejected, andγ is increased so that a more cautious step can be explored. Ifχ2 decreases, then the new
value ofx is adopted andγ is decreased so that the next iteration is more aggressive. The use of the
Marquardt-Levenberg method can lead to more stable convergence in most moderately non-linear cases
than Newtonian iteration. For more information on the Marquardt-Levenberg scheme, see Press et al.
1986; for applications to retrieval theory see Marks and Rodgers 1993.

3.3 Radiance measurements

The MLS instrument makes observations of microwave radiation in many different regions of the spec-
trum, covering the frequency range from 118 GHz to 2.5 THz. The instrument consists of seven mi-
crowave radiometers, covering five different spectral regions. The signals from the radiometers are
passed onto various spectrometers. The spectral coverage of the instrument is shown in Figure 3.1. In
the MLS data processing, radiance is measured in Kelvins and considered to be abrightness tempera-
ture. This is a quantity proportional to the observed radiance, which, in the long wavelength limit, is
equal to the temperature of the blackbody producing the observed radiance.

In the standard operational mode, the instrument makes one complete vertical scan of the GHz
antenna over tangent heights between 2.5 and 62.5 km in 20 s. The THz antenna scans from 15.0 to
62.5 km in the same time period. Approximately 4.7 s are spent in calibration and antennae retrace
activities, giving a repeat period of about 24.7 s. Each scan/calibrate/retrace activity is called ama-
jor frame. The lengths of the major frames will vary slightly in increments of 1/6 s to ensure that the
latitudinal distribution of the scans is the same from orbit to orbit, and between both ascending and
descending orbital segments, and the northern and southern hemispheres. The 20 s limb scan is a con-
tinuous movement, as opposed to the ‘stop and stare’ scan that was used in UARS MLS. During the
scan, 120 radiance integrations are performed, each of length 1/6 s. These integration periods are known
asminor frames.

3.3.1 Behavior of the radiances

Figure 3.2 shows a set of calculated radiances from two of the EOS MLS spectral bands. The form
of the radiance curves shown in the left hand plot is typical of the observations from limb sounding
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(a) R1A:118.B1F:PT . (b) R2:190.B2F:H2O .

Figure 3.2: (color) These plots show example radiance profiles for two different spectral bands
in EOS MLS. TheR1A:118.B1F:PT band is targeted at an O2 line, and used to measure tem-
perature and tangent pressure. TheR2:190.B2F:H2O band is used to measure H2O. Only the
radiances for the first 13 channels in each band have been shown. The red lines correspond to the
channels closest to the centers of the spectral lines, with the purple lines corresponding to those on
the line wings. See Appendix E for a description of the EOS MLS signal designation nomenclature.

instruments. At high tangent point altitudes, the atmospheric density along the limb path is very low,
so little emission is observed. As the ray path descends through the atmosphere, emission becomes
stronger as the atmosphere becomes thicker. Eventually, the atmosphere becomes sufficiently opaque
that emission from lower regions in the atmosphere is absorbed by air at higher altitudes, and is thus
never observed by the instrument. In these circumstances the radiances are said to besaturatedor
blacked out, this is the cause of the knee in the radiance curves. The saturated radiances, are a measure
of the temperature of the region of the atmosphere where the saturation takes place. Sometimes, the
radiances continue to increase or decrease slightly as the tangent ray path is scanned further down.
This is a geometrical effect. As the ray descends, the path length to a given height decreases, thus
the saturation occurs at a different height in the atmosphere, leading to slightly different radiances,
depending on the form of the temperature profile. The channels closer to the line centers will saturate
at higher altitudes than those on the wings of the lines, as the absorption at the frequencies closer to the
line centers is stronger.

The curves shown in the right hand plot in Figure 3.2, corresponding to the 183 GHz H2O obser-
vations, show a slightly different behavior. In this case two separate saturation process occur. This is
simply explained by the fact that these observations are made by a ‘double sideband’ radiometer. The
MLS radiometers work on the microwave heterodyne technique; they output anintermediate frequency
(IF) signal, corresponding to the observed signal with thelocal oscillator (LO) frequency subtracted.
The negative frequency components are folded over into positive IF space with a 180◦ phase shift. This
is described in Figure 3.3. The intermediate frequency signal is given by

〈Intermediate frequency signal〉 = α 〈Upper sideband signal〉 +
(1 − α) 〈Lower sideband signal〉 . (3.20)

Thesideband ratio, α/ (1 − α), is measured during prelaunch calibration.
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Figure 3.3: This figure shows the action of the microwave heterodyne technique. The observed
radiances are combined in a non-linear element such as a diode, with aLocal Oscillator (LO)
signal. The resultingIntermediate Frequency(IF) signal is a combination of the signals in the
upper and lower sidebands.

3.3.2 The importance of tangent pressure

As shown in Figure 3.2, the radiances observed by MLS depend strongly on the atmospheric pressure
at the ray tangent point. This is due both to the large increases in atmospheric density with decreasing
altitude, and to the fact that the spectral lines being measured are, at most altitudes, pressure broad-
ened (an effect caused by collisions between emitting molecules). At higher altitudes (in the mid to
upper mesosphere), pressure broadening becomes less significant, and Doppler broadening due to the
distribution of molecular velocity takes over as the dominant effect.

Quantities such as radiance and tangent pressure are somewhat distinct from explicitly geophysical
quantities, such as temperature and composition, in that they are to a greater or lesser extent dependent
on the state of the instrument (e.g. the pointing of the antenna.) These are often referred to asminor
frame quantities, in that they vary from one MLS minor frame to the next. Where it is useful to draw
distinctions between such quantities and strictly geophysical parameters, an arrow will be drawn over
the relevant symbol, thus the tangent point pressure for minor framei would be represented by the
symbol Epi .

3.4 Geometric measurements

In addition to microwave radiances, the MLS instrument’s knowledge of the altitude of the limb tangent
point Ehi , can be considered as a measurement. Given knowledge of the tangent point pressuresEp, the
atmospheric temperature profile as a function of pressureT(p), and the altitudeh0 of a fixed pressure
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3.5. Construction of the MLS ‘state vector’

surfacep0, a hydrostatic integration will serve as a forward model for such measurements.

Ehi = h0 −
∫ Epi

p0

R(p)T (p)

g(p)p
dp, (3.21)

whereg is the acceleration due to gravity andR is the atmospheric gas ‘constant’.
The use of the additional information provided by these measurements is essential in supplying

tangent pressure information in regions where the radiances are largely independent of pressure such as
the lower altitude regions where the radiances are saturated.

The problem with this construction of the forward model is that the quantityg is not a function of
pressure, but of geometric altitude. One could expressg as a function of pressure, however a simpler
approach is to recast this expression as one for the geopotential heightEZ of the tangent point, defined as

Z = Z0 + 1

g0

∫ h

h0

g dh, (3.22)

whereg0 is a nominal value ofg (usually taken as 9.80665 ms−2.) When expressed in terms of geopo-
tential height, Equation 3.21 becomes

EZi = Z0 −
∫ Epi

p0

R(p)T(p)

g0 p
dp. (3.23)

Equation 3.23 can thus form the basis of a forward model if the Level 1B tangent point altitude is
converted into geopotential height (a well understood and documented calculation). These geopotential
heights are then used as the measurements, rather than the geometric altitudes.

There is however an additional complication, due to the refraction of the tangent ray by the at-
mosphere, this leads to a difference between the true ray tangent point altitude (and thus geopotential
height) and the ‘unrefracted’ tangent point altitude as determined by geometry. The magnitude of this
refraction is a function of atmospheric density (and thus temperature and pressure), and humidity.

This effect leads to a conceptual problem with the measurement system, in that the measurements
depend on the value of the state vector, which is not strictly speaking valid in retrieval theory (only
the predicted measurements obtained from the forward model should depend on the value of the state
vector.) This is really only a matter of semantics, the situation can easily be remedied by defining
the measurement as ascan residual, the difference between the hydrostatic and geometric/refraction
calculations of tangent point geopotential height, defining the values of this measurement to be zero.
The forward model will be constructed to compute this difference. The covariance matrix for this
measurement will be constructed as a diagonal matrix, with the diagonal values being based on the
precision reported on the Level 1B tangent point altitude data, and no off diagonal correlations.

3.5 Construction of the MLS ‘state vector’

Section 3.2 gave an introduction to the concept of the ‘state vector’, the vectorx that describes all
the aspects of the atmosphere and measurement system that can affect the direct measurements. The
construction of the state vector is an essential part of the design of any retrieval system; its contents
need to be chosen carefully to provide a complete set of independent parameters that describe the whole
system. This section discusses the construction of the state vector for the MLS retrieval system.
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3.5.1 State vector selection methodology and implementation

The construction of the MLS state vector is performed by studying the measurement system with refer-
ence to a set of simple criteria.

Firstly, the experimental objective is placed in the state vector. That is profiles of atmospheric tem-
peratureT, geopotential heightZ and composition (concentration of targeted gases)f on fixed pressure
surfaces.

At this point, any superfluous information in the state vector is removed. In this case the temperature
information is redundant with most of the geopotential height profile as, given profiles of temperature
and one geopotential height, the entireZ profile could be computed using hydrostatic balance. For this
reason, the vector is reduced so as to contain only one geopotential height.

Next, the primary source for direct information about the state vector is identified. In the MLS case,
this direct information is the radiance observationsEP and the scan residual measurementsEr .

The next set of quantities to be placed in the state vector represents any additional information
needed in order to characterize the direct measurements. In this case, it is clear that tangent pressure
information for each radiometer is essential if forward model estimates are required for both radiances
and scan residual measurements. In order that the calculations may be more linear, this quantity is
represented by the vectorEζ = − log10

[
Tangent pressure / hPa

]
.

The use of tangent pressure is slightly complicated by the fact that the MLS instrument performs a
continuous scan. The quantity stored in the state vector represents the tangent point pressure at some
prescribed time within the integration period. The forward model process will perform the appropriate
interpolations and convolutions to account for the movement of the tangent point during the integration.

This whole process is somewhat iterative, in that these new quantities may themselves be dependent
on further additional information. For example, the estimates of tangent pressure for each radiometer
can be dramatically improved given knowledge of the angular offsets between the various radiometers
and/or modules in the case of the GHz/THz module offsets. Thus these offsets are included in the state
vector. These offsets are essentially constant, although in the case of the offset between the GHz and
THz modules, there may be a slight orbital dependence. Additional redundancy may develop as more
quantities are introduced into the state vector. It is important to recognize the source of this redundancy
and attempt to eliminate it.

A pictorial representation of this whole process, as applied to the EOS MLS measurement system is
given in Figure 3.4.

As the state vector is constructed, attention needs to be paid to the possible need fora priori values
for the elements added. In the case of theEζ components, anya priori values would need to be based
on the observed Level 1B tangent point height information. Clearly, as these heights are being used
(in the form of geopotential heights) as direct measurements as described in Section 3.4, the use of an
a priori for Eζ would result in the use of the same information twice. In fact, ana priori estimate for
Eζ is unnecessary, as the measurement system already has enough information to completely describe
Eζ . The Level 1B tangent point height, and the temperature elements of the state vector provide enough
information to describe values ofEζ even in cases where all the radiances for a given minor frame are
missing.

3.5.2 Representation within the state vector

As described in Section 3.2.1, the state vector is designed to represent the functional form of the atmo-
spheric temperature and composition. In the MLS case, this functional form is constructed using a set
of basis functions. For example, in the case of the atmospheric temperature profile, the state vector is
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Process
Application
to EOS MLS

(first iteration only)

Resulting
state vector

(first iteration only)

What are the
experimental objectives?

Temperature (T),
Geopotential height (Z)

and composition (f) profiles.

[
T, z, f

]

Remove redundant
information

Remove all but one
geopotential height

Z → Z0

[
T, Z0, f

]

What direct measurements
yield these quantities?

Radiances (EP) and
scan residuals (Er ).

What other information
is required to

characterize these direct
measurements?

Tangent pressures
for each radiometer.(

Eζ 118
, Eζ 190

, Eζ 240
, Eζ 640

, Eζ 2T5
) [

T, Z0, f, Eζ 118
, Eζ 190

,

Eζ 240
, Eζ 640

, Eζ 2T5

]

What further information
could improve estimates
of these new quantities?

Radiometer offsets
δ118→240 etc.

 T, Z0, f, Eζ 118
, Eζ 190

,

Eζ 240
, Eζ 640

, Eζ 2T5
,(

δ118→240, . . .
)


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What further redundancy
could be removed?

The inclusion of the
radiometer offsets has
made all but one of
the GHz module

tangent pressures redundant

 T, Z0, f,
Eζ 118, Eζ 2T5,(

δ118→240, . . .
)



Figure 3.4: A pictorial representation of the EOS MLS state vector selection process
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Chapter 3. The EOS MLS measurement system

defined according to

T(z) =
∑

i

Tiηi (z), (3.24)

wherez is the log pressure vertical coordinate2 andT(z) is the functional form of temperature.Ti are
the components of the state vector describing the temperature, andηi (z) are the basis functions.

For most of the MLS species, then basis functionsη0 . . . ηn−1 are defined as

ηi (z) =


1 if (i = 0 andz< z0) or (i = n − 1 andz> zn−1),
zi+1−z
zi+1−zi

if zi ≤ z< zi+1,
z−zi−1
zi −zi−1

if zi−1 ≤ z< zi ,

0 otherwise

(3.25)

A sample set of such functions are shown in Figure 3.5. These functions give a profile whose
functional form is equivalent to linear interpolation inz between the valuesTi on surfaceszi , with no
extrapolation beyondz0 or zn−1.

For some species, this linear interpolation form may not describe the true atmospheric profile with
sufficient accuracy. An example of this is the case of tropospheric H2O concentration. The vertical
profile of H2O in the upper troposphere shows rapidly decreasing abundance with increasing altitude.
In order to accurately capture this feature, alternative representation bases may be appropriate. In the
case of UARS MLS, an exponential form of basis was used to capture these features. This was achieved
by retrieving a state vector describing a linear basis in relative humidity, which is equivalent to an
exponential one in mixing ratio space. A similar approach will be implemented for EOS MLS, though
the intended increase in the state vector resolution from 6 to 12 surfaces per pressure decade will also
improve the accuracy of the representation.

3.5.3 Continuum emission and ‘baseline’

Most of the MLS observations rely on measurements ofspectral contrast, that is, the retrieval algo-
rithms determine the atmospheric composition by effectively comparing the radiances near the center of
a spectral line with those in the wings. The absolute value of the radiances observed is not typically as
important a factor in the MLS measurement system. There are many factors that determine such spec-
trally flat contributions to the MLS radiance observations. The term ‘flat’ in this context implies signals
that may vary between the spectral bands, but will vary only slowly within the bands. Unexplained
spectrally flat signals can arise in the measurement system from many different sources, these broadly
divide into instrumental and forward model factors.

