
Geoscience Laser Altimeter System (GLAS)

Algorithm Theoretical Basis Document
Version 2.2

PRECISION ATTITUDE DETERMINATION
(PAD)

Prepared by

Sungkoo Bae
Bob E. Schutz

Center for Space Research
The University of Texas at Austin

October 2002



TABLEOF CONTENTS

GLOSSARY 2

1 INTRODUCTION 3

1.1 GLAS Measurement Requirement . . . . . . . . . . . . . . . . 3
1.2 GLAS Attitude/Pointing Requirement . . . . . . . . . . . . . 5
1.3 Outline of Document . . . . . . . . . . . . . . . . . . . . . . . 8

2 FUNDAMENTALS OF ATTITUDE DETERMINATION 10

2.1 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Quaternion Representation . . . . . . . . . . . . . . . . . . . 11
2.3 Kinematic Equations of Spacecraft Attitude . . . . . . . . . . 14
2.4 Dynamical Equations of Spacecraft Attitude . . . . . . . . . . 15
2.5 Attitude Determination Problem . . . . . . . . . . . . . . . . 16

3 MEASUREMENT SYSTEM 18

3.1 CCD Star Tracker . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Hemispherical Resonator Gyro . . . . . . . . . . . . . . . . . 26
3.3 Star Catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 STAR IDENTIFICATION 33

4.1 Pattern Matching Algorithm . . . . . . . . . . . . . . . . . . 34
4.2 Direct Match Technique . . . . . . . . . . . . . . . . . . . . . 42

5 ATTITUDE DETERMINATION 49

5.1 Single Frame Attitude Determination . . . . . . . . . . . . . . 49
5.2 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . 54
5.3 Batch Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 59

6 POINTING DETERMINATION 67

6.1 Pointing Determination Algorithm . . . . . . . . . . . . . . . 67
6.2 Spacecraft Velocity In
uence on Laser Pointing . . . . . . . . 76
6.3 Systematic Errors . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 IMPLEMENTATION CONSIDERATIONS 82

7.1 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2 Ancillary Inputs . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3 Accuracy and Validation . . . . . . . . . . . . . . . . . . . . . 83
7.4 Computational: CPU, Memory and Disk Storage . . . . . . . 84
7.5 Sensor Failures . . . . . . . . . . . . . . . . . . . . . . . . . . 84

BIBLIOGRAPHY 86

ACKNOWLEDGMENTS 90

Appendix.A PROPERTIES OF QUATERNIONS 91

1



GLOSSARY

ATBD Algorithm Theoretical Basis Document
BD Boresight Direction
CCD Charge Coupled Device
CRF Celestial Reference Frame
CRS Collimated Reference Source
DMT Direct Match Technique
EKF Extended Kalman Filter
FOAM Fast Optimal Attitude Method
FOV Field of View
GCF Gyro Coordinate Frame
HP Hewlett Packard
HRG Hemispherical Resonator Gyro
ICRF International Celestial Reference Frame
IERS International Earth Rotation Service
IPD Improved Polar Decomposition
ITER Iteration Method
ITRF International Terrestrial Reference Frame
LPA Laser Pro�ling Array
LRC Laser Reference Camera
LRS Laser Reference Sensor
LRT Laser Reference Telescope
LTR Lateral Transfer Retrore
ector
MFOAM Modi�ed Fast Optimal Attitude Method
MSX Midcourse Space Experiment
OBF Optical Bench Coordinate Frame
PAD Precision Attitude Determination
PD Polar Decomposition
PMA Pattern Matching Algorithm
POD Precision Orbit Determination
QUEST Quaternion Estimator
SCF Star Tracker Coordinate Frame
SFAD Single Frame Attitude Determination
SRS Stellar Reference System
SVD Singular Value Decomposition
TRF Terrestrial Reference Frame
UVF Unit Vector Filter

2



Chapter 1

INTRODUCTION

The Geoscience Laser Altimeter System (GLAS) instrument is planned to be launched on
the Ice, Cloud and land Elevation Satellite (ICESAT) in December 2002 as a part of the
Earth Observing System (EOS) of NASA. The primary purpose of the GLAS mission is to
make ice sheet elevation measurements in the polar regions which will be used to determine
the mass balance of the ice sheets and their contributions to global sea level change [31].
In addition, the measurements will meet science objectives to support atmospheric science,
and land topography application. The laser altimeter will measure the height from the
spacecraft to Greenland and Antarctic ice sheets to support investigations of the secular
change in surface elevation, as well as annual, interannual, and other temporal variations.
To support the science requirements to determine temporal elevation change, the mea-
surements by the GLAS instrumentation must be very accurate. The ICESAT orbit will
be near-circular (eccentricity = 0.0013), with a semimajor axis of 6970 km, and it will be
near polar, with an inclination of 94�, in order to 
y over Greenland and Antarctica. The
orbit is frozen so that the mean perigee is �xed near the north pole. The GLAS/ICESAT
has a 3 year lifetime requirement with a 5 year goal. The EOS program plans for follow-on
satellites to extend the science data set to 15 years and longer.

1.1 GLAS Measurement Requirement

The GLAS Science Requirements [47] provide the error budget for the instrument and
ancillary information necessary to meet the science requirements. The most stringent
requirements are needed for the cryosphere objectives. For example, the accuracy of
elevation change in the vicinity of the West Antarctic Ross ice streams is 1.5 cm/yr in a
100 � 100 km2 area where surface slopes are < 0:6�. In summary, the error budget allows
10 cm instrument precision, 5 cm radial orbit position, 7.5 cm laser pointing knowledge and
2 cm or less for other error contributors. The GLAS orbit position will be obtained with
the Global Positioning System (GPS) and ground-based Satellite Laser Ranging (SLR).
In addition to the geocentric position vector, the accurate determination of the altimeter
beam pointing angle in an Earth-�xed Terrestrial Reference Frame (TRF) is also required
for high-precision satellite laser altimetry. The laser altimeter will provide the range
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Figure 1.1: Surface slope induced range errors by one arcsecond pointing error

between the spacecraft and the illuminated spot on the Earth surface by measuring the
round-trip travel time of the laser pulse. A one arcsecond error in the laser pointing
direction produces a 5 cm range measurement error from a 600 km spacecraft altitude on
a 1� slope of the Earth's surface at the illuminated point(Figure 1.1). Therefore, to be
able to interpret the laser altimeter height measurements with the required accuracy, it is
required to determine the laser beam pointing direction to better than 1.5 arcsecond (1�),
which corresponds to a 7.5 cm range error, in post-processing.

The laser pointing direction is measured with respect to the spacecraft body-�xed frame.
The GLAS precision attitude determination will �rst provide the orientation of spacecraft
body-�xed axes, or attitude, with respect to a Celestial Reference Frame (CRF) by star
cameras and gyros, to a high degree of accuracy. A specially designed Stellar Reference
System (SRS) [47] will measure the pointing angle of the GLAS laser beam to better than
1.5 arcsecond (1�) with respect to the star �eld for every laser shot �red with a frequency of
40 Hz. Calibrated knowledge of the laser pointing direction with respect to the spacecraft
body-�xed axes, combined with the GLAS geocentric position vector, and the measured
round trip travel time for the laser pulse enable determination of both the spot location
on the Earth's surface and, hence, the surface elevation with respect to the adopted TRF.
Figure 1.2 illustrates how the GLAS instrument can measure the illuminated surface and
the surface's elevation.
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Figure 1.2: Illustration of the GLAS laser altimeter measurement

In this document, which is known as the Precision Attitude Determination (PAD) Al-
gorithm Theoretical Basis Document (ATBD), we are focusing on the determination of
the pointing direction from the spacecraft to the laser illuminated surface spot in terms
of direction cosines (or unit vector). The laser travel time will give the scalar distance
between the GLAS measurement reference point and the surface spot. Combining this
scalar distance with the direction cosines gives the laser altitude vector. Since the GLAS
measurement reference point is not coincident with the spacecraft center of mass from
which the geocentric position vector is measured, the displacement must be taken into
account when the GLAS position vector is combined with the laser altitude vector to get
the laser spot position vector. The detailed procedure for geolocating the spot illuminated
by the GLAS laser is described in the Laser Footprint Location (Geolocation) and Surface
Pro�les ATBD [32].

1.2 GLAS Attitude/Pointing Requirement

Attitude generally refers to the angular orientation of a de�ned body-�xed coordinate
system with respect to a separately de�ned external reference frame, such as a CRF. The
term, spacecraft attitude, is generally related to the spacecraft body-�xed coordinate frame
whose origin is the spacecraft center of mass. However, all the instruments related to the
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PAD will be attatched to the GLAS optical bench. Consequently, the more convenient
choice for the origin of the body-�xed coordinate frame is an instrument reference point
positioned at the optical bench and the corresponing coordinate frame will de�ne the
optical bench attitude as a replacement of the common spacecraft attitude. Thoughout
this document, we are basically concerned with the optical bench attitude for the GLAS,
rather than the spacecraft attitude. Spacecraft attitude is sometimes mentioned, but it
is an alternative terminology for the optical bench attitude when we discuss the GLAS
PAD. Attitude determination refers to the process of determining the angular orientation
of the spacecraft-�xed axes or optical bench axes from measurements obtained by various
attitude sensors. This determination of attitude uses data from appropriate sensors and a
sophisticated processing of the sensor data.

Laser pointing, in contrast, refers to the direction of the transmitted laser pulse with respect
to spacecraft-�xed axes or in an Earth-�xed coordinate system. Pointing determination
of the GLAS refers to the process of determining the laser pointing at a 40 Hz rate in a
selected coordinate system. Once the laser pointing is determined in the spacecraft-�xed
axes, it will be transformed to the vector in the adopted CRF using the determined optical
bench attitude or an Earth-�xed TRF using the proper transformation between CRF and
TRF. (Most coordinate systems involved in the GLAS PAD, including CRF and TRF,
will be described in Section 2.1.) The pointing variation of the laser beam, stemming from
both the instrument alignment change with respect to the optical bench axes and the
laser's own shot to shot 
uctuation, will be determined using the SRS specially designed
for the GLAS PAD (Figure 1.3). As will be seen in Chapter 6, the SRS requires the
optical bench attitude for the determination of the laser pointing vector. In the process,
the accuracy of the estimated attitude directly a�ects the quality of the laser pointing
determination. Table 1.1 shows the simpli�ed error budget of the SRS [47] when all of the
error sources in the system are taken into account. Our simulation results, based on the
algorithm introduced in this document, showed a strong e�ect of the attitude uncertainty
on the overall laser pointing error. To meet the laser pointing knowledge requirement of
1.5 arcsecond (1�), the optical bench attitude must be determined with an accuracy of
better than one arcsecond.

Due to the essentially �xed position on the celestial sphere, a star is one of the best
external sources to provide a reference for attitude determination. The star sensor, the
attitude sensor which measures relative star positions, currently enables us to determine
the spacecraft attitude with one arcsecond accuracy level. Among several di�erent star
sensors, the Charge Coupled Device (CCD) equipped star tracker has been the most recent
development to provide multiple star images in a single measurement frame. The GLAS

Table 1.1: Error Budget of the Stellar Reference System

Error Sources (RSS) 1� error

total Laser Reference System errors 0.72 arcsecond

total unmeasured errors 0.45 arcsecond

total attitude determination system Errors 0.85 arcsecond

TOTAL SRS RSS ERRORS 1.20 arcsecond
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Figure 1.3: Stellar Reference System on the GLAS

attitude system includes a Raytheon Optical System Inc.(ROSI) HD-1003 star tracker as
the primary attitude sensor in order to achieve the required one arcsecond (or better)
accuracy. Additionally, the Hemispherical Resonator Gyros (HRG) will provide continu-
ously measured angular rates associated with spacecraft attitude changes. The measured
angular rates support the attitude propagation between star tracker measurements and
the attitude prediction when no stars are available. The star tracker and gyros will be
mounted on a rigid optical bench of the GLAS instrument; thus, this tracker is referred to
as the optical bench star tracker or the instrument star tracker.

Two Ball CT-602 star trackers, products of Ball Aerospace, will be mounted on the space-
craft structure to support real time attitude determination and control. In the nominal
600 km altitude orbit, the GLAS Attitude Control System (ACS) must continually change
the spacecraft orientation with respect to the CRF to maintain a near-nadir laser pointing
direction. Thus, magnetic torquers and momentum wheels must change the orientation
by 223 arcsec/sec with respect to the stars, which de�ne inertial directions. The real time
attitude knowledge requirement of the ICESAT is 20 arcseconds (1�) or better. The Ball
CT-602 star trackers' data are intended to be used in the PAD with the optical bench star
tracker or as a backup unit to the optical bench star tracker. The study in this document
will only utilize the optical bench star tracker.
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1.3 Outline of Document

The main purpose of this document is to describe the algorithm that has been developed
for the GLAS precision attitude and pointing determination, while the title of the docu-
ment, PAD, only expresses attitude determination. The overview of the process for the
optical bench attitude determination is illustrated in Figure 1.4 and brie
y described here
based on the �gure. At the �rst step, raw data received from the orbiting GLAS should be
converted to data written in engineering units. After the conversion, the stars observed by
the star tracker need to be identi�ed from a star catalog using a priori attitude knowledge,
in order to determine the star coordinates in a CRF de�ned by the star catalog. Stellar
aberrations due to the spacecraft velocity with respect to the barycenter of the solar sys-
tem should be corrected before we actually use the identi�ed star coordinates in attitude
determination algorithms. Modi�ed Fast Optimal Attitude Method (MFOAM) and Quar-
ternion Estimator (QUEST) are deterministic approaches for the attitude determination
using vector measurements. Attitude parameters determined by these methods can be
used for quality check of the star tracker measurement data. These coarsely determined
attitude parameters are combined together with gyro data in the Extended Kalman Filter
(EKF), in order to estimate the optical bench attitude with the required accuracy.

The next four chapters are related to the attitude data processing shown in Figure 1.4
except the fact that the conversion of the raw data to engineering units will not be covered
in this document. In Chapter 2, fundamental coordinate systems, basic attitude equations
and well-known attitude problems are introduced. The primary attitude sensors for the
GLAS are the optical bench star tracker and gyro, which are reviewed in Chapter 3. The
simulation algorithms for star tracker and gyro data are also described in Chapter 3. As
a part of the attitude determination system, the star catalog is described in Section 3.3.
The star identi�cation algorithm and simulation results are discussed in Chapter 4. In
Chapter 5, several deterministic and statistical methods for attitude determination are
introduced. The simulation results from various methods are presented in Chapter 5. In
Chapter 6, the implementation of the SRS for the laser pointing determination is dis-
cussed and some simulation results are presented. Systematic errors which are imbedded
in the GLAS PAD system, but intentionally ignored in the previous chapters, will be
fully discussed in Section 6.3.1. Chapter 7 will address problems related to the actual im-
plementation of the attitude/pointing determination system in the GLAS. Quaternions,
the preferred set of attitude parameters are reviewed in Appendix A as an extension of
Chapter 2.
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Chapter 2

FUNDAMENTALS OF

ATTITUDE DETERMINATION

2.1 Coordinate Systems

It is presumed that all of the following coordinate systems have a common origin in the
spacecraft except for the Terrestrial Reference Frame. The relevant coordinate systems
are :

� Optical Bench Coordinate Frame (OBF)

The OBF is a coordinate frame �xed in the optical bench and is used to de�ne
the optical bench attitude. The origin of the OBF is an instrument reference point
located at the optical bench. The orientation of each instrument attached to the
optical bench will usually be described in terms of the OBF. The OBF x-axis is
nominally coincident with the optical bench star tracker boresight direction, which
is zenith pointing. The other two axes complete the proper orthogonal system. The
adopted OBF for the GLAS is illustrated in Fig 1.3. To maximize the solar arrays'
power generation, the ICESAT will be operated in two nominal attitude modes
[29]. The velocity direction of the ICESAT will change between the OBF �z-axis
and the �y-axis, controlled by yaw maneuvers. Througout this document, zOBF
axis is perpendicular to the orbital plane (upward) and yOBF completes the proper
orthogonal system. Since the de�nition of the OBF used here is not the same as the
de�nition of the planned OBF in Fig 1.3, the appropriate coordinate transformation
should be applied before actually using the developed algorithm. The angle rotations
about the (x; y; z)-axes of the OBF are frequently named yaw, roll, and pitch angles,
respectively. The term, spacecraft attitude, will actually mean the optical bench
attitude for the GLAS instrument in this document.