Instrumental contributions include unmodeled blackbody emission from the MLS antenna, and un-
certainties in the knowledge of the instrumental field of view. In the case of the field of view, an
important factor is the uncertainty in the signal received through sidelobes of the antenna pattern.

The main mechanism whereby spectrally flat errors can be introduced into the forward model calcu-
lation is emission, absorption or scattering by species whose abundance is not known to a high enough
accuracy (e.g. emission from cirrus ice in the upper troposphere), and/or whose emission is not well
known at the frequencies under consideration (for example water vapor in the lower stratosphere / upper
troposphere.) While the water vapor profile from about 500 hPa upwards will be measured by MLS,

2Do not confusez with Eζ , z is a fixed vertical coordinate,Eζ is a set of state vector elements describing the pressure at the
limb path tangent points.
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Figure 3.5: (color) This figure shows an example of the representation bases used in the MLS state
vector. The functionsηi are shown by the colored lines, corresponding to log pressure heightszi .
The vertical resolution need not be constant, and in this case, the resolution halves for the layer
z3 → z4.
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Chapter 3. The EOS MLS measurement system

the spectroscopy of the H2O emission is not sufficiently well known to account for the spectrally ‘flat’
radiance at the lower altitudes with an accuracy that is consistent with the MLS measurement accuracy.

It is possible to model these errors through the use of off diagonal terms in the MLS radiance
measurement covariance matrices. However, as explained in Section 3.2.4, the computational effort
required when dealing with such covariance matrices is vast. A more practical approach is to include
elements in the state vector that model such errors, and retrieve them. This is the solution adopted in the
MLS processing.

The instrumental contributions are typically best characterized in terms of an absolute radiance
offset term in the forward model, while the forward model effects are best accounted for by retrieving a
spectrally flat extinction coefficient on fixed pressure surfaces. Clearly, these two quantities are highly
correlated, and retrieving an extinction profile and a minor frame dependent radiance offset would lead
to a highly degenerate system. The approach adopted will be to retrieve the radiance offset on a once
per major frame basis (or perhaps coarser) with the extinction only retrieved below some altitude, (e.g.
10.0 hPa), above which it is expected to be small. This should allow good separation between the
instrumental and the forward model contributions.

3.5.4 Other sources of correlated radiance error.

In addition to the ‘baseline’ terms discussed above, there are additional mechanisms which can produce
correlations in the errors on MLS radiance measurements. One such is the so-called 1/ f noise described
in Jarnot 1999. In most cases, this effect is well modeled by the retrieval of the baseline terms described
above. One possible exception may be cases where the spectral signal being sought is very weak. These
are the measurements that will be used to derive the ‘noisy’ products. For a full description of the issues
involved with these measurements, see Chapter 5.

Several of the spectral bands in the MLS instrument overlap, as shown in Figure 3.1, for example
R2:190.B2F:H2O andR2:190.B3F:N2O . The noise on the MLS radiances is dominated by noise
from the radiometers, rather than noise from the individual spectrometers. This means that there will be
a correlation in the errors on individual radiances from these two bands. If this is not modeled correctly,
the retrieval algorithm will draw false inferences, believing it has two independent measures of the
atmosphere, when in fact their noises are identical.

A full, non-diagonal, treatment of such cases is impractical, as described above. However, there
are two possible alternative solutions. One could approximate the covariance matrix by increasing all
the diagonal elements by a factor of

√
2. This prevents the retrieval algorithm reading too much into

the measurement system, but is an approximation, as it does not indicate the coupled nature of the
problem. The prefered approach is simply to only use data from one of the two channels in regions
of overlap. Typically one would choose to keep the channels with higher frequency resolution. There
would probably remain either small regions of overlap, or small gaps, due to the lack of complete
alignment in the channels for the two bands, but these are of little consequence.

The spectral response of the MLS signal channels is not completely rectangular as it would be in the
ideal case. This leads to a very slight overlapping of spectral response between adjacent channels. While
the detailed spectral response of the channels will be considered fully in the forward model calculations,
the small level of correlated uncertainty the overlap produces can safely be neglected as the overlap is
very small.

3.5.5 A note on ‘state vectors’ and ‘retrieval vectors’

So far the discussion in this section has assumed that all of the elements of the state vector will be
retrieved by the MLS data processing algorithms. In reality, as described in Section 3.2.4, the retrieval
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algorithm will proceed in separate phases. For example a retrieval of temperature and pressure may be
followed by a retrieval of tropospheric humidity and ozone abundance, followed in turn by a retrieval of
stratospheric composition. Thus, as the retrieval progresses, some elements of the state vector may be
constrained to values, either taken from a prior phase, or from somea priori information, as described
in Section 3.2.4.

In the context of the standard literature (e.g., Rodgers 1976; Rodgers 1990), the ‘retrieved’ and
‘constrained’ quantities are distinguished by defining the forward model as

ŷ = f (x,b) , (3.26)

where the vectorb describes the quantities that are constrained. In this notation, the ‘state vector’
described in this section would be the combined vector[x,b] (some times called the ‘forward model’
vector), while the ‘retrieval vector’ would be the vectorx alone.

In most of this document the distinction is unnecessary, so the term ‘state vector’ will be used to
loosely refer to either the ‘retrieval vector’ or the ‘forward model’ vector.

3.5.6 The proposed state vector for MLS

The full details of the MLS state vector remain to be clarified. For a summary of the current proposed
configuration see Appendix B.

3.6 Observation geometry

The EOS MLS instrument observes radiances emitted from the limb of the earth in the plane described
by the spacecraft orbit. This contrasts with the UARS MLS instrument which observed limb emission
perpendicular to the flight direction. This observation geometry has far reaching implications for im-
proving the retrieval algorithms, best explained with reference to Figure 3.6. This figure makes it clear
that the radiances observed in an individual limb scan are a function of the temperature and composition
of the atmosphere over a range corresponding to several adjacent Level 2 profiles. In the UARS MLS
case, while the horizontal scales involved were similar, spherical symmetry was assumed, as there was
no direct way to obtain information about the horizontal variability of the atmosphere along the line of
sight. Some instruments such as theImproved Stratospheric And Mesospheric Sounderinstrument on
UARS (Taylor et al. 1993), which had the same measurement geometry as UARS MLS, adopted a two
pass approach, whereby the profiles obtained from a first pass retrieval were mapped onto a grid. The
horizontal gradients of this gridded field were then used asa priori information in a second pass of the
retrieval process (Dudhia and Livesey 1995).

In the EOS MLS case however, with the instrument looking along the flight direction, much more
information on the horizontal variability of the atmosphere along the line of sight can be obtained.
Spherical symmetry need no longer be assumed, and the retrieval task can be structured to account for,
and provide information on, horizontal variability along the line of sight. The issues raised by this are
covered in detail in the next chapter.

3.6.1 ‘Fundamental’ coordinates

In constructing the state vector, it is very important to recognize which sets of quantities are indepen-
dent, and which are related. For example, many of the aspects of the MLS measurement system are
functions of earth radius and the acceleration due to gravityg for a given altitude. However, both of
these quantities are themselves functions of latitude (and to a lesser extent, longitude.) It is important

Retrieval Processes Algorithm Theoretical Basis
chapter3.tex v1.11
October 6, 1999 21



Chapter 3. The EOS MLS measurement system

-4000
-3500

-3000
-2500

-2000
-1500

-1000
-500

0
500

1000
1500

2000
2500

3000
3500

4000
‘H

orizontal’ distance / km

-1000

-500 0

500

1000

‘Vertical’ distance / km

orbit

-400
-350

-300
-250

-200
-150

-100
-50

0
50

100
150

200
250

300
350

400
‘H

orizontal’ distance / km

-50 0 50

100

150

‘Vertical’ distance / kmF
igure

3.6:(co
lo

r)
T

h
e

to
p

p
lo

tsh
ow

s
th

e
view

in
g

g
e

o
m

e
try

o
fE

O
S

M
L

S
w

h
ich

o
b

se
rve

s
lim

b
ra

d
ia

n
ce

s
in

th
e

fo
rw

a
rd

d
ire

ctio
n

.
T

h
e

low
e

r
p

lo
t

is
a

n
exp

a
n

sio
n

o
f

th
e

b
o

xe
d

reg
io

n
in

th
e

u
p

p
e

r
p

lo
t.

H
e

re
,

1
2

o
f

th
e

1
2

0
lim

b
ra

y
p

a
th

s
fo

r
five

sca
n

s
a

re
sh

ow
n

b
y

th
e

n
e

a
rly

h
o

rizo
n

ta
llin

e
s.

T
h

e
lo

cio
fth

e
g

e
o

m
e

trica
llim

b
ra

y
ta

n
g

e
n

tp
o

in
ts

a
re

sh
ow

n
b

y
th

e
th

in
,a

n
g

le
d

lin
e

s.
T

h
e

kin
ks

in
th

e
se

lin
e

s
a

re
d

u
e

to
a

ch
a

n
g

e
o

fve
rtica

lsca
n

ra
te

(th
e

in
stru

m
e

n
tsp

e
n

d
s

m
o

re
tim

e
o

b
se

rvin
g

th
e

tro
p

o
sp

h
e

re
a

n
d

low
e

rstra
to

sp
h

e
re

th
a

n
th

e
u

p
p

e
rreg

io
n

s
o

fth
e

a
tm

o
sp

h
e

re
in

o
rd

e
rto

im
p

rove
th

e
in

fo
rm

a
tio

n
yie

ld
fro

m
th

e
low

e
r

reg
io

n
s).

T
h

e
th

icke
r

‘cu
rve

d
’lin

e
s

sh
ow

th
e

lo
cio

fth
e

re
fra

cte
d

(i.e
.tru

e
)

ta
n

g
e

n
tp

o
in

ts.
T

h
e

‘ve
rtica

l’li
n

e
s

rep
resen

tth
e

lo
catio

n
o

fth
e

retrieved
a

tm
o

sp
h

e
ric

p
ro

files.

22
chapter3.tex v1.11
October 6, 1999 EOS Microwave Limb Sounder



3.6. Observation geometry

limb ray path 

Non-refracted

Cross section

orbital plane
EOS CHEM

MLS
antenna

of standard geoid

Equator

φ

Figure 3.7: The observation geometry of MLS is affected by the oblateness of the earth, and the
inclination of the orbit. The main part of this figure shows a cross section in the 98◦ inclined orbital
plane. The master horizontal coordinateφ, is defined as the angle between the normal to the geoid,
normal to the limb ray path, and the equator. The radius of the orbit and the oblateness of the Earth
have been exaggerated for clarity.

Retrieval Processes Algorithm Theoretical Basis
chapter3.tex v1.11
October 6, 1999 23



Chapter 3. The EOS MLS measurement system

to acknowledge this interdependence, otherwise the retrieval process can exhibit unphysical behavior
due to the double bookkeeping taking place. The way to get around this problem is to construct a set of
fundamental coordinates for the system.

Clearly, the development so far indicates that pressure is the most appropriate fundamental coordi-
nate in the vertical direction. The appropriate horizontal coordinate should account for the inclination of
the EOS CHEM orbit and the oblateness of the Earth. It is desirable to use a coordinate system within
which the MLS scans are relatively evenly spaced, as many of the quantities used in the forward model
will be precomputed on regular horizontal and vertical grids. Clearly latitude is not an appropriate can-
didate, as the scan spacing is not constant in latitude. In fact, at high latitudes there is a degeneracy in
the latitude coordinate, due to the inclination of the EOS CHEM orbit. For EOS MLS, the coordinate
φ, described in Figure 3.7, will be used as a fundamental coordinate.
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Chapter 4
The EOS MLS Level 2 data processing algorithms

Section 3.6 discussed the details of the EOS MLS observation geometry. A key point is that radiance
observations from one scan are dependent on the state of the atmosphere over a horizontal range of order
of a few profile spacings. This fact provides a useful tool for characterizing the details of atmospheric
variability along the spacecraft flight direction, if it is explicitly included in the calculations.

In order to take advantage of this, horizontal homogeneity cannot be assumed in either the forward
model or retrieval processes. The approach taken is to retrieve the data in blocks of contiguous profiles.
Such a calculation is not prohibitive, due to the comparative sparsity of the matrices involved. This
Chapter considers in detail the implementation of the retrieval calculation in this manner.

Other aspects of the implementation of the retrieval calculation are also discussed, including im-
proving the efficiency of the calculation, and its numerical stability.

4.1 A simple one dimensional approach

Before discussing the full two-dimensional MLS retrieval system described above, it is helpful to con-
sider a simpler system. Equation 3.13, repeated here, gives an iterative expression for the retrieval
operation

x(r+1) = x(r ) +
[

S−1
a +

∑
i

KT
i S−1

i K i

]−1 {
S−1

a

[
a − x(r )

] +
∑

i

KT
i S−1

i

[
yi − f i (x(r ))

]}
.

This simple retrieval method is a one-dimensional approach, where all the issues of the observation
geometry discussed in Section 3.6 are ignored. Instead the assumption is made that one complete scan
of radiance observations depends only on one atmospheric profile, and that horizontal homogeneity can
be assumed. This turns the retrieval calculation intoN separate individual profile retrievals, whereN
is the number of profiles under consideration. This approach corresponds exactly to the UARS MLS
version 5 retrieval algorithm.

As this simple algorithm ignores the geometrical issues raised in Section 3.6, it is not optimum for
producing the final geophysical products. However it can be useful in obtaining a first guess state vector
for use in a later 2D retrieval. It will transpire that this simple method plays an important role in the full
retrieval algorithm.

4.2 Structure and sparsity in the full MLS retrieval system

In the full MLS retrieval system, profiles1 will be retrieved in blocks of lengthN, whereN is expected
to be of order 100, corresponding to a significant fraction of an orbit (1 orbit = 240 scans/profiles.) In
order to overcome edge effects, the blocks will overlap slightly. In this scheme, the state vector will

1In this discussion the term ‘profile’ (singular) is taken to refer to a complete set of vertical profiles of temperature and
composition for asinglelocation on the globe.
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Time / profiles / scans

Chunk A

Chunk B

xA[Q−5] xA[Q−4] xA[Q−3] xA[Q−2] xA[Q−1] xA[Q] xA[Q+1] xA[Q+2]

xB
[−3] xB

[−2] xB
[−1] xB

[0] xB
[1] xB

[2] xB
[3] xB

[4]

Figure 4.1: This figure shows an example of how the MLS profiles will be retrieved in chunks.
Each chunk consists ofQ profiles, with an additionalq profiles of overlap (3 in this case). The
total number of profiles in a chunkN is thusQ + 2q. Beyond the end of each chunk, horizontal
homogeneity is assumed, the overlaps are included (where possible) to reduce the impact of this
approximation on the retrieved data. The data in the overlapping regions will be compared for
diagnostic purposes. For example,xA[Q] should be similar toxB

[0].

consist ofN profiles, with measurement vectors corresponding toM scans. In most casesN = M,
giving a one to one correspondence between scans and profiles. However, this is not a requirement,
one could construct a state vector consisting of two profiles per scan, or one profile every two scans if
necessary. Figure 4.1 shows theN = M arrangement.