� Celestial Reference Frame (CRF)
The CRF is a non-rotating coordinate frame de�ned by appropriate celestial objects.
Ultimately, it is the inertial reference system which all the other coordinate systems
are referred to. The simpli�ed description of the CRF can be : the X axis is to
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the vernal equinox direction of a speci�ed date, and Y axis is in the equator and
the Z axis completes the proper orthogonal system. The CRF will be realized by
the International Celestial Reference Frame (ICRF) maintained by the International
Earth Rotation Service (IERS).

� Star Tracker Coordinate Frame (SCF)
The SCF is the coordinate frame �xed to the star tracker mounted on the GLAS
optical bench. The direction perpendicular to the star tracker �eld of view (FOV)
at the center of it is called the boresight direction (BD). While the narrow FOV
star tracker such as the HD-1003 can give precise knowledge for the direction of the
BD vector, it gives relatively poor information about the rotation of the BD vector.
For the precise determination of the laser altimeter pointing direction, therefore, the
BD of the optical bench star tracker will be aiming at the zenith direction, which
is the opposite direction that laser altimeter will be pointing. For our description,
the zSCF is aligned to the BD, the xSCF is toward the orbit normal (downward,
being equal to the nominal �zOBF ), and the ySCF completes the proper orthogonal
system (the nominal yOBF ). The orientation of the SCF with respect to the OBF
will change slowly due to the local deformation of the optical bench and the internal
error of the star tracker itself. The alignment of the SCF in terms of the OBF
is assumed to be �xed for the attitude determination process in Chapter 5. The
alignment variations and the corresponding calibrations will be discussed along with
the SRS in Chapter 6.

� Gyro Coordinate Frame (GCF)
The de�nition of the GCF is similar to that of the SCF in the sense that the ori-
entation is de�ned with respect to the OBF. The GCF may be de�ned by the axes
of three orthogonal gyros (usually including a redundant one) in a package, which
is often called the Inertial Reference Unit (IRU). In this document, we simplify the
GLAS attitude system by assuming the GCF to be coincident with the OBF. The
GCF and the OBF may not coincide in the real GLAS attitude system, however, the
results from this document will not be a�ected by the change of the GCF orientation
with respect to the OBF, as long as both GCF and OBF are orthogonal coordinate
systems.

� Terrestrial Reference Frame (TRF)
The TRF is an Earth-�xed coordinate frame whose origin is coincident with the
center of mass of the Earth. Ultimately, the laser spot location on the Earth's
surface will be described in the International Terrestrial Reference Frame (ITRF).

2.2 Quaternion Representation

The attitude of the three axis stabilized spacecraft is most conveniently thought of as a
rotation matrix which transforms a set of reference axes in inertial space to the axes in
the spacecraft OBF. The rotation matrix is an orthonormal matrix and is also called a
direction cosine matrix or an attitude matrix.

11
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Figure 2.1: Coordinate frames

Three Euler angles may be used to represent the orientation of a rigid body since the
rotational motion of the rigid body has three degrees of freedom. There are twelve possible
sets of Euler angles by the sequence of axes to be rotated. The 3-1-3 Euler angles, which
rotate the body about the third axis �rst, the �rst axis next and the third axis last in newly
de�ned coordinate axes obtained by sequential rotations, have been particularly popular
for attitude determination and control. These Euler angles are shown in Figure 2.1 where
the coordinate frames are illustrated. Although the Euler angles are visually helpful to
understand the rotational motion of a spacecraft, there is a disadvantage in the Euler
angles which is known as a singularity or gimbal lock [11]. The 3-1-3 Euler angles are
singular when the second Euler angle is 0� or 180�, because of ambiguous determination
of the other two Euler angles. The singularity occurs in any sequence of Euler angles and
makes Euler angles only infrequently the best choice in attitude determination and control
application.

In most modern attitude determination and control, four element quaternions, also called
Euler parameters, are predominantly used. Their wide use has been the result of the
following advantages :

� No geometric singularities
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� Rigorous satisfaction of a set of linear di�erential equations.

� No requirement for the evaluation of trigonometric functions

The lack of trigonometric functions in the computation of quaternions is clearly an ad-
vantage in time-critical real time operations. Extensive use of trigonometric function in
Euler angles will signi�cantly increase the computation time, especially with modest per-
formance computers such as those used in on-board applications. The quaternions are
de�ned based on Euler's rotation theorem [11] :

The most general displacement of a rigid body with one point �xed is equivalent
to a single rotation about some axis through that point.

For some axis, ê, and a single rotation angle, ��, the quaternions are de�ned by

q1 = ex sin(
��

2
)

q2 = ey sin(
��

2
)

q3 = ez sin(
��

2
) (2.1)

q4 = cos(
��

2
)

where ex, ey and ez are components of rotation axes in terms of the OBF before the
rotation. Since there are only three degrees of freedom for the rotational motion, the
following constraint exists in the quaternion representation :

q21 + q22 + q23 + q24 = 1 (2.2)

The single constraint to be observed is a minor disadvantage associated with the four
quaternions. The detailed properties of quaternions and relevant equations are summarized
in Appendix A.

The quaternion errors �q are frequently represented by another quaternion rotation, which
must be composed with the estimated quaternions q̂ in order to obtain the true quaternions
qtrue as

qtrue = �q 
 q̂; (2.3)

where the quaternion composition, 
, is de�ned in Equation A.9. A bene�t of this error
representation can be seen by applying the small angle approximations to Equation 2.1 :

�q1 =
�x
2

�q2 =
�y
2

�q3 =
�z
2

(2.4)

�q4 = 1;
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where �x, �y, and �z were de�ned in the previous section as yaw, roll, and pitch angles,
respectively. Only the vector components of quaternions (see Equation A.1) correspond to
angle errors and the scalar component becomes insigni�cant to the �rst order. By applying
inverse quaternions (Equation A.2) to Equation 2.3, the error quaternions are expressed
as

�q = qtrue 
 q̂�1: (2.5)

Even though the Euler angles are not convenient for numerical computations, their geo-
metrical signi�cance in illustrating the rotational motion is more apparent than quater-
nions. Therefore, they are often used for computer input/output and for analysis. In this
research, simulated attitude data were created by Euler angles and, then, converted to
the quaternions using Equation A.13. Euler angles can be recalculated from estimated
quaternions by Equation A.14.

2.3 Kinematic Equations of Spacecraft Attitude

If the quaternion composition (Equation A.9) is performed successively in time, the time
evolution of quaternions during the time interval �t is given by

q(t+�t) = q(�t)
 q(t): (2.6)

Let !x, !y and !z be the components of angular velocity vector (~!) at time t, j!j be
the magnitude of the angular velocity, and �� be a rotation angle during �t. From the
de�nition of quaternions, we can derive

q(t+�t) = [
cos(��)

2
I4�4 +

sin(��)

2


(~!)

j!j ]q(t); (2.7)

where 
(~!) is


(~!) �

2
664

0 !z �!y !x
�!z 0 !x !y
!y �!x 0 !z

�!x �!y �!z 0

3
775 : (2.8)

This equation predicts the attitude at the future time based on the knowledge of the
current attitude if the axis of rotation is invariant over the time interval �t. If the average
or instantaneous angular velocity of a spacecraft is known during �t, the rotation angle is

�� = j!j�t (2.9)

about the rotation axis. Assuming �t is small enough, the small angle approximations

cos
��

2
� 1; sin

��

2
� 1

2
!�t (2.10)
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lead to the attitude di�erential equation

d

dt
q(t) =

1

2

(!(t))q(t) (2.11)

from Equation 2.7. Equation 2.11 is the fundamental kinematic equation for the attitude
determination and can be rearranged in a di�erent order such that [6]

d

dt
q =

1

2

2
664

q4 �q3 q2 q1
q3 q4 �q1 q2

�q2 q1 q4 q3
�q1 �q2 �q3 q4

3
775
2
664

0
!x
!y
!z

3
775 : (2.12)

Conversely,

!x = 2(q4 _q1 + q3 _q2 � q2 _q3 � q1 _q4)

!y = 2(�q3 _q1 + q4 _q2 + q1 _q3 � q2 _q4) (2.13)

!z = 2(q2 _q1 � q1 _q2 + q4 _q3 � q3 _q4):

For reference, the 3-1-3 Euler angle representation for angular velocity is

!x = _ sin� sin � + _� cos�

!y = _ cos� sin � � _� sin� (2.14)

!z = _ cos � + _�;

where  ; � and � are three Euler angles in the sequential order.

2.4 Dynamical Equations of Spacecraft Attitude

The rotational motion of a body about its center of mass is

d~h

dt
= ~T ; (2.15)

where ~T is an applied torque and ~h is an angular momentum vector. With ~h described in
the spacecraft body-�xed axes, it follows that

_~hOBF + ~! � ~hOBF = ~T ; (2.16)

where ~! is again an angular velocity vector. Expanding the above equation gives the
general Euler equations of attitude :

_hx + !yhz � !zhy = Tx
_hy + !zhx � !xhz = Ty (2.17)

_hz + !xhy � !yhx = Tz;

where hx; hy; hz are the angular momentum components along the OBF, and Tx; Ty; Tz
are the body referenced external torque components. For the solution of these equations,
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the external torque of ~T must be modeled as a function of time as well as a function of
the position and attitude of the spacecraft. The dominant sources of attitude disturbance
torques are the Earth's gravitational and magnetic �elds, solar radiation pressure, and
aerodynamic drag [52].

In many spacecraft, gyros are grouped as an IRU. When the gyros are used to measure
the angular velocity of the spacecraft, the numerical or analytical expression for external
torques is not necessary. Angular velocities measured by gyros are substituted directly into
the kinematic equation (Equation 2.11) for attitude prediction. Such gyro measurements
actually include the e�ect of all torques acting on the spacecraft. Force model errors in
this situation will exist only to the extent that the measurements from a gyro unit contain
errors. Since the HRG will measure the angular rate of the ICESAT, the Euler equations
are not required for the attitude determination. The attitude determination in the event
of gyro failure will be discussed in Chapter 5.

2.5 Attitude Determination Problem

The minimum required knowledge for three-axis attitude determination is the direction
vectors to two celestial objects which are represented in the OBF (or the Spacecraft Body-
Fixed Coordinate Frame generally) and are also known in the reference frame, such as the
CRF. Since the stars are measured in the SCF, the unit vectors in the OBF are determined
using the rotation matrix between two coordinate systems. Denote the two unit vector
measurements by Ŵ1 and Ŵ2 in the OBF and V̂1 and V̂2 in the CRF. To obtain V̂1 and
V̂2, the measured stars in the SCF must be identi�ed in a given star catalog with the
star identi�cation algorithms developed in Chapter 4. A simple attitude determination
problem is given as :

Find an attitude matrix A, to satisfy

Ŵ1 = AV̂1; Ŵ2 = AV̂2; (2.18)

where the measured vectors and the catalog vectors require

Ŵ1 � Ŵ2 = V̂1 � V̂2 (2.19)

within the measurement and the catalog error bound.

A simple algorithm to �nd the attitude matrix from any two vector measurements is
called TRIAD [39] or an algebraic method [52]. The method has been applied for at
least three decades and was employed in several missions, usually for coarse attitude
determination. Whereas it is relatively easy to evaluate the TRIAD attitude matrix, it has
many disadvantages. The most serious disadvantage might occur when more than three
unit vectors are observed simultaneously, which is a common case in CCD star tracker
measurements. (In Section 4.1, three observation vectors are the minimum number for
utilizing a pattern matching algorithm.)
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To take advantage of multiple unit vectors simultaneously obtained by a CCD star tracker
(or the combination of multiple sensors), a least squares attitude problem was suggested
in the early 1960's by Wahba [51]. The well-known Wahba Problem is :

Find the proper orthogonal matrix A that minimizes the loss function, J(A),

J(A) =
1

2

nX
i=1

aijŴi �AV̂ij2; (2.20)

where the unit vectors V̂i are representations in a reference frame of the di-
rections to some observed objects, the Ŵi are the unit vector representations
of corresponding observations in the spacecraft body frame, the ai are positive
weights, and n is the number of observations

The Wahba Problem is basically a weighted least squares problem for the attitude matrix,
A. It is also known to be equivalent to a maximum likelihood estimation problem for a
simple, but realistic probabilistic model for vector measurements [36]. For error-free ob-
servations (and also error-free catalog positions), the true attitude matrix Atrue will drive
the loss function, J(A), to be zero. In a practical situation, the A must be found that min-
imizes J(A). The solutions of the Wahba Problem, which are deterministic approaches to
the computation of the attitude matrix (or quaternions) will be introduced in Chapter 5.
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Chapter 3

MEASUREMENT SYSTEM

Many spacecraft use gyro units to continuously measure their angular velocities. Tradi-
tional mechanical gyros react to the motion of the host spacecraft based on the principle of
conservation of angular momentum. Non-mechanical gyros have been constructed on phys-
ical phenomena such as general relativity or the inertial vibration property of a standing
vibration wave on a hemispherical body. Such gyros are usually sensitive to high frequency
noise and able to measure attitude change very accurately. However, slowly drifting gyro
biases will produce deviations of predicted attitude from true attitude. Some external
sources such as the Sun, the Moon, the Earth and stars must be observed in order to
prevent gyro biases from deteriorating the attitude determination process based on gyros.
Measurements from external sources are relatively insensitive to the high frequency of at-
titude change due to instrument noise and jitter. However, such measurements provide
good information in the low frequency of attitude motion because the positions of celestial
objects are well-predicted (Sun, Moon, and Earth) or they are essentially �xed in space
(stars). Therefore, gyros and sensors for the external sources are generally used together
in the attitude determination system.

The CCD star tracker which measures multiple stars with a frequency of 10 Hz also enables
angular rate information to be inferred and may be used alone for the accurate attitude
determination. However, in reality, the high frequency jitter in the spacecraft motion, the
irregular distribution of stars, CCD limitations for data read-out and the blockage of star
measurements due to the Sun or the Moon require measurements of the spacecraft angular
velocity from gyros for continuous attitude determination.

This chapter introduces CCD star trackers and gyros which will be used in the ICE-
SAT/GLAS. In addition, a star catalog which is an essential component of the attitude
determination using star sensors will be discussed.

3.1 CCD Star Tracker

The CCD image detector was developed in 1970 by Boyle and Smith at Bell Laboratories
[4]. Unlike the traditional light detectors, two-dimensional CCD detectors allow one to
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Figure 3.1: Simple illustration of the CCD star tracker

obtain images of several objects in a single exposure and provide much better photometric
accuracy than photometric emulsions do. In structure, the CCD is a two dimensional
array of photo-detectors, and each individual detector is described as a picture element
or pixel (see Figure 3.1). After a period of being exposed to light, called the integration
time, the photocharges in each pixel are transferred to an output stage by the external
manipulation of voltages. The charges are measured, digitized and read into a computer's
memory one pixel at a time, row by row. The area viewed by a two dimensional CCD array
can be quickly reconstructed as a digitized image in a computer in order to analyze or
process the light intensity distribution of an extended �eld. The high quantum e�ciency
of the CCD allows it to record about 60% of the photons falling on each pixel. The
reconstructed image is extremely similar to the area projected onto the CCD due to the
direct relationship between the exposure and the intensity of the recorded image over
a broad range of exposures from threshold to saturation. Since each pixel represents a
speci�c location on the CCD, a computer can be programmed to perform an analysis of a
star �eld automatically. More detailed knowledge of the CCD can be obtained from many
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sources [4] [14] [44].