For the purposes of this discussion, consider a system with only one measurement vector. The results
obtained here extend trivially into the multiple measurement vector case. The state vector consists
of N profilesx[ j ] each of lengthn. There are additional state vector elementsx� which contain any
‘constant’ quantities such as spectroscopy and instrument calibration (e.g. sideband ratios) which may
be sufficiently uncertain that it is appropriate to retrieve them.

x =


x�
x[0]
x[1]
...

x[N−1]

 (4.1)

The goal of the retrieval algorithm will then be to simultaneously obtain values for the entire vector
x. The main part of the retrieval calculation is the computation of

[
S−1

a + KTS−1
y K

]
which is the topic

of the next two subsections. The next section discusses the issues involved in inverting this matrix.

4.2.1 The weighting function matrices

Along similar lines to the construction of the state vector, the measurement vector consists of observa-
tions fromM scans. Section 3.6 showed that in theN = M case, the measurements from one scan were
affected by∼ 5 adjacent profiles, 2 either side of the nominal position. This amounts to saying that the
K matrix has a bandwidthp = 2, such thatK [α j ] = 0 for all |α − j | > p, j 6= 0. As an illustration,
consider a simpler case wherep = 1, andN = 6, here the weighting function matrix has the block
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4.2. Structure and sparsity in the full MLS retrieval system

structure

K =



× × × 0 0 0 0
× × × × 0 0 0
× 0 × × × 0 0
× 0 0 × × × 0
× 0 0 0 × × ×
× 0 0 0 0 × ×

 . (4.2)

The× symbol indicates a non-zero block sub matrix, while 0 indicates a sub matrix that is identically
zero. Each row of the matrix corresponds to a separate scan. The first column indicates the weighting
functions for thex� information, while the remaining columns indicate profiles 0· · · N − 1. This type
of matrix is known as a singly-bordered (i.e. one column fully non zero) block band diagonal matrix.

4.2.2 The KTS−1
y K matrix

As described in Sections 3.2.1 and 3.2.4 the measurement covariance matrixSy is diagonal. This gives
a KTS−1

y K matrix which is doubly-bordered block band diagonal with a block bandwidth of 2p. The
exampleK matrix of Equation 4.2 gives

KTS−1
y K =



× × × × × × ×
× × × × 0 0 0
× × × × × 0 0
× × × × × × 0
× 0 × × × × ×
× 0 0 × × × ×
× 0 0 0 × × ×


. (4.3)

4.2.3 Thea priori covariance matrix

Thea priori covariance matrix describes the uncertainty on thea priori estimate of the state vector, or
a subset of the state vector. For the moment, consider a very simple state vector containing a set ofN
vertical profiles of atmospheric temperature onn surfaces. DefineT[(i j )] to be the temperature for profile
i on surfacej . The diagonal elements of the covariance matrixSa will describe the uncertainties on
the individual temperatures. The off diagonal elements ofSa describe the covariance between different
profiles/surfaces according to

[Sa](i j )(pq) =
√

[Sa](i j )(i j ) [Sa](pq)(pq) f (hi ,hp, v j , vq), (4.4)

wherehi , hp are the horizontal coordinates of profilesi andp, andv j , vq are the vertical coordinates of
surfacesj andq. The function f describes correlation between adjacent profiles and surfaces. Clearly
f needs to be symmetric in theh andv terms, and should equal 1 ifhi = hp andv j = vq. Appropriate
forms of f , such as exponential decay can guarantee thatS is positive definite.

While it is a slight limitation on the flexibility of the system, extreme efficiency can be obtained if
the forms of f are restricted to those such that

f (hi ,hp, v j , vq) = fh(hi ,hp) fv(v j , vq), (4.5)

i.e. cases where horizontal and vertical correlations are independent. Clearly, again,fh and fv have to
be symmetric in their two arguments, and must evaluate to unity when their arguments are the same.
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Along with this restriction,S(i j )(i j ) is assumed to be independent ofi , i.e. the temperature uncertainty is
a function of height only,[Sa](i j )(i j ) = σ 2

j .
In this caseSa can be expressed as a block matrix according to

Sa =


H11Sv H12Sv · · · H1NSv

H21Sv H22Sv · · · H2NSv
...

...
. . .

...

HN1Sv HN2Sv · · · HN NSv

 , (4.6)

where theN × N matrix H is given by

H =


1 fh(h1,h2) · · · fh(h1,hN)

fh(h2,h1) 1 · · · fh(h2,hN)
...

...
. . .

...

fh(hN,h1) fh(hN,h2) · · · 1

 (4.7)

and then × n matrix Sv is defined as

Sv =


σ 2

1 fv(v1, v2)

√
σ 2

1σ
2
2 · · · fv(v1, vn)

√
σ 2

1σ
2
n

fv(v2, v1)

√
σ 2

2σ
2
1 σ 2

2 · · · fv(v2, vn)

√
σ 2

2σ
2
n

...
...

. . .
...

fv(vn, v1)

√
σ 2

nσ
2
1 fv(vn, v2)

√
σ 2

nσ
2
2 · · · σ 2

n

 . (4.8)

Comparison of Equation 4.8 with Equation 4.4 shows thatSv can be considered as the covariance matrix
for an individual profile, withH as a matrix describing the horizontal correlation. The matrix construct
in Equation 4.6 is called aKronecker product

Sa = H ⊗ Sv . (4.9)

The efficiency is gained by invoking the powerful identity

(A ⊗ B)−1 = A−1 ⊗ B−1. (4.10)

This allows for highly efficient computation and storage ofS−1
a in Equation 3.13. While the matrix is

not strictly speaking sparse, the amount of information it contains is very small, given its size. This
leads to a retrieval system that is comparatively simple to solve.

This result also holds for cases where the state vector is more complex, containing quantities of
different types; provided one does not require there to be covariance between different families ofa
priori state vector elements, such as between temperature and ozone abundance.

4.2.4 Sparsity in the individual block sub matrices

As well as being sparse in the block sense, many of the individual submatrices involved in the retrieval
calculation will themselves be sparse. However, only when the sparsity in a block submatrix is signifi-
cant can appreciable savings be made. For example, the∂[Radiance]/∂[Composition] submatrices will
typically be about 50% zero, the possible savings to be made in not multiplying by zero in this case
would easily be outweighed by the burden of storing and perusing the matrix in sparse form.

One set of block submatrices that will be highly sparse is those involving the tangent pressureEζ
quantity. Each radiance will only be dependent on the tangent pressure for its own MIF. Thus, for a 25
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4.3. Solving sparse matrix problems

channel filter bank, with 120 MIFs, the full matrix size would be(25× 120)× 120= 32 320, however,
only 25× 120 = 3 000 (0.8%) of these values will be non zero. This is significant, as theEζ quantity,
having 120 elements, has far larger derivative matrices than say temperature where 40 – 50 elements per
profile are anticipated.

4.3 Solving sparse matrix problems

While the matrices involved in Equation 3.13 have been shown to be sparse, this does not necessarily
help matters, as the retrieval calculation requires the inverse of the

[
S−1

a + KTS−1
y K

]
matrix to be com-

puted. The inverse of a sparse matrix is not necessarily itself sparse. It is possible to adapt Cholesky
decomposition (the standard method for inverting symmetric positive definite matrices) to optimize it
for this sparse problem. However, as the inverse (and the decomposition) of the sum of two matrices is
not the sum of the inverses (or decompositions); no advantage could be made of the Kronecker product
structure inSa. There are many efficiencies to be gained by invoking faster matrix solving methods
based on iterative techniques.

4.3.1 The use of iterative matrix solvers

The aim of the retrieval problem is to compute a value forx(r+1) according to Equation 3.13

x(r+1) = x(r ) +
[

S−1
a +

∑
i

KT
i S−1

i K i

]−1 {
S−1

a

[
a − x(r )

] +
∑

i

KT
i S−1

i

[
yi − f i (x(r ))

]}
.

This expression can be simply rearranged to give[
S−1

a +
∑

i

KT
i S−1

i K i

] [
x(r+1) − x(r )

] = S−1
a

[
a − x(r )

] +
∑

i

KT
i S−1

i

[
yi − f i (x(r ))

]
, (4.11)

which is equivalent to

Mz = b. (4.12)

where

M =
[

S−1
a +

∑
i

KT
i S−1

i K i

]
, (4.13)

z = x(r+1) − x(r ), and (4.14)

b = S−1
a

[
a − x(r )

] +
∑

i

KT
i S−1

i

[
yi − f i (x(r ))

]
, (4.15)

An iterative matrix solving technique gives the value ofz (sometimes called theinnovationin x) without
needing to explicitly compute the value ofM−1. This approach can be significantly more efficient than
a full matrix inversion based technique.

The disadvantage of this method in the retrieval theory context is that, as Equation 3.14 showed,
theM−1 matrix describes the covariance of the solution state vector. If this matrix is not calculated, no
information on the estimated uncertainty of the solution is forthcoming.

This does not present too serious a problem. If the iterative matrix solver is sufficiently fast and
accurate, the solution covariance matrix could be obtained by solving a series ofMz = b problems
where theb vectors were the successive columns of the identity matrix, while still being faster than a
‘classical’ matrix inversion method. There is a more appropriate solution to this problem which will be
discussed shortly.
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4.3.2 The conjugate gradient method

The conjugate gradient method (Golub and VanLoan 1996) is the most efficient and commonly used
iterative matrix solving technique. The aim of the method is to solve theMz = b problem by seeking
to minimize

ψ(z) = 1

2
zTMz − zTb. (4.16)

The minimum value ofψ = −bTM−1b/2 is reached atz = M−1b. The name of the technique derives
from the method by which the successive search directions are chosen.

In the simpler, steepest descent approach, separate one-dimensional minimizations are performed
each iteration, along the line of steepest descent. This means that each search direction necessarily has
to be orthogonal to the previous one, as the previous iteration has specifically chosen the location where
the gradient along this previous search direction was zero. This can lead to very slow convergence
for many cases, where the system is forced to traverse back and forth across a long narrow valley,
rather than straight down. The problem is that the successive search directions are too different. The
conjugate gradient method uses a more sophisticated method to choose search directions, based both on
the previous search directions and the current residual (Mz − b) vector.

The reason that the conjugate gradient method is so suited to this particular problem, is that it never
refers to matrixM directly; instead, each iteration a user-supplied function is invoked to compute the
value of Mz. This function can then be specially devised to take advantage of all the sparsity and
structure in theM matrix discussed previously.

In this particular case, great efficiency can be gained by separating out theMz calculation according
to

Mz =
[

S−1
a +

∑
i

KT
i S−1

i K i

]
z = S−1

a z +
[∑

i

KT
i S−1

i K i

]
z. (4.17)

The S−1
a z calculation can take full advantage of the fact thatS−1

a is a Kronecker product, while the[∑
i KT

i S−1
i K i

]
z calculation takes advantage of the sparsity of

[∑
i KT

i S−1
i K i

]
. Further efficiency and/or

numerical stability may be achieved by breaking down the summation overi , though this will depend
on the detailed sparsity of the matrices involved.

The method is guaranteed to produce the exact answer inn iterations, wheren is the size of theM
matrix. However, for some matrices, notably those with clustered eigenvalues, or ‘close’ to the identity
matrix, convergence is much faster.

4.3.3 The use of preconditioning

The convergence properties described above lead to the concept of preconditioning. It is mathematically
possible to rotate the retrieval system, such that theM matrix is ‘closer’ to the identity. As described
above, this would lead to faster convergence of the conjugate gradient method. Of course, a full rotation
computation would involve as much effort as solving the matrix completely, so little would be gained.

However, it transpires that rotating the system in this manner is mathematically equivalent to pro-
viding, each iteration, the solution to a different matrix equationPw = c whereP is thepreconditioner
matrix. The preconditioner matrix is one that is ‘similar’ toM . ‘Similar’ in this context is hard to define
precisely, but a typical preconditioner matrix might be a sparser version of the matrixM . The matrixP
must be significantly simpler to solve thanM , otherwise the exercise is pointless.

In the case of the MLS retrieval system, an obvious candidate for the preconditioner system is
the simple one dimensional retrieval approach described in Section 4.1. Other candidates include a
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trimmed down version of theM matrix, with many off diagonal blocks removed, or a number of similar
retrievals to this full one with smaller values ofN. It is also possible to nest retrieval algorithms with
the preconditioner itself being preconditioned by a third retrieval algorithm.

The preconditioner can also be used to obtain the solution covariance matrix, as being the inverse of
P, rather than ofM . As it is typically only diagonal elements of this covariance matrix that are reported,
the approximation involved is comparatively small.

The full derivation of the preconditioned conjugate gradient calculation is well established (see
Golub and VanLoan 1996 or other texts,) for completeness, the details are shown in Algorithm 4.1.
This algorithm has been applied to many different calculations. In particular, the Goddard Space Flight
Center Data Assimilation Office (DAO), use this method to solve the matrix equation that forms the
basis of their assimilation calculation (Data Assimilation Office 1996).

Algorithm 4.1: The preconditioned conjugate gradient method. Given a symmetric positive definite
n× n matrixM , n element vectorsb and initial guessz(0), the following algorithm solves the linear
systemMz = b, invoking another matrix solver for the preconditioner matrixP. The parenthetical
subscripts indicate values from different iterations of the algorithm.

k = 0
r (0) = b − Az(0)
while

[
r (k) 6= 0

]
SolvePw(k) = r (k) for w(k).
k = k + 1
if k = 1

p1 = w(0)

else
β(k) = rT

(k−1)w(k−1)/rT
(k−2)w(k−2)

p(k) = w(k−1) + β(k)p(k−1)

end
Computeq(k) = Mp (k)
α(k) = rT

(k−1)w(k−1)/pT
(k)q(k)

z(k) = z(k−1) + α(k)p(k)
r (k) = r (k−1) − α(k)q(k)

end
z = z(k)

4.4 Increasing efficiency in the retrieval calculation

Even when taking maximum advantage of the sparsity of the matrices involved, the MLS retrieval
algorithm can be a time-consuming calculation. The aim of this section is to consider various approaches
to improving the speed of the calculation, and to outline the manner in which decisions would be arrived
at regarding which compromises are appropriate to achieve a given saving.

4.4.1 Operation counts

The key to the issue of improving the speed of the retrieval calculations is the number of individual scalar
operations required by the algorithm. However, the number of operations required by a calculation does
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Table 4.1: A summary of the operation counts required for each outer iteration of the retrieval
method. Theν symbol indicates the number of iterations of the preconditioned conjugate gradient
method required. The ‘independent’ method retrieves theN profiles independently. The ‘full’ and
‘sparse’ methods both retrieve the profiles in blocks ofN, the sparse method taking advantage of
the simplicity of the system. TheSy matrix is assumed diagonal, if this is not the case, the first
operation increases by a factor of at leastm (possiblyNm.)

Operation Independent Full Sparse

KTS−1
y

∑
i Nnmi

∑
i N2nmi

∑
i Npnmi

KTS−1
y K

∑
i Nn2mi

∑
i N3n2mi

∑
i Np2n2mi

solve
[
S−1

a + KTS−1
y K

]
Nn3 N3n3 νNpn2

S−1
a [a − x] + KTS−1

y [y − f] Nn2 + Nnm N2n2 + N2nm Npn2 + Npnm

not directly relate to the time it takes to perform the calculation on a computer. Issues such as cache
filling, parallel processing etc. have a big impact on the efficiency of a calculation. The operation counts
serve merely as a ‘rule of thumb’ measure of the size of the task involved.

Table 4.1 gives a rough summary the number of operations required for the various stages in the
EOS MLS retrieval algorithm. The summary assumes no sparsity within the profile / scan blocks at
either the submatrix level (e.g. no allowance for the fact that∂[R1A:118.B1F:PT ]/∂[ClO] = 0) or
within the submatrices (e.g. the issue withEζ discussed in Section 4.2.4.)

In the MLS casemi � n for all the measurement vectors. From this it is clear that the ability to
assume thatSi is diagonal is crucial if the algorithm is to be efficient. This factor rules out the use
of constrained quantity error propagation as explained in Section 3.2.4. It is clearly more efficient to
attempt to retrieve the whole state vector from every measurement vector simultaneously, as opposed to
proceeding in separate phases and propagating errors for the constrained quantities.

Given that theSi matrix will be diagonal, the most computationally intensive step will be the con-
struction of theKT

i S−1
i K i matrices, takingNp2n2mi operations for each measurement vector. There are

several points of interest to note about this calculation. Firstly, it is linear inN, that is to say, (ignoring
the overlaps) retrieving 200 profiles in one single chunk will involve the same computational effort as
retrieving two 100 profile chunks. This means that the size ofN is limited only by the memory capacity
of the computer used. Secondly, while the operation is linear inmi , it is quadratic inn and p. While p,
being geometrical is hard to control,n can be changed easily, being a factor of the vertical resolution and
range of the state vector quantities. Being a quadratic term, a factor of two increase in performance can
result from removing only 30% of the elements ofx. mi can also be changed fairly easily by removing
or combining radiances that contribute little information to the system.

4.4.2 Phasing revisited

Although the use of constrained quantity error propagation has been ruled out on the grounds of being
too computationally intensive, this does not necessarily rule out the use of retrieval phasing. Phasing
can still be a very useful tool in the algorithm. However, unlike in previous descriptions, the previously
retrieved quantities are not constrained, rather new items are added to the pool of retrieved quantities.

In this manner, the more non-linear quantities (tangent pressure and temperature in particular), that
will require more iterations for convergence can be retrieved alone in the earlier phases. The later phases
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4.4. Increasing efficiency in the retrieval calculation

include quantities such as composition which will require a smaller number of iterations (1 or 2.) The
non-linear quantities are still retrieved in these later phases; however, as convergence was achieved
earlier, only small revisions will be made. By using this scheme, the number of iterations required for
the full system is minimized.

Taking this one stage further, it is also possible in the earlier phases of the retrieval process to
constrain quantities without propagating errors for them, or assuming that the modifiedSi matrices are
diagonal. As these early stages are only used to find a suitable starting point for the final ‘full’ retrieval,
there is no need for a comprehensive treatment of the error budget.

It is even possible to conceive of more complex systems whereby the temperature is retrieved at
full resolution in an early phase, and the results output as the standard temperature product. In the later
phases, where composition is the main goal, and temperature is less important (and has little impact on
the radiances), the vertical resolution and/or range of the temperature profile could be decreased in the
state vector, in order to reduce the computation effort.

4.4.3 An ‘Information’ perspective on retrieval issues

The previous sections touched on the mechanisms whereby the retrieval algorithm can be made more ef-
ficient, namely, reducing the size ofn or mi . Clearly, some metric is needed to indicate which reduction
schemes are preferable. One such metric is theinformation contentof the retrieval system.

The information content of a system is a measure of the size (in fact ‘inverse size’) of the region
in state space within which one is confident that the system is located. This region is described by the
covariance matrix, which describes a hyperellipsoidal region in state space. The volume of this region
is given by the product of the lengths of all the axes of the ellipsoid (give or take factors ofπ ). These
lengths are given by the square roots of the eigenvalues of the covariance matrix (recall that a covariance
matrix is an inherently ‘squared’ quantity.) Thus the volume of state space is given by the square root of
the product of the eigenvalues of the covariance matrix. Recall that the determinant of a matrix (| · · · |)
is equal to this product.

The information content (H ) of a system is thus defined by the logarithm of the reciprocal of this
volume, i.e.

H = log2

[√|S|
]−1 = −1

2
log2 |S| = 1

2
log2

∣∣S−1
∣∣ . (4.18)

(Recall that|M |−1 = ∣∣M−1
∣∣.) Base 2 is typically used for the logarithm, so that the information content

can be described in terms of the number of ‘bits’ of information available.
In studies of retrieval systems it is useful to consider the information content added by the retrieval

operation. Combining Equation 4.18 with Equation 3.14 describing the covariance of the retrieved
product gives the following expression for the information added by a retrieval calculation (recall that
|AB| = |A||B|):

1H = [Final information content]− [a priori information content] (4.19)

= 1

2
log2

∣∣∣∣∣S−1
a +

∑
i

KT
i S−1

i K i

∣∣∣∣∣ − 1

2
log2

∣∣S−1
a

∣∣ (4.20)

= 1

2
log2

∣∣∣∣∣ I +
[∑

i

KT
i S−1

i K i

]
Sa

∣∣∣∣∣ . (4.21)

In practice, the determinant operation is highly numerically unstable, so it is best to apply a sequen-
tial approach to the calculation of the information content, adding measurements one at a time. The
derivation of this calculation is somewhat complex; see Appendix C.2 for more details.
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Figure 4.2: This plot shows the trade-off between resolution and information content for a system
measuring O3 from theR2:190.B6F:O3 radiance observations (temperature and pressure are
taken to be perfectly known.) The O3 profile spans 1000 to 0.01 mb.

4.4.4 Vertical resolution

Given that the rate determining step in the retrieval calculation is ordern2m, cutting down the size of
the state vector will give a significant increase in speed. The main way in which to decrease this size is
to decrease the vertical resolution of the geophysical profiles in the state vector. However, too coarse a
resolution will give a deterioration in information content. Figure 4.2 shows the trade-off between the
vertical resolution and information gained for the ozone observations from bandR2:190.B6F:O3 .

The figure shows that little information is lost by going from twelve to six surfaces per decade for
the O3 profile. Given that this is a factor of two decrease in the state vector length, a quadrupling of
speed could be seen if this were implemented. If similar savings can be made in all the other species,
significant speed increases could be obtained. In addition, the vertical range of the profiles could be
limited, or the resolution further degraded in certain regions of the profile (for example where the signal
to noise ratio is poor.)

4.4.5 Radiance averaging / limiting

In addition to decreasing the resolution and / or range of the state vector components, the number of
radiances used in the retrieval calculations can be reduced by either limiting the vertical range of the
radiances used, or combining radiances from adjacent minor frames. Again, the information content
of the retrieval system is the metric whereby decisions would be made regarding the most appropriate

34
chapter4.tex v1.10
October 7, 1999 EOS Microwave Limb Sounder



4.5. Numerical stability considerations

strategy. The form of the averaging or limiting would clearly vary from channel to channel, as the
tangent point altitude range over which useful signals are obtained varies from channel to channel (see,
for example, Figure 3.2.)

As a test case, a simple ‘random walk’ type algorithm has been implemented to determine the
most advantageous scheme for a given reduction in the number of radiances used. Figure 4.3 shows
the application of this algorithm to theR2:190.B6F:O3 O3 observations for the case where a 30%
reduction in the effective number of radiances is required.

This example shows that rather than merging radiances from adjacent minor frames, the best way to
reduce the number of radiances used in the retrieval calculation is to use the radiances at the full vertical
resolution available, but over a limited vertical range which varies from channel to channel.

There are other points of interest to note from this example. For example, while the channel closest
to the line center would be thought to give the most information about the upper regions of the atmo-
sphere, the calculation has chosen to concentrate on the information from the two pairs of channels
further away from the line center. This is due to the fact that the line center channel has a smaller band
width and therefore a poorer signal to noise ratio than the channels further out. Figure 4.4 shows the
optimum information content achieved by this search as a function of the fraction of the number of
radiances used in the retrieval calculation.

In addition to averaging together radiances from multiple minor frames, it is also possible to average
together radiances from different channels. While this is not discussed in detail here, a similar approach
to the one outlined above can be used to arrive at optimum averaging schemes. This technique will
be particularly useful when using radiance observations from the digital autocorrelator spectrometers
(DACs). These spectrometers provide∼2 MHz resolution over∼10 MHz, for each minor frame. The
amount of information supplied by these measurements is very small compared to the data volume.
Techniques such as these allow the autocorrelator data to be effectively used.

Note that reducing the size of the state vector can also increase the efficiency of the forward model
calculation. However, reducing the number of radiances used does not necessarily speed up the forward
model, as the field of view convolution calculation in the forward model requires radiances at relatively
high resolution over a large vertical range, independent of how many radiances are actually required for
the retrieval calculation.

4.4.6 Implementation of these schemes in the production processing

Decisions made on the resolution of the state vector, and the reduction in size of the measurement
vectors, will typically be made with reference to more specifically targeted quantities than those de-
scribed here. For example, one might choose to maximize the information obtained in the lower strato-
sphere/upper troposphere region, at the expense of less precision in the mesosphere and upper strato-
sphere.

Additionally, note that these simple studies considered the retrieval of one molecule from a single
band. Decisions made about the configuration of the production retrieval algorithms will be made with
reference to studies of the complete measurement system.

4.5 Numerical stability considerations

The issue of numerical stability is very important in these calculations. The contents of the state vector
represents a huge dynamic range, consider the contrast between the dynamic ranges of temperature
(∼40 K) and ClO mixing ratio (∼ 1 × 10−9). Care must be taken to avoid numerical round off errors
when combining such quantities.
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4.5. Numerical stability considerations
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Figure 4.4: This figure shows the trade-off between the number of radiances used in the
R2:190.B6F:O3 ozone retrieval (at six surfaces per decade) and the optimum information con-
tent that can be obtained from the retrieval system using the given number of radiances.

This problem can be avoided by scaling the system, to normalize all the quantities involved. This
normalization process yields ‘scaled’ vectors according to

x̃ = S
− 1

2
a x (4.22)

ỹi = S
− 1

2
i yi , (4.23)

where the superscript−1
2 indicates the inverse square root operation for the matrix (i.e. the inverse of

its Cholesky Decomposition, see Golub and VanLoan 1996; Rodgers 1996). TheK i matrices are scaled
according to

K̃ i = S
− 1

2
i K i S

1
2
a . (4.24)

The retrieval equations become simpler in this scaled space because the covariance matricesS̃a, andS̃i

are all identity matrices.
As has been stated previously, the measurement covariance matricesSi will typically be diagonal.

Thea priori covariance matrixSa however, presents more of a challenge. As described in Section 4.2.3,
the matrix is a Kronecker product, so computing its inverse (or in this case its Cholesky decomposition)
is trivial. However, applying the scaling ofK i from Equation 4.24 gives ãK i with less sparsity than
the original matrix, due to the inter-profile correlation imposed by thea priori covariance. This would
significantly increase the required computation time.
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Chapter 4. The EOS MLS Level 2 data processing algorithms

A more efficient approach is to use a simpler matrix thanSa as the basis for the state vector scaling.
Consider

x̃ = S
− 1

2
p x, (4.25)

where

Sp = I N ⊗ Sv, (4.26)

whereSv is as defined in Section 4.2.3, andI N is the N × N identity matrix. This is essentially the
same asSa with all the off-diagonal blocks set to zero, and thus describes a system with no horizontal
correlations.

The advantage of using such a matrix is that it performs the normalization required for stability
while both still being trivial to decompose, and maintaining the sparsity inK̃ i . Applying this scaling
gives̃Sa = H ⊗ In. All the major equations derived up to this point are presented in their scaled form in
Table 4.2.

4.6 Testing for suitable convergence

The proposed algorithm is an iterative non-linear minimization of a cost function (χ2) in which each
iteration itself involves the use of an iterative method for solving the matrix system. Clearly, both of
these sets of iterations require a convergence test of some form.

As in most cases, these tests will be implemented by examining the size of the change in the state
vectorx each iteration. If the state vector has not changed significantly, according to some user defined
threshold, then the iterations are deemed to have converged.

As discussed in the previous section, the MLS state vector contains many diverse quantities repre-
senting very different orders of magnitude. For this reason, it is preferable to perform the convergence
test on the scaled state vectorx̃, rather than directly on the state vectorx. This will weight the changes
in each state vector element according to thea priori knowledge of their variability.

The convergence criteria will typically be a threshold for some norm of the change inx̃, for example
the L2 norm (i.e.|1̃x|), or theL∞ norm (the maximum value).

4.7 Summary of proposed algorithm

For completeness the algorithm described above is summarized here. For simplicity only the case
of Newtonian iteration is shown, as the Marquardt Levenberg method’s requirements for additional
decisions and a memory of previous states complicates the system. It is intended that the Marquardt-
Levenberg method will be available in the MLS Level 2 data processing algorithms.

The paragraphs below summarize the actions taken during such an iterative retrieval, given an initial
value for the state vectorx, a set of measurement vectorsyi with associated covariance matricesSi ,
and ana priori state vectora with its covariance matrix given in terms ofSv andH as described in
Section 4.2.3.

1. The first stage of the retrieval process is (assuming it has not already been performed) the scaling
of the measurement vectorsyi by the inverse of their covariance matrices. In other words

ỹi = S
− 1

2
i yi (4.30)
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Chapter 4. The EOS MLS Level 2 data processing algorithms

In nearly all casesSi will be a diagonal matrix, so no difficulty is expected with this step. However,
the algorithm will have the capability to deal with non-diagonalSi matrices should the need arise
for research purposes. Typically this will take the form of a standard Cholesky Decomposition
algorithm.