In space applications, CCDs have been used on many imaging missions including the
Hubble Space Telescope. The CCD star tracker was developed in the late 1970's and it
has recently begun to be used in space missions as a component in state-of-the-art attitude
determination hardware. The traditional star sensor detects only one or two stars in its
FOV, and therefore, has been used with other types of attitude hardware like Sun sensors,
horizon sensors or magnetometers. Since the CCD star tracker observes multiple stars
simultaneously, it is sometimes referred to as a star camera and some spacecraft use a
CCD star tracker as the sole attitude sensor except for initial attitude acquisition in real
time applications. Even though the initial attitude acquisition may require other sensors
for coarse attitude determination, this may be also performed by a star tracker with a
wide FOV [26] [17]. A simpli�ed illustration of the CCD array and lens in the star tracker
is shown in Figure 3.1. The following sections describe characteristics of commercially
available CCD star trackers.

3.1.1 HD-1003 Star Tracker

For the PAD of the GLAS, the Raytheon Optical System Inc.(ROSI) HD-1003 [5], a CCD
star tracker, will be mounted on the instrument optical bench. It is an electro-optical
sensor that implements CCD array detectors to search for and track up to six stars in an
8�� 8� FOV with an array of 512 � 512 pixels. The star tracker operates at a 10 Hz rate,
thereby measuring coordinates of tracking stars as well as their light intensities every 0.1
second. It provides the position of a star with a six arcseconds (1�) error in each axis of
pitch and roll. A magnitude measurement is given within 0.2 magnitude (1�) uncertainty.
The nominal sensitivity range of the star magnitude is between 2.0 and 6.0. Functionally,
the HD-1003 star tracker is operated in search and track mode. The star tracker searches
the entire FOV to �nd the six brightest stars in search mode. After acquisition, it continues
tracking these stars and periodically computes updated angular positions as the stars pass
across the FOV in track mode. The performance characteristics of the ROSI HD-1003 are
summarized and compared to the characteristics of the Ball CT-601 and the Lockheed
AST in Table 3.1.

The HD-1003 star tracker manufactured by Raytheon for GLAS was tested during the
period between summer 1999 and spring 2000. Various tests were conducted, such as
mechanical properties measurement, spectral calibration, thermal vacuum segment and
acceptance vibration. Table 3.2 shows the results of the �nal performance test which
was performed in an air conditioned room after electronics and software upgrades [7].
The static accuracy test measures the position accuracy of stars that are �xed relative
to the tracker. The dynamic accuracy test measures the star location accuracy while
tracking a moving star at a rate of 0.20 deg/second. The table presents only the post-
vibration results, but the pre-vibration results showed similar values. All requirements
were reported to have been met based on the pass/fail criteria speci�ed in both pre/post
vibration. The overall performance of the HD-1003 was not compromised by exposure
to the random vibration, thermal or vacuum environment. After the �nal performance
test, point sources were generated by the Scene Simulator computer in order to simulate
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Table 3.1: Characteristics of the commercial star trackers [5] [2] [49]. The performance
parameters of the Ball CT-602 is identical to the CT-601 except the weight and the power
requirement.

CHARACTERISTICS HD-1003 CT-601 AST y

Field of View 8� � 8� 8� � 8� 8:8� � 8:8�

Sensitivity Range (Mv) +2 to +6 +1 to +6 +7.5

Accuracy (arcsec, 1�) z 6 3 (bias) 1
in Roll and Pitch 5 (random)

Update Rate (Hz) 10 10 10 or 5

Acquisition Time
(Full Field, second) 6 5 N/A

Maximum Number
of Stars Tracked 6 5 20

Maximum Power (W) 12 <10 4(0�)/7(50�)
(average) @28V d.c.

Maximum Weight 8 lb 18 lb 3.5 kg
(with shade) (w/o shade) (w/o shade)

Operating
Temperature (�C) -20 to +60 -30 to +50 -30 to +50

y development goals
z Yaw is worse

multiple stars for the tracking performance test. For the Scene Simulator test, six stars
were simultaneously placed in the full FOV (8 � 8�) and one star in the reduced FOV
(0:5 � 0:5�). No test failures or anomalies were encountered during the testing.

3.1.2 Star Measurement on CCD Star Tracker

In the focused image on a CCD array, a star will appear as a point source because all
luminous power from the star will end up in one pixel. By slightly defocusing the image,
however, a star will cover several pixels, usually in an area of 3 � 3 or 4 � 4 pixels [46].
The size of the illuminated square area will be determined by the brightness of each star.
From the illuminated pixels, the centroid is mathematically computed with an accuracy of
0.1 pixel level [14]. The summation of transferred charges on those pixels is proportional
to the brightness of the star, from which the instrumental magnitude of the star can be
computed. Only the pixels that receive more than a certain amount (threshold) of photons
will be recorded. Dimmer stars will be di�cult to detect due to the increased noise. If
the star is too bright, saturation may occur due to over
ow of the photons to adjacent
pixels. The sensitivity range of star magnitude is between 2.0 and 6.0 visual magnitude
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Table 3.2: Test results of HD-1003 star tracker from �nal performance tests. The speci�c
requirements were given for GLAS. For the dynamic accuracy test, the star position error
is e�ectively rms of bias and random noise.

Star Position Error

Error Source Requirement Measured ROW Measured COL
Type Magnitude (1� per axis) axis error (1�) axis error (1�)

static 3.0 mi � 4.5 arcsec 1.23 arcsec 1.28 arcsec
bias 5.5 mi � 4.5 arcsec 2.44 arcsec 2.60 arcsec

static 3.0 mi � 3.3 arcsec 0.94 arcsec 0.54 arcsec
random noise 5.5 mi � 3.3 arcsec 2.53 arcsec 2.16 arcsec

dynamic rms 5.5 mi � 5.0 arcsec 2.95 arcsec 3.23 arcsec

Magnitude Error

Error Source Source Required Measured
Type Movement Magnitude error

3� static 3.0 mi � 0.24 mi 0.12 mi

repeatability static 5.5 mi � 0.24 mi 0.12 mi

dynamic 5.5 mi � 0.24 mi 0.18 mi

static 3.0 mi � 0.12 mi -0.02 mi

bias static 5.5 mi � 0.12 mi 0.01 mi

dynamic 5.5 mi � 0.12 mi 0.05 mi

Boresight(Pitch & Roll) and Yaw Measurement Results

Measured Required Measured Required Measured
Axis Range Position Knowledge Knowledge

Pitch 255.5 � 3 pixels 254.780 � 2 arcsec � 1.6 arcsec

Roll 255.5 � 3 pixels 255.385 � 2 arcsec � 1.6 arcsec

Yaw 0� � 0:20� �0:004� � 10 arcsec � 3 arcsec
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for the HD-1003. The central position of the star image can be determined precisely using
the techniques such as Image Moment Analysis (up to the level of 1

10) or 1-Dimensional
Marginal Fitting ( 1

20 pixel or better). The Point Spread Function [14] is the method to
discriminate the overlapped stars in some pixels.

The two angles of star position measured by the star tracker are converted to a unit vector,
~SSCF , in the SCF, where the BD is regarded as the third axis. Then, the coordinates in
the SCF are transformed to those in the OBF using the transformation matrix, M :

~SSCF =M~SOBF ; (3.1)

where ~SOBF is the unit vector of the same star in the OBF. The transformation matrixM
is determined in prelaunch instrument calibration, but it may be changed slightly by the
launch loads and other e�ects like temperature variation and atmospheric drag in orbit.
This is known as the star tracker alignment error that is also represented by the star
tracker BD excursion.