In addition, thex anda vectors will be scaled according to

ã = [I N ⊗ Sv]−
1
2 a, and̃x = [I N ⊗ Sv]

− 1
2 x (4.31)

2. Given the current state vector, the forward model is then invoked to compute predicted radiances
f i corresponding to the observationsyi , and associated weighting function matricesK i . It is
possible that the weighting functions may not be recomputed, and simply assumed constant from
one iteration to the next, in order to save computation time.

In addition, if a preconditioner is being used, the forward model may also provide weighting func-
tion matrices corresponding to the preconditioner system (e.g. weighting functions corresponding
to a 1D retrieval.)

3. Next the forward model radiance vectors are scaled, similarly to the measurement vectorsyi

above.

f̃ i = S
− 1

2
i f i (4.32)

Additionally, the weighting function matricesK i will be scaled (if they have been changed since
the previous iteration), according to.

K̃ i = S
− 1

2
i K i [I N ⊗ Sv]

1
2 (4.33)

Once again, the fact thatSi is diagonal simplifies this process, as does the Kronecker Product
construct, if it is properly exploited in the calculation.

Any preconditioner system being used will also be scaled in a similar manner.

4. At this point theM matrices andb vectors are computed according to

M =
[

H−1 ⊗ In +
∑

i

K̃T
i K̃ i

]
(4.34)

b = [
H−1 ⊗ In

] [̃
a − x̃(r )

] +
∑

i

K̃T
i

[̃
yi − f̃ i (x(r ))

]
(4.35)

If any K i matrices are unchanged from the previous iteration their contributions toM need not
be recomputed (note that this implies a memory of the results of the variousK̃T

i K̃ i matrices).
Additionally, once again, theM matrix will also be computed for any preconditioner systems.

5. The program will then solveMz = b for zwhich is equal to the innovation iñx. Typically this will
be by the use of a preconditioned conjugate gradient technique. In the case of the preconditioner,
the M matrix will be explicitly decomposed and/or inverted as a preliminary step, in order to
provide the solutions to the ‘main’ system upon demand.

6. The scaled state vector will be modified according to

x̃ → x̃ + z. (4.36)
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4.7. Summary of proposed algorithm

The result will then be unscaled according to

x = [I N ⊗ Sv]
1
2 x̃. (4.37)

If convergence test indicates insufficient convergence, the program will iterate, by returning to
stage 2.

7. Finally, the unscaled state vector is output, and the final solution covariance is obtained as the
inverse ofM (possibly computed directly or by preconditioned conjugate gradients) or the inverse
of theM matrix used in the preconditioner.
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Chapter 5
Related algorithms for EOS MLS ‘noisy’ products

5.1 Introduction

Some of the molecules EOS MLS is designed to observe have particularly small mixing ratios, and weak
emission lines. The corresponding radiance observations will thus have poor signal to noise ratios,
leading to noisy retrievals. For these products, more useful results can be obtained by considering
averaged products, such as daily zonal means, or monthly maps. There are several ways in which to
compute such quantities.

5.2 Possible approaches

One approach is to simply retrieve the products in the same manner as all the others, and then use
whatever averaging technique is appropriate afterwards. The disadvantage of this method is that, unless
special care is taken, thea priori information can significantly bias the results, as it is included in each
separate retrieval.

A second approach is to average the radiances from the relevant bands in whatever manner is appro-
priate, and to then perform retrievals on the averaged radiances. This method has a profound problem
however when the lines of interest are contaminated by strong emission from other, highly variable
molecules. This is the case for example with the BrO observations inR4:640.B31M:BrO , which are
very close to a strong O3 line.

From a computational point of view, the first approach does not represent any efficiency gain. The
second method however can result in improved performance, as the radiances specifically targeted to
the molecules in question can be ignored in the processing for each day.

5.3 The approach chosen

The best approach to this problem is to retrieve the averaged products as a separate task, after the main
processing has occured. Rather than using averaged radiances as above, however, the full radiance data
set for the relevant band is considered. Consider the iterative retrieval expression given in Equation 3.13

x(r+1) = x(r ) +
[

S−1
a +

∑
i

KT
i S−1

i K i

]−1 {
S−1

a

[
a − x(r )

] +
∑

i

KT
i S−1

i

[
yi − f i (x(r ))

]}
.

In the linear (i.e. single iteration, with initial guessx = a) case, this reduces to

x =
[

S−1
a +

∑
i

KT
i S−1

i K i

]−1 ∑
i

KT
i S−1

i [yi − f i (a)] . (5.1)
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5.3. The approach chosen

Now for the case of the noisy products takex to be a specific component of an averaged dataset (e.g.
a single profile corresponding to one latitude in a daily zonal mean retrieval). Consider the measure-
ment vectorsyi to represent each individual scan in the relevant spectral band that contributes to this
component (e.g. all the scans in the latitude range under consideration.) The forward models for each
scan use the previously retrieved values for the other molecules and parameters that affect the radiance
measurements (O3, temperature, tangent pressure etc.) as constrained quantities.

Note that the measurement covariance matrices used here are not necessarily diagonal. Firstly, as
discussed in Section 3.5.4, the radiance observations may contain correlated errors due to the effects of
1/ f noise. Furthermore, the effect of possible errors on the constrained quantities (temperature, tangent
pressure etc.) need to be propagated through to theSi matrices for these calculations. However, as
the measurement vectors will only represent individual major frames from single bands (as opposed to
chunks of several major frames for multiple bands), such a calculation is not prohibitive.

In this casen (the size ofx) will be sufficiently small that traditional, non sparse, matrix computation
methods will be appropriate. This system will probably be sufficiently linear that only one iteration is
required.
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Chapter 6
Algorithms for cloud flags and products

One of the advantages of the MLS instrument, when compared to infrared, visible, and ultraviolet instru-
ments, is the ability to make atmospheric observations in the presence of clouds such as cirrus and polar
stratospheric clouds (PSCs) and in the presence of dense aerosols formed from volcanic injections of
SO2. Because the observing wavelengths are significantly larger than the typical size of the cloud parti-
cles, clouds play a less important role in microwave remote sounding techniques than in infrared, visible
and ultraviolet techniques. However, thick dense clouds in the troposphere can affect the MLS radiances
and the effects of cloud on MLS observations in the upper troposphere need careful consideration.

6.1 The effect of clouds on MLS radiance observations

Figure 6.1 shows a radiance profile observed by UARS MLS at 204 GHz, bounded by two calculated
profiles under clear-sky dry and supersaturation (110% relative humidity) conditions. At high tangent
altitudes (above 8 km or∼300 hPa), clear-sky radiances are not expected to exceed the values defined
by the supersaturated profile. However, excessive radiances can be induced by clouds through scattering
and emitting upwelling radiation. One can use the supersaturated profile as a threshold to classify clear-
and cloudy-sky observations at high tangent heights.

At lower tangent heights (below∼8 km or∼300 hPa in UARS case), there is a minimum defined
by both dry and saturated profiles, which shows that the clear-sky radiances should not be less than
these values. However, clouds can reduce the limb radiance significantly below the clear-sky limit by
scattering some of upwelling radiation out of MLS field-of-view. This occurs when large (greater than
∼100µm) ice particles are present, which can be the case with deep convective clouds. Thus, one
can use the minimum radiances defined by the dry and supersaturated profiles to flag the low-altitude
radiances that are affected by clouds.

Figure 6.2 shows a set of radiances observed by the UARS MLS 204 GHz channel. The smooth
lines in the figure illustrate the approximate upper and lower limits defined by clear-sky dry and satu-
rated conditions. Radiances outside this range have been affected by the presence of clouds. For each
measured radiance one can calculate the corresponding clear-sky limits from an estimated temperature
profile and use them for cloud detection thresholds.

The UARS MLS 204 GHz observations can be used to illustrate how such a method will be im-
plemented for EOS MLS retrievals. Figure 6.3 shows the radiance difference between observed and
maximum clear-sky radiances. Above∼300 hPa, most radiances are close to or less than zero with a
few exceptions where radiances exceed the allowed values for clear sky. These exceptions indicate the
presence of clouds and can be flagged as cloudy-sky measurements. Given that the MLS forward model
may have aσ1 =∼3 K uncertainty, the flagging criteria for high-tangent-height radiances will be set as

P − P110> σ1 for Ep < Ep1 (6.1)

whereP110 is the modeled radiance for 110% saturation andP is the observed radiance.Ep is the tangent
pressure, whileEp1 is the cutoff pressure level for defining the high-tangent-height radiances, which is
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6.1. The effect of clouds on MLS radiance observations
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Figure 6.1: UARS MLS 204 GHz radiance measurement (solid line) and model calculations (dotted
lines) for dry and for supersaturated moist air. The dry-air continuum is the major contributor to the
dry profile, with small (3–5 K) contributions from minor constituents. The supersaturated profile
is calculated assuming 110% relative humidity. The radiative transfer model was developed for
UARS MLS upper-tropospheric humidity measurement (see Read et al. 1999), which uses dry-air
and water vapor continuum coefficients determined empirically from the MLS data.
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Figure 6.2: This plot shows observations of 204 GHz radiance from UARS MLS on 10 January
1992. The smooth lines approximately describe the theoretical radiance limits determined by the
wet and dry continua in a cloud free atmosphere.
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Figure 6.3: Radiance differences between UARS MLS observations (10 January 1992) and the
maximum value allowed by the model for clear sky. Above∼300 hPa most differences are close to
or less than 0 K except for those affected by clouds that show large positive values. The radiance
maximum below∼8 km or∼300 hPa cannot be simply determined byP110 because of complicated
behaviors of the dry and wet profiles (see for example Figure 6.1).
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Figure 6.4: Radiance differences between 204 GHz UARS MLS 10 January 1992 measurements
and the minimum values defined by the dry and saturated profiles. Most measurements are greater
than the minimum values while a few are smaller. The negative differences, especially those less
than -10 K, are likely to have been influenced by clouds. On the other hand, systematic error is also
present showing a significant number of measurements in the 0 K and 10 K range above 316 hPa.
This is probably caused by inaccurate pointing knowledge and constituent profiles (particularly, O3
and N2O).

316 hPa in the UARS case. The actual cutoff pressure and the forward model uncertainty (3 K in this
case) will be the input parameters in the production software and will likely be frequency dependent.

Figure 6.4 illustrates the cloud flagging method for low altitude radiances. In this case, we check
whether the measurement is below the low radiance threshold, mathematically

P − min(P110, P0) < −σ2 for Ep > Ep2 (6.2)

where P0 is the modeled radiance for dry air andEp2 is the cutoff pressure level for this low-tangent-
height criteria (316 hPa for UARS MLS). An uncertainty ofσ2 = 10 K is used for model and temperature
error associated with UARS MLS 204 GHz, which is estimated from scatter in the plots. For EOS MLS
this uncertainty will be provided by the forward model and will be frequency-dependent.
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6.2. Flagging radiances contaminated by cloud

6.2 Flagging radiances contaminated by cloud

The MLS data processing algorithms will generate a number indicating the level of cloud contamination,
called thecloud induced radiance(CIR). The CIR will simply be the deviation of the observed radiances
from the clear-sky envelopes described above, with negative values indicating radiances below the lower
limit of the envelope, and positive values indicating radiances larger than the upper limit.

The retrieval algorithm will generate CIRs for each radiometer and minor frame. These will then be
compared with selected upper and lower thresholds (which can be a function of radiometer and tangent
pressure). If a CIR exceeds the appropriate threshold then the corresponding radiances will be flagged
and may not be used in the retrieval calculations.

The CIRs will be modified as the retrieval progresses, by comparing with the successively tighter
envelopes obtained as the knowledge of the temperature profile and upper tropospheric humidity im-
proves. The final CIR, essentially cloud signals, will be used for retrieving cloud parameters such as
extinction coefficients and ice water content (IWC). In addition, the normal clear-sky retrieval will pro-
duce a cloud extinction coefficient (see Section 3.5.3). Since such extinction coefficient will account for
all spectrally-flat radiances unexplained by the clear-sky model, it can be used to compare with CIRs
determined with this procedure.

6.3 Uncertainties of cloud flags

The classification scheme described above depends crucially upon the accuracy of the MLS clear-sky
forward model. Major uncertainty will arise from uncertainties in dry and wet continua. It’s important to
know these quantities to about 5% accuracy in order for the flagging method to work properly. In UARS
MLS, the continua were obtained empirically from the data (Read et al. 1999), yielding a residual of
∼5 – 10% at 10 – 20 km tangent heights.

Good temperature and pressure measurements are required for this cloud flagging scheme. The CIR
will be first calculated using temperature and tangent pressure obtained from a preliminary retrieval
based on the O2 radiances above∼100 hPa, and the scan model described in Section 3.4. Refinements
of the CIR during the retrieval will be carried out as the retrieval process leads to improved estimates of
these and other atmospheric species (O3, H2O, etc.)

6.4 Deriving cloud parameters from MLS observations

The final CIRs will go to a separate algorithm (in addition to MLS clear-sky retrieval) for cloud ice
retrieval. The CIR to extinction coefficient and CIR to IWC relations will be derived using a full radiative
transfer model that includes both absorption and scattering processes. This model is currently being
developed, which will incorporate realistic parameterization for cloud ice particle size distributions. A
detailed description of the model will be given in later versions of this document.

6.5 Summary of cloud flagging process

A summary of how the cloud flagging and characterization fit into the overall retrieval scheme is given
in Figure 7.1 on page 52.
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Chapter 7
Additional topics

This chapter considers some remaining issues with the MLS data processing algorithms, including top-
ics which, while not strictly speaking part of the theoretical basis for the algorithms, are worthy of
discussion.

7.1 Tuning of algorithms and strategy for post-launch operations

As discussed previously, in addition to the state of the atmosphere, several other parameters affect the
radiances observed by EOS MLS. These parameters include spectroscopic data such as pressure broad-
ening parameters, temperature exponents and pressure shift parameters; and instrumental parameters
such as side band ratios, angular offsets between radiometers etc. While these parameters are measured
as part of the pre-launch calibration, or taken from standard databases, it may be that better values for
them can be obtained post-launch using the retrieval algorithms. These parameters can be included in
thex� elements of the state vector as shown in Equation 4.1. Clearly the larger the chunks of data used
in the retrieval algorithm, the more precise the estimates of thex� quantities. This technique can be
particularly effective in cases where the same molecule is measured by MLS in multiple spectral bands.
Given two sets of radiance measurements, and knowledge that the emission in each case is due to the
same molecule, significantly more accurate estimates of the parameters such as spectroscopic terms may
be obtained. Once ‘optimum’ values for these parameters are retrieved, it is possible to routinely pro-
duce ‘definitive’ measurements of the abundance of a molecule, being an optimum fit to all the relevant
MLS radiance observations.

However, applying this technique immediately post launch is probably too ambitious, particularly as
many of these parameters have a non-linear effect on the radiance observations. The best strategy is to
process the data immediately post launch using somewhat cautious algorithms. As a separate process,
the retrieval algorithm is run for large datasets to obtain optimal value of thex� quantities for use in
later, more ambitious versions of the data processing software.

This section describes the details of this exercise, both in terms of the intended goals and the methods
used to achieve them.

7.1.1 Composition from individual radiometers

The retrieval of parameters such as spectroscopy and sideband ratios in thex� part of the state vector
allows for the retrieval of ‘definitive’ quantities such as the optimal ozone from all the MLS spectral
bands. The behavior of these quantities will however be dependent on the operational mode of the MLS
instrument. If part of the MLS instrument is turned off, for example the 240 GHz radiometer, these
definitive products will be affected by the absence of some observations. For example, the definitive
ozone will be reduced in quality due to the absence ofR3:240.B6F:O3 measurements.

The MLS instrument is designed to be operated in a ‘power saving’ mode if necessary, by switching
off different radiometers for time scales of order a month. Such operations would make the use of these
‘definitive’ products unwise for studies involving long term timeseries and trend analyses.
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7.2. Quality control, exception handling and related issues

For such analyses, it is more important that a temporally-consistent dataset is used, rather than
the optimal one. For this reason it is intended that the MLS data processing algorithms, in addition
to producing the definitive products from the combined observations in all the radiometers, will also
routinely produce separate products describing the observations of atmospheric composition from each
separate spectral band.

7.1.2 An example retrieval configuration

Figure 7.1 shows a possible implementation of the data processing flow which retrieves both the defini-
tive and individual observations of the atmospheric observations. The goal of the first set of operations
(those in the left hand column and the first one in the middle column) is to obtain an optimal value of
temperature and upper tropospheric and lower stratospheric water vapor, along with the cloud informa-
tion from the 118 GHz oxygen line and a subset of the H2O radiance information.

Following this, simple 1D retrievals of each constituent are performed separately to obtain a suitable
starting point for future phases. At this point the algorithm splits, the operations in the center column
are designed to obtain the ‘optimal’ products from all the radiance information. The second set of
operations, in the far right column retrieve the separate composition measurements from each spectral
band.

7.2 Quality control, exception handling and related issues

7.2.1 Quality of retrieved data

In addition to retrieving an optimum state vector, the MLS data processing algorithms will compute an
estimated uncertainty for each element of the state vector. As described in Section 4.3.3, this uncertainty
will usually be taken from the diagonal elements of the inverse of the

[
Sa + ∑

i KT
i S−1

i K i

]
matrix used in

the preconditioner calculation, although other sources of uncertainty information are possible including
the full covariance matrix for the solution state vector.

As described in Section 3.2.3, the uncertainty on the retrieved result should always be compared
with the uncertainty given on thea priori information. This comparison, along with the uncertainty
information itself will form a major part of quality control. In the UARS MLS case, the uncertainty is
set negative if it is greater than half of thea priori uncertainty. This serves as a useful flag to the users of
the data, to indicate where data should be approached with caution. Similar flags may be implemented
for EOS MLS, but these issues remain to be decided.

Another source of quality control information will be theχ2 information for the radiance measure-
ments. Cases where the retrieval has converged on an inappropriate solution, or where the radiances are
poor for some reason, will be clearly indicated by a high value ofχ2. A complete set ofχ2 statistics
will be produced by the data processing algorithms, giving the values ofχ2 for each major frames worth
of radiance observations for each band. Thisχ2 information will also form the basis of a simple quality
flag for each product, indicating the validity of the data, as was done for UARS MLS.

7.2.2 Bad or missing radiances

If a radiance observation is missing or marked bad for whatever reason, it is simply not included in
the retrieval calculation (in the same manner as those radiances marked as contaminated by cloud as
described in Section 6.2.) If several consecutive radiances are missing, such as a whole major frame’s
radiances for a band, retrieval is still possible, as thea priori information, along with information from
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7.3. Suitability of the algorithm to modern computer architectures

the adjacent scans, will influence the retrieval for the corresponding profile. The retrieved uncertainties
however would reflect the comparative lack of information for the corresponding profile.

If several consecutive major frames worth of radiances were missing, the retrieval algorithm will
take this into account when dividing the dataset into chunks, using the boundaries of the region of
missing data as the edges of the chunks.

7.2.3 Numerical exceptions

The retrieval calculations described here are sufficiently well posed and numerically stable (when scaled
as described in Section 4.5) that occurrences such as division by zero, or requesting the square root of a
negative number should never occur. For this reason, no special handling is needed for such events; any
attempt to perform such a calculation will be indicative of a ‘bug’ in the program, and so should simply
bring the processing to an immediate halt with an appropriate error message.

7.3 Suitability of the algorithm to modern computer architectures

The size of the EOS MLS data processing task is such that a parallel computer system will be required
for the retrieval calculations. Retrieval calculations have in the past been described as ‘embarrassingly
parallel’ problems. There are many different ways one can choose to break up the problem into inde-
pendent tasks; one could divide the task up by profile, surface, spectral band, channel etc.

The proposed algorithm retrieves the data in chunks of interrelated profiles, so the task is not quite
so easy to divide up; however, the task is still relatively simple. Section 4.4.1 showed that the dominant
calculations of the algorithm scale asN whereN is the size of the chunk. The limiting factor on the
value ofN is clearly thus going to be the memory capacity of the computer system(s) used. The value of
N should be chosen such that all theK andKTS−1

y K matrices fit in memory. The use of memory paging
(swapping memory out to disk) should be avoided as this would dramatically slow down the speed of
the computations.

The use of chunks can also lead to efficiency within the forward model calculations. Given a set
of N scans for which to compute forward model radiances, one can gain efficiency by doing all the
calculations for one spectral band together. In this manner one could for example load all the relevant
spectroscopic information for band 1, compute allN forward models for this band, then go onto band 2.
The alternative course, whereby all the forward models for one scan are calculated together is less
efficient as the computer is constantly switching spectroscopy databases.

Perhaps the simplest parallel machine is a network of workstation type computers; if these were the
machines available, then one manner in which to perform the retrieval calculation would be to assign
each chunk of the dataset to a different processor. Clearly each computer would need a large amount
of memory in order that an appropriately large value ofN can be obtained. An alternative to this
approach is to divide the chunks into smaller groupings of, say, five profiles, and distribute these among
the available processors. The processors would then collaborate by performing all the calculations
relevant to their elements of the chunk, using message passing to communicate to their ‘neighabours’
any components of the matrices they require for their calculations.

Other parallel machines work on either thesymmetric multi processing(SMP) or themassively
parallel processing(MPP) models. The distinction between these is becoming somewhat blurred; for
example, the current MLS Science Computing Facility (SCF) compute server is a Silicon Graphics
Origin 2000 machine, this has an MPP like architecture, but appears to the programmer to be an SMP
type machine. These types of parallel machines are the prefered architecture for the EOS MLS retrieval
algorithms. On these machines the different processors can work together much more coherently than
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in the networked workstations model, due to the fast communications that are possible between them.
In this model the EOS MLS retrieval algorithm would run sequentially through the chunks, running

the forward models for the whole chunk one band at a time as described above. The forward model
calculations could be parallelized by channel, profile etc. in a manner to be determined. The matrix
computations involved in the retrieval calculations are fairly easy to parallelize, many standard methods
for this exist, (see Golub and VanLoan 1996, for example.)

7.4 Computational requirements

Section 4.4.1 outlined the number of floating point operations involved in the various parts of the re-
trieval calculation. As explained in that section, the number of floating point operations can only serve
as a rule of thumb for the expected amount of computation time required. Table 4.1 showed that the most
intensive calculation in the algorithm is the computation of theKTS−1K matrix, which takesNp2n2m
operations. As explained previous, this is an approximate figure, as it does not take into account sparsity
within the sub matrices, or the lack of sensitivity of say theR1:118 observations to quantities such as
O3 and ClO.

Clearly, the more complex the retrieval system, the larger the size of the computational task. The
most complex retrieval system in the MLS case will be the retrieval of all the ‘definitive’ products
from all the GHz radiance observations (the THz observations are likely to be considered separately in
the routine processing.) We will consider a retrieval of such a system for the case where the data are
retrieved in chunks of 70 profiles each (60 profiles is 1/4 of an orbit, 5 profile overlaps at each end gives
N = 70.) Only the standard 25-channel filter bank measurements are used. The complete list of all the
species considered and bands used is shown in Table 7.1.

If all the radiances are used, then theK i matrices occupy 14.5 Gigabytes (Gb). If only 20% of
the radiances are used (as described in Section 4.4.5) this size reduces to 2.9 Gb. In either case the∑

i KT
i S−1

i K matrix occupies 0.8 Gb. The computation of this matrix takes 2.36×1012 operations if
all the radiances are used, and 4.73×1011 if only 20% of the radiances are used. These correspond to
execution times of 39.4 and 7.8 minutes respectively when running at perfect efficiency on a 1 Gflop
(1×109 floating point operations per second) computer. This is comparable to the∼25 minutes it takes
MLS to measure the 60 profiles in the main part of the chunk. Given the additional computation time
required to perform the forward model calculations and the earlier phases of the retrieval, it is clear
that processing the data at a rate comparable to real time is perfectly feasible given the current levels
of computing power (note that the current MLS Science Computing Facility compute server has been
bench-marked at over 4 Gflops.)

7.4.1 Re-blocking of matrices

In large dense matrix calculations typically the best efficiency is achieved by dividing the matrices
involved into blocks and dealing with the calculation one block at at time. This is the method adopted
by libraries such asLAPACK andBLAS. This method is clearly similar to the one proposed here, except
that in our case many of the blocks are zero. In the case of the dense matrix calculations the size of the
blocks is chosen to best suit the computer used (by comparison to the size of the cache, and length of
the floating point pipelines etc.). The size of the blocks in the MLS calculation is determined by the
measurement system.

It is possible that the efficiency of the calculations could be improved by re-dividing the matrices
involved into larger blocks. While this would involve storing and considering more zeros, efficiency
could still be gained if the size of the new submatrices was conducive to greater efficiency. Such a
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re-blocking exercise could be performed if necessary after the forward model calculation has assembled
theK matrices.

7.5 Data volumes

The volume of geophysical data produced by the MLS retrieval algorithms is small compared to the
amount of radiance data. The EOS MLS overview document (Waters 1999) describes the volumes of
data required in tables 8.8 and 8.9, with a total data volume of about 55 Mb per day of data.

In addition to geophysical parameters with their error estimates, the retrieval algorithm will also
need to routinely output state vector elements such asζ 118 etc., and statistics such asχ2 values, this will
add about 10 Mb to the data volume. The algorithm will also be capable of outputting quantities such
as full matrices, and forward model radiance estimates, though the former of these will probably not be
produced in the routine data processing, due to the large data volume involved.

7.6 Validation of Level 2 data products and algorithms

The approach to the validation of the EOS MLS data follows the procedure used successfully for UARS
MLS, and is summarized in the overview document (Waters 1999). Some validation of the Level 2
algorithm itself will also be required. A vital tool for this validation is the use of simulated instrument
data sets (SIDS). Given a model of the state of the atmosphere, it is possible, using the forward model
calculation to generate a set of simulated radiances describing the observations MLS would make were
the atmosphere in the modeled state. Retrieval calculations using these radiances both in the presence
and absence of instrumental noise and systematic errors yield valuable insight into the performance of
the retrieval algorithm.

In addition to such tests, the individual components of the retrieval algorithm will need to be vali-
dated. In most cases this validation method is clear; for example, the preconditioned conjugate gradient
solver algorithm can be tested on a known system, or by comparison with a complete Cholesky Decom-
position based matrix solving algorithm.

7.7 Alternative methods considered

The retrieval algorithm proposed here is by no means the only reasonable algorithm that could be im-
plemented for the EOS MLS retrieval problem. This section outlines some of the alternative methods
considered. All the methods considered use optimal estimation, given the obvious superiority of the
optimal methods for these problems (for more discussion of this see Rodgers 1976.)

7.7.1 A moving state vector

An alternative to retrieving data in chunks is to construct a state vector consisting of a set of∼5 profiles,
then using a sequential method to assimilate the radiance observations, either one radiance or one scan
at a time, moving the state vector through the dataset one profile at a time. The disadvantage of such a
scheme is that forward and backward passes would probably be required for accurate results. The results
from these would have to be merged by their full covariance matrices, a time consuming and memory
intensive calculation. In order to reduce the memory requirements, it would be necessary to break the
day into chunks as in the proposed algorithm.
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7.7.2 A ‘sequential’ approach

Another approach considered uses the same chunk-based state vector as the proposed algorithm. How-
ever, in this case the radiances are inserted sequentially. In some respects this is similar to the moving
state vector method above; however, in this case the measurements are assimilated from the higher tan-
gent points downwards. This is similar to the UARS MLS version 4 data processing, and related to the
‘onion peeling’ technique. By inserting measurements from the top down, the two dimensional aspect
of the problem is dealt with explicitly, as the knowledge of the state of a particular profile / surface
is retrieved before it is required in forward model calculations for lower tangent points (consideration
Figure 3.6 should make this clearer.)

The disadvantage of this technique is that the forward model computations are required in an in-
efficient order. Because the forward model involves a convolution with an instrumental field of view,
the radiative transfer must be computed for a large vertical range of tangent heights, even if only one
tangent height is required. In addition, this method is more dependent on the quality of the retrieved data
at high altitudes, as they are used in the retrieval of lower altitude data, these high altitude observations
are typically poor, due to the low radiance values (and thus low signal to noise ratios) involved.
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Appendix A
Algorithms for other MLS products

A.1 Tropopause pressure

One of the diagnostic quantities produced by the MLS Level 2 processing will be the pressure at the
tropopause. This quantity will be very useful in many dynamical studies undertaken using MLS data,
particularly those involving stratosphere/troposphere exchange. This quantity will typically be derived
by fitting a function such as a cubic spline to the retrieved MLS temperature profile in the region around
the tropopause, and inferring the pressure of the coldest region. It is also intended that the algorithms
will produce a tropopause pressure estimate as determined from the correlative data sources such as
National Center for Environmental Prediction (NCEP), or the GSFC Data Assimilation Office (DAO).

A similar quantity that may be produced is the pressure at thehydropause. This is the pressure
at which the water vapor profile has its minimum. This will be obtained in a similar fasion to the
tropopause pressure, by fitting some appropriate function to the profile, and obtaining the pressure at
the minimum value.