Using the SRS, the GLAS laser beam pointing direction would be determined against the
star �eld viewed by the star tracker that de�nes the SCF. In other words, the laser beam
pointing direction can be directly associated with the SCF through the SRS. Therefore,
knowledge of the orientation of the SCF, not the orientation of the OBF, in terms of the
CRF is needed for the GLAS PAD. This fact will allow us to determine the orientation of
the OBF with respect to the CRF under the assumption that the star tracker is rigid in
terms of the OBF. This assumption will not restrict the implementation of the estimated
attitude to the laser pointing determination, as will be described in Section 6.3.1.

3.1.3 Star Tracker Data Simulation

The orbit of the ICESAT is near-circular (eccentricity = 0.0013), with a semimajor axis
of 6970 km and an inclination of 94�. The BD is assumed to look at the zenith which is
opposite to the laser pointing direction. The misalignment of the BD to the laser pointing
direction will be discussed in Section 6.3.1. The BD can be calculated in the CRF along
the ICESAT orbit at a speci�ed interval, such as 0.1 second. The 8� � 8� FOV whose
center is the BD is constructed by specifying the FOV boundary in right ascension (�)
and declination (�). The stars located in a FOV are found in a star catalog and only the
brightest stars (up to six) are selected as measured stars by the CCD star tracker at each
measurement time. The star positions (in � and �) and star magnitudes are given as the
input parameters for the simulation. A schematic of the procedure is given in Figure 3.2.

The stars are selected from the star catalog in which star positions are described in a
CRF. Since the real star tracker measures stars in the SCF, it is necessary to transform
the coordinates of the selected stars. The relations between coordinate frames, described
in Section 2.1, are used for coordinate transformations. In our simulation con�guration,
it is assumed that the OBF is obtained by the 3-1-3 Euler angle rotation from the CRF
(Figure 2.1). The Euler angles are the longitude of the ascending node, 
, inclination, i,
and the argument of latitude, u. These 3-1-3 Euler angle rotations align xOBF with the
BD, zOBF with the orbit normal direction (upward), and yOBF with the velocity vector
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direction. The SCF is obtained by simple rotation about yOBF to make the zSCF to be
the BD of star tracker.

Thus, the selected stars from the star catalog, whose coordinates are given in terms of
the CRF, are now transformed to the OBF and the SCF successively by the following
procedure :

1. � and � to unit vector
First, the two angles in the CRF are converted to a unit vector in the CRF by2

4 X
Y
Z

3
5 =

2
4 cos � cos�

cos � sin�
sin �

3
5 : (3.2)

2. CRF to OBF
The unit vector of the star in the CRF is transformed to the unit vector in the OBF
through the 3-1-3 Euler angle rotations :2

4xOBFyOBF
zOBF

3
5 =

2
4 cos u sinu 0
� sinu cos u 0

0 0 1

3
5
2
41 0 0
0 cos i sin i
0 � sin i cos i

3
5

2
4 cos 
 sin
 0
� sin
 cos
 0

0 0 1

3
5
2
4XY
Z

3
5 : (3.3)

The magnitude of 
 was varied in the simulation to comply with the 183 day repeat
ground track of the ICESAT.

3. OBF to SCF
The unit vector in the OBF is transformed to the unit vector in the SCF by the
90� rotation about yOBF . This corresponds to the rotational matrix M de�ned in
Equation 3.1. Then 2

4xSCFySCF
zSCF

3
5 =

2
40 0 �1
0 1 0
1 0 0

3
5
2
4xOBFyOBF
zOBF

3
5 : (3.4)

This rotation aligns zSCF with the BD, xSCF with orbit normal direction (downward)
and ySCF completes the right hand coordinate system.

4. Unit vector to position angles (� and �)
The two measurement angles, � and �, determined by the CCD star tracker are
computed from the unit vector in the SCF. First, the focal length f (Figure 3.1) of
the star tracker optical system is given in millimeter(mm) unit. If xmm and ymm

are the distances to the star image from the center of the CCD array using the same
mm units as f , the star position on the CCD detector array is given by�

xmm

ymm

�
=

�
xSCF=zSCF � f
ySCF=zSCF � f

�
: (3.5)
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Table 3.3: Some noise characteristics for the HD-1003 star tracker and the HRG [47]

Measurement Noise (1�)

HD-1003

dim stars 7.3 arcseconds

bright stars 4.5 arcseconds

magnitude 0.2 magnitude

HRG

Rate White Noise (RWN, �v) 0.05 arcsec/sec
1

2

Bias Stability (BS, �b) 1.33e-03 arcsec/sec

Rate Random Walk (RRW, �u) 3.19e-05 arcsec/sec
3

2

Then, the two measurement angles � and � in the SCF, analogous to � and � in the
CRF, are de�ned by

xmm = tan�� f (3.6)

ymm = tan �� f

cos(�)
: (3.7)

From the known noise characteristics of the CCD star tracker, noise components are added
to � and �. A measurement noise is also added to the magnitude. A set of realistic noise
characteristics for the GLAS star tracker are given in Table 3.3. The noisy position angles
and magnitude in the SCF are considered to be the simulated measurements obtained by
a star tracker. The purpose of the attitude determination that will be discussed in later
chapters is to �nd input Euler angles which were used for data simulation. As mentioned
in Chapter 2, quaternions will be used instead of Euler angles. The 
owchart showing the
procedure to get simulated star tracker data from the stars which were selected in a star
catalog is illustrated in Figure 3.3.

3.2 Hemispherical Resonator Gyro (HRG)

Gyros provide the spacecraft angular rate, even though several independent technologies
are used to design di�erent gyros, such as the traditional mechanical gyro, laser gyros
and the HRGs. The ICESAT will use a set of HRGs mounted on the instrument optical
bench. An HRG is based on the inertial sensing property of a standing vibration wave on
a hemispherical body [53]. It was noted that the location of a vibration pattern at the
rim of a hemispherical shell precesses relative to a reference on the shell when the shell
is rotated about its axis of symmetry. The vibration pattern precession was observed to
be a constant fraction of the inertial input. Measuring the amount of precession provides
the inertial rotation of the input axis. A carefully designed IRU consisting of a few HRGs
provides the inherent small size, high reliability characteristics and precision performance
with relatively long life time expected in space applications.
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Figure 3.3: Flowchart of the star tracker data generation from the selected stars
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3.2.1 Gyro Model

Farrenkopf's gyro model [8] [52] has been widely accepted and used for many years. It
basically separates the gyro noise into three noise types called electronic noise, 
oat torque
noise and 
oat torque derivative noise. The electronic noise is a kind of scale factor error
generated from electronic part of gyro. It is a colored noise, but it can be treated as white
noise if the gyro time constant is much smaller than the gyro readout time interval, which
is usually true for the modern gyros. The 
oat torque noise (rate white noise) is simple
white Gaussian noise superimposed on the gyro drift rate. The 
oat torque derivative
noise (drift rate ramp) is the cause of the gyro drift rate bias since its integration appears
to be rate random walk. This gyro characteristic eventually causes the measured data to
deviate systematically from the true angular rate and this is why gyros need help from the
external sources such as star, Sun or Earth. The gyro rate bias, due to the 
oat torque
derivative, as well as the attitude parameters (e.g., quaternions) can be estimated with
appropriate estimation algorithms.

3.2.2 Gyro Data Simulation

To keep the laser altimeter pointing direction to the nadir direction, the ICESAT must
rotate about the orbit normal axis (zOBF ) once per orbital period. The nominal (and
unperturbed) angular velocity with respect to the OBF can be assumed to be

2
4 !x
!y
!z

3
5 =

2
4 0:0
0:0
2�
T

3
5 ; (3.8)

where T is the orbital period of the ICESAT. However, when the attitude determination
process is simulated for the multiple orbits of the ICESAT, the simple angular velocity in
Equation 3.8 makes the CCD star tracker to repeatedly image the same group of stars. To
avoid this unrealistic situation, Equation 2.14 is used to provide nominal angular velocity,
based on 3-1-3 Euler angle rotations from the CRF to the OBF :

!x = _
 sinu sin i+
di

dt
cos u

!y = _
 cos u sin i� di

dt
sinu (3.9)

!z = _
 cos i+ _u:

The expected value of _
 is approximately 0:5�=day for the ICESAT [19] and di
dt is zero by

assuming the inclination of the spacecraft to be constant in the simulation.

To generate noisy gyro data, the expected gyro noises must be added. Assuming that the
direction of the gyro's input axis is aligned with the OBF, the simulated (gyro-measured)
angular velocity of the ith gyro, gi, is obtained from Farrenkopf's gyro model [52] :

gi = (1 + ki)!i + bi0 + bi + �i1; (3.10)
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where ki is a scale factor error, !i is a true or nominal angular velocity, bi0 is an initial bias
error, bi is a gyro bias which is slowly varying in the orbit and �i1 is a white noise on gyro
rate. The scale factor relates the gyro output counts to the physical unit measurements and
is a function of the angular rate. Assuming that the ki!i term is negligible in comparison
with bi0 and bi, Equation 3.10 reduces the gyro noise into white noise and random walk
(non-white noise) components.

If the gyro measurement vector, ~g, is measured in the GCF while other vectors are de-
scribed in the OBF, then the vector form of Equation 3.10 becomes

~g = G (~! +~b0 +~b+ ~�1); (3.11)

where ~! is the nominal spacecraft angular velocity vector in the OBF and G is an orthog-
onal matrix transforming the OBF into the GCF. The time varying gyro bias, ~b, can be
obtained by the following shaping �lter :

d~b

dt
= ~�2; (3.12)

where ~�2 is another white noise uncorrelated to ~�1.

The noise characteristics of HRG under consideration for the ICESAT are given in Ta-
ble 3.3. The components of Equation 3.11, such as ~�1, ~b0, and ~b, can be derived from these
values.

3.3 Star Catalog

3.3.1 Star Catalog for Star Field Simulation

The star catalog is a fundamental part of the attitude determination process that uses
measurement data obtained from any type of star sensor. For the star �eld simulation,
a star catalog, originally developed to support a spacecraft equipped with a Ball CT-601
star tracker, was obtained from the Smithsonian Astrophysical Observatory [43]. The star
catalog contains 4853 stars and is a subset of Yale Bright Star Catalog. Two years of orbit
simulation of ICESAT sampled the entire celestial sphere because of the complete rotation
of node through 360�. The probabilities of a certain number of stars being in a FOV using
the Poisson distribution and the computer simulation are presented in Table 3.4. From
the main purpose of the GLAS mission, which measures ice sheet elevation over Greenland
and Antarctica, the distribution of stars in both polar regions (above 60� and below �60�
of declination) is more important than any other regions. Therefore the independent
computations for polar regions were performed and presented in the table. The number
of stars in each polar region is given in the parenthesis. If the distribution of stars were
ideally uniform in the star catalog, the star tracker would observe seven or eight catalog
stars in each image. However, the non-uniform distribution of stars in the star catalog
(and on the celestial sphere) gives many di�erent numbers of stars in each image as shown
in Table 3.4. If there are more than six stars in the HD-1003 star tracker FOV, the built-in
processor may select only six of them in terms of their brightness or relative positions. If
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Table 3.4: Probability of the number of stars in a FOV

Whole Sky(4853) South Pole(391) North Pole(323)

Stars Poisson Computer Poisson Computer Poisson Computer
dist.(%) Simul.(%) dist.(%) Simul.(%) dist.(%) Simul.(%)

� 2 2.0 3.9 0.6 2.8 2.1 1.1
3 3.8 5.5 1.4 3.2 3.9 2.8
4 7.2 8.6 3.3 6.0 7.4 8.4
5 10.8 11.6 5.9 9.5 11.0 12.5
� 6 76.2 70.4 88.8 78.5 75.6 75.2

there are one or two stars, the stars still can be identi�ed using the direct match technique
(DMT) which will be introduced in Chapter 4. However, the accuracy of the determined
attitude is lower than that obtained from more stars. An approximate relation between
the number of stars and the attitude determined by a deterministic method is [18] :

�pd =
�starp
NFOV

; (3.13)

where �pd is the accuracy of the pointing direction perpendicular to the detector plane,
�star is the uncertainty of the star position and NFOV is the number of stars in the FOV.

In the simulation, no cases occurred when no star was observed in the FOV. However,
eclipses by the Sun or the Moon can produce periods with no star observations. The
approximate ranges where the star tracker is adversely a�ected are approximately a 35�

radius from the Sun and a 25� radius from the Moon [5]. For example, the 35� radius
from the Sun may cause the maximum eclipse period of about 19 minutes. During the
eclipses by the Sun or the Moon, the attitude determination based on the star tracker
measurement is not available and then the attitude changes need to be detected by a set
of gyros (e.g., IRU) until new star measurements are obtained in the FOV. However, if the
time duration in which only gyro measurements are available is too long, the intrinsic bias
drift of gyros will cause a signi�cant deviation of the determined attitude from the truth.
To reduce the in
uence of the Sun and the Moon, the ICESAT/GLAS PAD could use Ball
CT-602 star trackers whose BDs are tilted in terms of the HD-1003. In the low declination
the eclipsing due to the Sun and the Moon would be forecasted and pre-considered, but
the low latitude region requires relatively relaxed attitude accuracy. For the ice-sheet
measurements in polar regions, solar and lunar eclipsing will not raise a serious problem
because the Sun and the Moon are located in low declination (�30� < � < 30�). Planets
are also positioned on or near the ecliptic plane and their movements are well predicted.
Thus, planetary obscuration will be dealt with in a similar manner to eclipses by the Sun
and the Moon.

3.3.2 Star Catalog for Real Application

For the PAD, the recently completed Hipparcos Star Catalog [1], containing the most
accurate astrometric and photometric star data compared with other star catalogs, will
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Table 3.5: Speci�cations of the Hipparcos Star Catalog [1]

Measurement Satellite Hipparcos Satellite(ESA)

Measurement Period 1989.85-1993.21

Number of entries 118218

Catalogue epoch J2000

Reference system ICRS

Date Published June 1997

Astrometry (Hp < 9mag)

Median precision of positions, J1991.25 0.77/0.64 mas (RA/dec)

Median precision of parallaxes 0.97 mas

Median precision of proper motions 0.88/0.74 mas/yr (RA/dec)

Estimated systematic errors < 0.1 mas

Photometry (Hp < 9mag)

Median photometric precision 0.0015 mag

Mean number of photometric observations

per star 110

Number of entries variable

or possibly variable 11597

Number of solved or suspected

double/multiple systems 23882

be used. The median precision of position and brightness of the Hipparcos Star Catalog
are 0.77 milliarcsecond and 0.0015 magnitude respectively. (A high proportion of the
astrometric data in the recent version (Version 2) of the SKY2000 Master Catalog comes
from the Hipparcos Star Catalog and the Tycho Catalog that is also the output from ESA's
Hipparcos mission.) The important features of the Hipparcos Star Catalog are given in
Table 3.5.