A.2 Column products

In addition to providing profiles of atmospheric species, the Level 2 processing will also output strato-
spheric column abundances of selected species (e.g. ozone.) These are obtained by integrating the
abundance profiles from the tropopause (as obtained above) to the top of the retrieval range, and then
converting the product into appropriate units (e.g. Dobson units).

The full details of the calculations can be found in the next section, which is a modified reproduction
of an earlier document by W.G. Read and J.W. Waters.

A.3 Column abundances of MLS profiles.

This is to document expressions for column abundances in the vertical profiles retrieved from MLS.
Let N(z1, z2) be the vertical column of molecules (per square meter) between heightsz1 and z2.

This is given by:

N(z1, z2) =
∫ z2

z1

f (z)n(z) dz, (A.1)

where f (z) is the volume mixing ratio at heightz of the species being considered, andn(z) is thetotal
(‘air’) number density atz.

We convert to pressurep, which is the vertical coordinate for MLS retrievals, by using hydrostatic
equilibrium:

dp(z) = − ρ(z) g(z) dz, (A.2)
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whereρ(z) is the mass density of air atz andg(z) is the gravitational acceleration. Converting from
mass densityρ to number densityn, and neglecting the small variation1 in g, (A.2) becomes

dp(z) = − M g

A
n(z) dz, (A.3)

whereM is the ‘effective’ molecular weight of air andA = Avogadro’s number (6.022×1023 molecules/mole).
Usingn(z)dz from (A.3) in (A.1) gives

N(z1, z2) = N(p2, p1) = A

Mg

∫ p1

p2

f (p) dp, (A.4)

wherep1 is the pressure atz1 and p2 is the pressure atz2, and it is assumed thatp1 > p2.
If the mixing ratio f (p) is a constant betweenp1 and p2 then equation (A.4) becomes

N(p2, p1) = A

Mg
f 1p (A.5)

= (6.022×1023 molecules/mole)

(28.97 g/mole)(9.71 ms−2)
f

(
1pkg m−1 s−2

)
(A.6)

= 2.14×1024 f 1p molecules/m2 (for p in Pascals) (A.7)

= 2.14×1026 f 1p molecules/m2 (for p in hPa), (A.8)

where

1p
def= p1 − p2, (A.9)

g = 9.71 m/s2 (representative of 45◦ latitude and 30 km altitude) and 28.97 g/mole for the molecular
weight of air2 have been used in (A.6). Forf = 1 we obtain the vertical column of ‘air’ and (A.8)
shows that an air layer of ‘thickness’ 1 hPa contains 2.14×1026 molecules per square meter.3

The mixing ratio profiles retrieved from MLS are given by

f (p) =
∑

j

f j η j (p), (A.10)

whereη j (p) are the ‘basis functions’ used for representing the profile andf j are retrieved coefficients.
Putting (A.10) in (A.4) gives

N(p1, p2) = A

Mg

∫ p1

p2

∑
j

f j η j (p) dp (A.11)

= A

Mg

∑
j

f j

∫ p1

p2

η j (p) dp. (A.12)

The basis functions currently used for MLS retrievals are triangular in logp and are sketched in
figure A.1.

1The effective gravitational acceleration at Earth’s surface varies 0.5% between 9.780 m/s2 at the equator and 9.832 m/s2

at the pole, and is 9.806 m/s2 at 45◦ latitude. It also decreases 1% for each 32 km increase in height, for heights much less
than Earth’s radius. See, for example, Fleagle and Businger 1963 and Hess 1959.

2See, for example, Hess 1959.
3Note that this is independent of temperature, which determines theheightthickness of the layer (through the gas law).
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j − 1

j

j + 1

0 1
η j (p)

− log10(p)

increasing
p

Figure A.1: The MLS basis functions.

The mathematical expressions for these basis functions are

η j (p) = 0 for p < pj +1 (A.13)

η j (p) = (log10 p − log10 pj +1)/1
log10 p
j + for pj ≥ p ≥ pj +1 (A.14)

η j (p) = (log10 pj −1 − log10 p)/1
log10 p
j − for pj −1 ≥ p ≥ pj (A.15)

η j (p) = 0 for p > pj −1, (A.16)

where

1
log10 p
j + = log10 pj − log10 pj +1 (A.17)

1
log10 p
j − = log10 pj −1 − log10 pj , (A.18)

Using (A.13)–(A.18), the integral in (A.12) can be evaluated. It is broken up into that for the
‘bottom’ portion of the basis function ranging betweenj − 1 and j (indicated by superscript ‘−’),
and the ‘top’ portion ranging betweenj and j + 1 (indicated by superscript ‘+’). We assume that the
integration limitsp1, p2 occuroutsidethe region whereη j (p) is non-zero.

First, for integration over the the ‘bottom’ portion ofη j (p):
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I −
j

def=
∫ pj −1

pj

η j (p) dp (A.19)

= 1

1
log10 p
j −

∫ pj −1

pj

(
log10 pj −1 − log10 p

)
dp (A.20)

= 1

1
log10 p
j − ln 10

{
ln pj −1

∫ pj −1

pj

dp −
∫ pj −1

pj

ln p dp

}
(A.21)

= 1

1
log10 p
j − ln 10

{(
pj −1 − pj

)
ln pj −1 − (p ln p − p)

∣∣∣pj −1

pj

}
(A.22)

= 1

1
log10 p
j − ln 10

{
pj −1 ln pj −1 − pj ln pj −1 − pj −1 ln pj −1 + pj −1 + pj ln pj − pj

}
(A.23)

= 1

1
log10 p
j − ln 10

{
−pj ln pj −1 + pj −1 + pj ln pj − pj

}
(A.24)

= −pj

{
log10 pj −1 − log10 pj

1
log10 p
j −

}
+ pj −1 − pj

1
log10 p
j − ln 10

(A.25)

= −pj + 1

ln 10

1
p
j −

1
log10 p
j −

(A.26)

= −pj + 1
p
j −

1
ln p
j −
, (A.27)

where

1
p
j −

def= pj −1 − pj (A.28)

1
ln p
j −

def= ln pj −1 − ln pj . (A.29)

(A.18) has been used in (A.26), and

∫
ln p dp = p ln p − p (A.30)

has been used in (A.22), and

log10 p = ln p

ln 10
(A.31)

has been used in (A.21,A.25,A.27).
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Appendix A. Algorithms for other MLS products

Now integration over the the ‘top’ portion ofη j (p) is performed in a similar fashion:

I +
j

def=
∫ pj

pj +1

η j (p) dp (A.32)

= 1

1
log10 p
j +

∫ pj

pj +1

(
log10 p − log10 pj +1

)
dp (A.33)

= 1

1
log10 p
j + ln 10

{∫ pj

pj +1

ln p dp − ln pj +1

∫ pj

pj +1

dp

}
(A.34)

= 1

1
log10 p
j + ln 10

{
(p ln p − p)

∣∣∣pj

pj +1

− (
pj − pj +1

)
ln pj +1

}
(A.35)

= 1

1
log10 p
j + ln 10

{
pj ln pj − pj − pj +1 ln pj +1 + pj +1 − pj ln pj +1 + pj +1 ln pj +1

}
(A.36)

= 1

1
log10 p
j + ln 10

{
pj ln pj − pj + pj +1 − pj ln pj +1

}
(A.37)

= pj

{
log10 pj − log10 pj +1

1
log10 p
j +

}
− pj − pj +1

1
log10 p
j + ln 10

(A.38)

= pj − 1

ln 10

1
p
j +

1
log10 p
j +

(A.39)

= pj − 1
p
j +

1
ln p
j +
, (A.40)

where

1
p
j +

def= pj +1 − pj (A.41)

1
ln p
j +

def= ln pj − ln pj +1. (A.42)

The vertical columnNj represented by asingle retrieval coefficientf j is given by thej th term in
(A.12), with the integral evaluated betweenj + 1 and j − 1:

Nj = A

Mg
f j

∫ pj −1

pj +1

η j (p) dp (A.43)

= A

Mg
f j

[
I −

j + I +
j

]
(A.44)

= A

Mg
f j

[
1

p
j −

1
ln p
j −

− 1
p
j +

1
ln p
j +

]
. (A.45)

The EOS MLS retrievals will use basis functions having

1
log10 p
j + = 1

log10 p
j − = 1

12
(A.46)

for all j . This gives

1
ln p
j + = 1

ln p
j − = 1

12
ln 10 = 0.1919 (A.47)
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A.3. Column abundances of MLS profiles.

and

1
p
j − = (

101/12 − 1
)

pj = 0.2115pj (A.48)

1
p
j + = (

1 − 10−1/12 )
pj = 0.1746pj . (A.49)

The column represented by the lower portion of the basis function is then

N−
j = A

Mg
f j I −

j (A.50)

= A

Mg

[
12

ln 10

(
101/12 − 1

) − 1

]
f j pj (A.51)

= 0.102
A

Mg
f j pj (A.52)

= 2.18×1025 f j pj molecules/m2 (for pj in hPa), (A.53)

and the column represented by the upper portion is

N+
j = A

Mg
f j I +

j (A.54)

= A

Mg

[
1 − 12

ln 10

(
1 − 10−1/12

)]
f j pj (A.55)

= 0.090
A

Mg
f j pj (A.56)

= 1.92×1025 f j pj molecules/m2 (for pj in hPa) (A.57)

The column represented by the complete basis function, (A.45), becomes

Nj = A

Mg

12

ln 10

(
101/12 + 10−1/12 − 2

)
f j pj (A.58)

= 0.192
A

Mg
f j pj (A.59)

= 4.12×1025 f j pj molecules/m2 (for pj in hPa). (A.60)

53% of the column represented by the basis function is in the lower portion and 47% is in the upper
portion.

The total vertical column represented in the currently-retrieved MLS profiles is then

N = 4.12×1025
∑

j

f j pj molecules/m2 (for pj in hPa). (A.61)

For ozone it is convenient to express the column in Dobson Units (1 DU = 2.687×1020 molecules/m2)
and the mixing ratio in ppmv (1 ppmv = 1×10−6). Equation (A.61) then becomes

DU = 0.153
∑

j

f j pj (for pj in hPa andf j in ppmv). (A.62)

The columnbetweenretrieval levelsi andu is

N(pi , pu) = N+
i + N−

u +
j =u−1∑
j =i+1

Nj . (A.63)
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Appendix A. Algorithms for other MLS products

If f j is a constant for allj , it can be shown that (A.63) reduces to (A.5).
The column betweenadjacentretrieval levelsj and j + 1 is

N(pj , pj +1) = N+
j + N−

j +1 (A.64)

= A

Mg

[
1 − 12

ln 10

(
1 − 10−1/12

)]
f j pj

+ A

Mg

[
12

ln 10

(
101/12 − 1

) − 1

]
f j +1 pj +1 (A.65)

= A

Mg

[
1 − 12

ln 10

(
1 − 10−1/12

)]
f j pj

+ A

Mg

[
12

ln 10

(
1 − 10−1/12) − 10−1/12

]
f j +1 pj (A.66)

= A

Mg

[
0.090 f j + 0.084 f j +1

]
pj , (A.67)

wherepj +1 = 10−1/12 pj has been used in (A.66).
It is interesting to compare (A.67) with the approximate expression which computes the column

between two levels by assuming a constant mixing ratio equal to the average of retrieved values atj and
j + 1. This approximate expression is

N(pj , pj +1) ≈ A

Mg

[
0.5 f j + 0.5 f j +1

][
pj − pj +1

]
(A.68)

≈ A

Mg

[
0.5 f j + 0.5 f j +1

][
1 − 10−1/12

]
pj (A.69)

≈ A

Mg

[
0.087 f j + 0.087 f j +1

]
pj . (A.70)

If the mixing ratiois constant betweenj and j + 1, then (A.70) and (A.67) give the same answer — as
they should. The error in (A.70) depends upon the the difference inf j and f j +1; worst-case error, when
either f j or f j +1 is zero, is approximately 10%.

Table A.1 summarizes expressions useful in calculating column abundances in the profiles retrieved
from MLS.

Table A.1: Some useful expressions in calculating column abundances from retrieved MLS profiles.

Column abundance Molecules/m2 (note 1) Dobson Units (note 2)

in lower portion ofη j (p) 2.18×1025 f j pj 0.071 f j pj

in upper portion ofη j (p) 1.92×1025 f j pj 0.080 f j pj

in all of η j (p) 4.12×1025 f j pj 0.153 f j pj

between levelsj and j + 1
(
1.92 f j + 1.80 f j +1

) ×1025pj

(
0.071 f j + 0.067f j +1

)
pj

Note 1: f j in vmr andpj in hPa.
Note 2: f j in ppmv andpj in hPa.
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Appendix B
Content of the EOS MLS state vector

Section 3.5 discussed the construction and contents of the EOS MLS state vector. This appendix gives
full details of all the components of the state vector currently envisaged. These details can be found in
Table B.1. Some terms used in the table are defined here.

Each row of the table describes a separate component of the state vector. The first two columns
describe the mathematical symbol and the the proposed name (for use in computer databases etc.) for
each quantity. The meaning of the quantity is given in the third column. The fourth column describes
the typeof the quantity. The following types are used:

Minor frame quantities such as tangent pressures have one value or set of values for each EOS MLS
minor frame.

Orbital quantities will typically be represented as some function (e.g. an interpolation) of a coordinate
such asφ, possibly with some additional long-term trend superimposed.

Constant quantities are literally constant in that a single value will be used for all profiles / major
frames.

Atmospheric profile quantities describe vertical profiles of geophysical parameters on fixed pressure
surfaces.

Surface quantities are simply atmospheric quantities on one particular pressure surface.

The fifth column describes the units for the quantity, and the last column describes the expected usage
of the quantity.

Retrieved quantities are routinely retrieved in the MLS data processing (though not necessarily in all
phases.)

Constrained quantities are, as the name implies, constrained to ana priori value. However, in most
cases errors will not be propagated for these quantites.

Characterized quantities are constrained (as above) in routine processing. However, these quantities
have sufficient impact on the direct measurements that their values could be retrieved in ‘off-line’
studies undertaken to characterize the instrument. These ‘optimal’ values can then be constrained
in production processing.
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Appendix B. Content of the EOS MLS state vector
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Appendix B. Content of the EOS MLS state vector
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Appendix C
Details of formulae used in this document.

C.1 Calculus of vectors and matrices

Many of the manipulations in retrieval theory involve differentiating an expression with respect to a vec-
tor quantity. If the expression is a scalar, a vector of derivatives is obtained, each element representing
the derivative of the scalar with respect to the corresponding element of the vector, as in[

∂a

∂x

]
i

= ∂a

∂xi
. (C.1)

The derivative of a vector quantity with respect to another vector quantity can be represented by a matrix,
according to

∂y
∂x

= Dij = ∂yi

∂xj
. (C.2)

One can also construct vector equivalents for the various rules commonly associated with scalar
calculus. In the following derivations consider vectorsx andy, with y depending onx according to
D = ∂y/∂x. Many of the retrieval theory calculations involve evaluating expressions such as

∂

∂x
Ay, (C.3)

whereA is a constant matrix. In order to evaluate these, it is necessary to consider individual compo-
nents of the result.[

∂

∂x
Ay

]
i j

= ∂

∂xj

∑
k

Aik yk =
∑

k

Aik
∂yk

∂xj
=

∑
k

Aik Dkj = [AD] i j . (C.4)

Another identity, involving the derivative of a scalar quantity with respect to a vector, is also common
in retrieval problems. Again, the solution is easily found by considering components:[

∂

∂x
yTAy

]
i

= ∂

∂xi

∑
j k

yj Ajk yk =
∑

j

∂yj

∂xi
Ajk yk + yj Ajk

∂yk

∂xi
. (C.5)

A little thought is required before this expression can be recast into a matrix; several possible expressions
result, one of which is

∂

∂x
yTAy = DTATy + DTAy. (C.6)
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C.2. Details of the incremental information content calculation

C.2 Details of the incremental information content calculation

Section 4.4.3 introduced the concept of ‘information content’ of a system, being related to the de-
terminant of the covariance matrix. Computing the determinant of a matrix is an inherently unstable
calculation1; instead a method is derived here which computes the information content by considering
the incremental improvements made by introducing individual measurements one by one.

The incremental information content calculation is described in Rodgers 1996; the derivation is
summarized here for clarity, and to set it in the context of the MLS case.

Equation 3.14 gave the covariance of the retrieved state vector asSx = [
S−1

a + ∑
i KT

i S−1
i K i

]−1
. In

this case we consider systems with only one measurement vector; this gives the covariance as

Sx = [
S−1

a + KTS−1
y K

]−1
. (C.7)

It can be shown (through a somewhat complex series of manipulations, see Rodgers [in preparation])
that this is equivalent to

Sx = Sa − SaKT
[
KSaKT + Sy

]−1
KSa. (C.8)

Now consider the case where the measurement covariance matrixSy is diagonal, and the measurements
are entered sequentially as scalar values with variancesσ 2

j . In this case, Equation C.8 can become an
iterative expression

S( j )
x = S( j −1)

x − S( j −1)
x kT

j k j S
( j −1)
x

k j S
( j −1)
x kT

j + σ 2
j

= S( j −1)
x

[
In − kT

j k j S
( j −1)
x

k j S
( j −1)
x kT

j + σ 2
j

]
, (C.9)

whereSj
x is the covariance of the solution after introducing measurementj with S(0)x = Sa, andk j is the

weighting function for thej th measurement, i.e. thej th row of K .
The additional information contributed by measurementj is from Equation 4.18 given by

δHj = 1

2
log2

∣∣S( j −1)
x

∣∣ − 1

2
log2

∣∣S( j )
x

∣∣ , (C.10)

which, when applying the identities|AB| = |A||B| and
∣∣I + abT

∣∣ = 1+ bTa, wherea andb are column
vectors, gives

δHj = −1

2
log2

[
1 − kT

j S
( j −1)
x k j

kT
j S
( j −1)
x k j + σ 2

j

]
= 1

2
log2

[
1 + kT

j S
( j −1)
x k j

σ 2
j

]
. (C.11)

This calculation is significantly more stable and also more efficient than computing the full determinant
of the solution covariance.

1The determinant is the product of the eigenvalues of the matrix, consider the case of a 100×100 matrix whose eigen values
are∼ 10−6. This would have a determinant of 10−600 — too small to be represented on most computer architectures.
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Appendix D
Notation conventions.

While the use of a consistant notation convention is desirable, it should not be achieved at the expense
of reduced clarity. It would be inappropriate, for example, to use any character other thang to describe
the acceleration due to gravity. Hence, while there are exceptions to these conventions, in general the
rules hold throughout the document.

Scalars: Scalars are represented by italic characters, e.g.α, i,n,M.

Vectors: Vectors are shown as bold lower case characters, such asx. To describe individual elements of
a vector, the corresponding italic character is subscripted, so[x] i = xi . Where the bold character
is subscripted with an italic index, this indicates a specific vector from a set of vectors. Soyi is
the i ’th measurement vector.

Matrices: Bold upper case characters indicate matrices (e.g.A). Again, subscripts on corresponding
italic characters indicate individual elements, so[A] i j = Aij . Also, as before, where the bold
character is subscripted, this indicates a particular matrix in a family of matrices (soK i is the
i ’th weighting function matrix.) In the case of covariance matrices, bold subscripts are used to
indicate the covariance of a particular vector, thusSx is the covariance ofx (Si is a shorthand for
Syi .)

Subscripts: In order to improve clarity, latin characters will typically be used to subscript quantities
in state space, with Greek characters subscripting measurement space quantities, thusKαi =
∂yα/∂xi .

Iterative processes: In iterative process, the value of a quantity for a particular iteration is indicated by
a parenthetical superscript, thusx(r+1) = x(r ) + . . . .

Minor frame quantities: It can often be useful to distinguish ‘atmospheric’ quantities from ‘instru-
mental’ ones. In most cases the atmospheric quantities will be represented by profiles on fixed
pressure surfaces. Instrumental quantities are typically dependent on the minor frame (i.e. radi-
ance integration period). Where such distinction is useful, minor frame quantities are indicated
by an arrow placed over the symbol. For example the tangent point pressure for minor framei is
indicated byEζi .

Subvectors and submatrices:Much of this work deals with subsections of matrices and vectors. These
are indicated with bracketed subscripts. Examples of these arex[ j ], the j ’th subvector ofx, and
K [αi ] is the matrix∂y[α]/∂x[i ]

Scaled quantities: The˜ symbol is used to indicate quantities that have been scaled for numerical
stability. Thus̃x represents the scaled state vector.

Linerization points: Where a linearization point has been chosen for the system the? superscript is
used to indicate the use of linearized values. So, for exampley ' y? + K ? [x − x?].
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Appendix E
EOS MLS signal designation nomenclature

E.1 Motivation

The EOS MLS instrument contains seven radiometers observing five different spectral regions. The
signals from these radiometers are subdivided into multiple bands, each of which is observed by a
different spectrometer. The instrument contains a switch network which allows most spectral bands to
be observed by one of two different spectrometers (or in many cases, both simultaneously). This switch
network is present to provide both flexibility for power saving modes of instrument operation, and some
redundancy.

The complexity of this system is such that a complete nomenclature scheme is essential for a clear
understanding of the instrument. Such a system has been devised with the intention that it will be used
in all the aspects of the instrument and software, from hardware drawings to science data processing
software.

E.2 The nomenclature scheme

The scheme consists of up to five fields, in the form

<Radiometer>.<Band>.<Switch>.<Spectrometer>.<Channel>

Such a specification has many useful properties; in particular, fields can be ignored if they are not
relevant to the specification. For example, in the Level 2 software, the user could specify that ozone
is to be retrieved fromR2:190.B6F:O3 , without needing to specify a switch and/or spectrometer, as
either of the two alternatives will be appropriate.

Earlier fields can also be ignored. For example, the instrument command and data handling system
will typically only consider the channel and spectrometer fields, as the switch, band and radiometer
information are of little relevance to instrument data handling activities.

The following subsections explain each of the fields in the specification.

E.2.1 Radiometers

The instrument consists of seven radiometers, measuring five different spectral regions. These are called
R1A, R1B, R2, R3, R4, R5HandR5V. R1A andR1B are redundant 118 GHz radiometers.R5Hand
R5Vare alternate polarizations of the 2.5 THz signal. As a courtesy to the reader, the radiometer field
can also contain an indication of the frequency, separated from the number by a colon. Thus the full
names for the radiometers are:R1A:118 , R1B:118 , R2:190 , R3:240 , R4:640 , R5H:2T5 , and
R5V:2T5 . The frequency information can be omitted, but if present it must be correct.
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Appendix E. EOS MLS signal designation nomenclature

E.2.2 Bands

The MLS spectral bands are numbered sequentially throughout the instrument; the numbering does not
restart at one for each new radiometer. The band specification begins with the letterB, followed by
the number of the band. Following that, there is an optional character indicating whether the primary
signal is in the upper (U) or lower (L) sideband of the radiometer. Following this optional character is a
compulsory one indicating the type of spectrometer used for this band. Thus,F indicates a standard 25
channel filter bank,Ma ‘mid-band’ 11 channel filter bank,Da digital autocorrelation spectrometer, and
Wa set of four individual wide filters.

Following this (separated by a colon) there can be additional courtesy information to the user de-
scribing the primary target of the band (e.g.O3 for ozone,PT for temperature/pressure.)

E.2.3 Switch

Nearly all of the MLS spectral bands can be routed to one or two different spectrometers through a
switch network. Most bands have a direct route to a spectrometer through no switch; this is designated
by S0. Alternatively, most bands can be routed to an alternative spectrometer through one of five
switches; such cases are designatedS1· · · S5.

E.2.4 Spectrometer

Following the switch field, the spectrometer type and number is indicated. The instrument contains four
types of spectrometers. There are nineteen ‘standard’ 25 channel filter banks, designatedFB25-1 · · ·
FB25-19 ; five ‘mid-band’ 11 channel filter banks (MB11-1 · · · MB11-5 ); four digital autocorrelation
spectrometers (DACS-1 · · · DACS-4); and three sets of 4 individual wide filters (WF4-1 · · · WF4-3.)

E.2.5 Channels

Channels are simply specified by aC, followed by a number. Channels are numbered from one, except
in the DACS where the numbering starts from zero.

E.2.6 General comments

This nomenclature system deliberately contains much redundancy designed to improve clarity; however,
it may be trimmed down if the user wishes.

• Radiometers may be specified without their frequency information.

• Bands may be specified without their intended target, or upper/lower sideband information.

• The switch and spectrometer information are redundant; thus one may be omitted if desired.

• If a band is specified the radiometer specification is redundant and may be omitted. This is
discouraged, however, as clarity is lost.

E.3 The valid MLS signals

Tables E.1 and E.2 list all the various radiance signals that can be measured by EOS MLS.
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E.3. The valid MLS signals

Table E.1: The nominal MLS measurement set.
Radiometer Band Switch Spectrometer Channels
R1A:118 . B1F:PT . S0 . FB25-1 . C1 · · · C25
R2:190 . B2F:H2O . S0 . FB25-2 . C1 · · · C25
R2:190 . B3F:N2O . S2 . FB25-3 . C1 · · · C25
R2:190 . B4F:HNO3 . S0 . FB25-4 . C1 · · · C25
R2:190 . B5F:CLO . S0 . FB25-5 . C1 · · · C25
R2:190 . B6F:O3 . S0 . FB25-6 . C1 · · · C25
R3:240 . B7F:O3 . S0 . FB25-7 . C1 · · · C25
R3:240 . B8F:PT . S3 . FB25-8 . C1 · · · C25
R3:240 . B9F:CO . S0 . FB25-9 . C1 · · · C25
R4:640 . B10F:CLO . S0 . FB25-10 . C1 · · · C25
R4:640 . B11F:BRO . S0 . FB25-11 . C1 · · · C25
R4:640 . B12F:N2O . S4 . FB25-12 . C1 · · · C25
R4:640 . B13F:HCL . S0 . FB25-13 . C1 · · · C25
R4:640 . B14F:O3 . S0 . FB25-14 . C1 · · · C25

R5H:2T5 . B15F:OH . S5 . FB25-15 . C1 · · · C25
R5H:2T5 . B16F:OH . S0 . FB25-16 . C1 · · · C25
R5H:2T5 . B17F:PT . S0 . FB25-17 . C1 · · · C25
R5V:2T5 . B18F:OH . S0 . FB25-18 . C1 · · · C25
R5V:2T5 . B19F:OH . S0 . FB25-19 . C1 · · · C25
R1A:118 . B22D:PT . S1 . DACS-1 . C0 · · · C128
R2:190 . B23D:H2O . S0 . DACS-2 . C0 · · · C128
R3:240 . B24D:O3 . S0 . DACS-3 . C0 · · · C128
R3:240 . B25D:O3 . S0 . DACS-4 . C0 · · · C128
R2:190 . B27M:HCN . S0 . MB11-1 . C1 · · · C11
R4:640 . B28M:HO2 . S0 . MB11-2 . C1 · · · C11
R4:640 . B29M:HOCL . S0 . MB11-3 . C1 · · · C11
R4:640 . B30M:HO2 . S0 . MB11-4 . C1 · · · C11
R4:640 . B31M:BRO . S0 . MB11-5 . C1 · · · C11

R1A:118 . B32W:PT . S0 . WF4-1 . C1 · · · C4
R3:240 . B33W:O3 . S0 . WF4-2 . C1 · · · C4
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Appendix E. EOS MLS signal designation nomenclature

Table E.2: The alternate MLS measurement set.
Radiometer Band Switch Spectrometer Channels
R1A:118 . B1F:PT . S3 . FB25-8 . C1 · · · C25
R1B:118 . B21F:PT . S4 . FB25-12 . C1 · · · C25
R1B:118 . B21F:PT . S3 . FB25-8 . C1 · · · C25
R2:190 . B2F:H2O . S2 . FB25-3 . C1 · · · C25
R2:190 . B4F:HNO3 . S2 . FB25-3 . C1 · · · C25
R2:190 . B5F:CLO . S2 . FB25-3 . C1 · · · C25
R3:240 . B7F:O3 . S3 . FB25-8 . C1 · · · C25
R3:240 . B8F:PT . S2 . FB25-8 . C1 · · · C25
R3:240 . B9F:CO . S3 . FB25-8 . C1 · · · C25
R4:640 . B13F:HCL . S4 . FB25-12 . C1 · · · C25
R4:640 . B14F:O3 . S4 . FB25-12 . C1 · · · C25

R5H:2T5 . B16F:OH . S5 . FB25-15 . C1 · · · C25
R5H:2T5 . B17F:PT . S5 . FB25-15 . C1 · · · C25
R5V:2T5 . B18F:OH . S5 . FB25-15 . C1 · · · C25
R5V:2T5 . B19F:OH . S5 . FB25-15 . C1 · · · C25
R5V:2T5 . B20F:PT . S3 . FB25-8 . C1 · · · C25
R5V:2T5 . B20F:PT . S5 . FB25-15 . C1 · · · C25
R1B:118 . B26D:PT . S1 . DACS-1 . C0 · · · C128
R1B:118 . B34W:PT . S0 . WF4-3 . C1 · · · C4
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