3.3.3 Corrections of Star Measurement

Aberration

Aberration is the apparent shift in the position of a star caused by the motion of the
spacecraft. For Earth-orbiting spacecraft, the motion of the Earth around the Sun causes
a maximum aberration of about 20 arcseconds. The motion of the spacecraft about the
Earth at a 600 km altitude with a circular orbit accounts for about 6 arcseconds additional
aberration. The aberration angle, �, is computed from the spacecraft velocity relative to
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the Sun, ~v, by [52],

� =
j~vj
c
sin �; (3.14)

where c is the speed of light and � is the angular separation between ~v and the true star
direction. Because we need information for all directions, the vector form of aberration
equation is necessary. By using the nutation angles, the aberration vector, ~�, and true
obliquity of the ecliptic, the unit vector direction to the star corrected for annual aberration,
ŜA, is [41]

ŜA = (1 + ŜT � ~�)ŜT � �; (3.15)

where ŜT is the unit vector to the star rotated into true-of-date coordinates from the unit
star vector in mean equatorial coordinates of date. The aberration due to the spacecraft
motion around the Earth is approximately computed from

Ŝ = (1� ŜA � ~v=c)ŜA + ~v=c; (3.16)

where Ŝ is the unit vector to the apparent place of the star observed by the star sensor in
the spacecraft. The aberration correction is applied right after the star identi�cation.

Proper Motion

Many stars show continuous changes in position indicating a certain angular velocity. Such
angular velocities are known as proper motions. The proper motion of an individual star
may be as large as several arcseconds per year. Special considerations must be given to
the stars which will show signi�cant changes during the mission period due to large proper
motions.

Parallax

The star catalog is usually created in the heliocentric inertial coordinate system. Since the
Earth is moving around the Sun once a year, the direction of a star as seen from the Earth
(and the spacecraft) is changing periodically and half of the changed angle is called parallax.
For the GLAS mission, the corrections to the parallax are not required since the maximum
parallaxes for the very few closest stars to the solar system are only 0.8 arcsecond and
parallaxes of most stars are negligible. Furthermore, the attitude determination is based
on all the stars in the FOV so that the parallax error on one or two stars will not a�ect
the result signi�cantly [18].
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Chapter 4

STAR IDENTIFICATION

An essential component of CCD star tracker data processing is the star identi�cation.
Star measurement data must be identi�ed using the star information in the mission star
catalog to determine exactly which stars the sensor is tracking. Star identi�cation al-
gorithms require appropriate parameter adjustment depending on sensor characteristics,
noise environments, and the given star catalog. There are several existing star identi�ca-
tion techniques [52]. In the �rst section of this chapter, we will discuss a pattern matching
algorithm (PMA), which matches the angular distances between pairs of observed stars
with those of cataloged stars. Since the CCD star tracker enables us to detect multi-
ple stars simultaneously, it seems appropriate to choose the PMA as a star identi�cation
method. An advantage of PMA is that this method can be used when no a priori attitude
(or star) information is obtainable or the quality of the a priori information is in doubt.
However, the PMA developed for this research requires at least three stars at a measure-
ment time, but the simulation sometimes showed that only one or two stars were observed
in a star tracker FOV. The second section of this chapter will discuss the DMT, which
identi�es every measured star separately in the star catalog. Since the ICESAT/GLAS
will stay in the simple nadir pointing attitude mode and will estimate the attitude with
one arcsecond accuracy at the measurement time, the predicted attitude would be close
to the true attitude. In other words, we have good prediction for star positions at the new
measurement time and then the area to be searched for in order to �nd the matched star
should be small. In this way, it is possible to identify most of the measured stars, even
when one or two stars are observed by the star tracker. The DMT could be used as the
auxiliary method to help the PMA, but it could also be used as stand-alone method if the
BD would be known all the time with su�ciently good accuracy either from the attitude
prediction or from real time on-board attitude determination.
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4.1 Pattern Matching Algorithm

4.1.1 Sectioning of Star Catalog

The star catalog for attitude determination contains at least several thousand stars. There-
fore, a search for the matching stars in the star catalog that occur within an 8� � 8� FOV
might take an excessive length of time. This also increases the possibility of misidenti�ca-
tion since there would be a signi�cant probability of encountering similar distributions of
observed stars in the star catalog. A search of the entire catalog will cause more serious
problems in real time attitude determination where fast processing is required. However,
if we have a best guess of the star tracker BD available from a previous estimation or
from other (coarse) sensors, only a small area in the star catalog around the BD would
need to be searched to identify the measured stars. This will greatly reduce the required
search time and the probability of misidenti�cation. To support this technique, the celes-
tial sphere must be divided into many cells (or segments) in an orderly pattern so that we
can �nd the matched stars in several cells surrounding the estimated BD. Catalog stars
will be preassigned in those cells by their positions in the star catalog.

As a �rst step to set up the divided cells in the celestial sphere, the locations of the cell
centers are given by [46]

�n =
�

2
� cos�1(�n) n = 0; 1; 2::::N

�nj =
2�j

2n+ 1
j = 0; 1; 2::::2n (4.1)

where � is declination, � is right ascension, and N determines the total number of cells
and the size of each cell. The �n is de�ned by

�n = (�1)n cos( n�

2N + 1
) n = 0; 1; 2::::N: (4.2)

These equations divide the celestial sphere into N+1 declination zones and (2n+1) equally
spaced regions in each zone, yielding (N + 1)2 cells without overlapping.

If the cell size becomes larger, more stars will be stored in one cell and a smaller number of
cells will be made. In contrast, the small cell size will require access to more cells in order
to �nd the matching stars. The choice of cell size (i.e., N) a�ects the star identi�cation
e�ciency both in time and in storage. The area of the star tracker FOV must be considered
to determine the optimal cell size. If N is 22, each cell covers an area slightly larger than
an 8��8� celestial area which is the size of the FOV for typical star trackers (e.g., CT-601
and HD-1003). Assuming that the estimated BD of the star tracker is close to the true
BD, Figure 4.1 shows that we only need to look at the area of 24� � 24�. If the star
identi�cation algorithm begins to search from the nearest stars to the estimated BD, the
full search of 24� � 24� would not be necessary in most cases.

The total number of cells is 529 for N = 22. Except for both polar regions, the cells are
all trapezoidal shapes. After dividing the entire sky into 529 cells by the rule given in
Equation 4.1 and 4.2, the 4853 stars in the star catalog were assigned into those cells by
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Figure 4.1: A cell pointed by an estimated boresight direction and nearby cells

the star coordinates. Figure 4.2 and 4.3 show the cells near the north pole region and
the south pole region, respectively. The number of stars in each cell is indicated within
parentheses. The numbering of the cells starts from the north pole and it continues to the
south pole. This alternative numbering between north and south hemispheres continues
until it arrives at the celestial equator zone which contains 45 equally spaced cells with all
the centers located at 2� declination. The maximum number of stars in a cell turns out
to be 37, which occurs once. Three cells contain one star in a cell, however, there is no
cell that has no stars. As we mentioned earlier in Section 3.3, either cells with excessive
number of stars or with too few stars make the star identi�cation troublesome and may
degrade the accuracy of the attitude determination. It might be possible to develop more
complicated codes to deal with dense and sparse regions with di�erent criteria.

To access the desired cells with the knowledge of the estimated BD (in � and �), the
location of the cell is determined by a pointer, n2 + j, where n and j are obtained from
[46]

n = 2[(
�

2
� �)=�� + 0:5] (� > 0�)

= 2N + 1� 2[(
�

2
� �)=�� + 0:5] (� < 0�) (4.3)

j = [�=�� + 0:5]; (4.4)

where �� and �� are the width of each cell in � and �. The symbol [ ] indicates the
smallest integer greater than (or equal to) the number inside.

To access the surrounding cells, we need to tabulate the numbers of surrounding cells for
each cell number. Figure 4.1 shows the surrounding cells around a cell pointed by the BD.
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Figure 4.2: Catalog cell pattern near the north pole. The number of stars in each cell is
given inside parenthesis.

Once the cell number is given, whether it is a pointed cell by BD or a surrounding cell,
the stars residing in the cell will be referred to one by one.

4.1.2 Algorithm

The position angles (� and � in Equation 3.6 and 3.7) of the observed stars in a FOV of a
CCD star tracker are converted to the unit vectors by Equation 3.5. Two base stars can
be selected arbitrarily. They might be the two brightest stars in the FOV to reduce the
possibility of misidenti�cation. The cosine of the angle, D1;2

m , between a pair of measured
stars is computed by

D1;2
m = Ŝ1 � Ŝ2; (4.5)

where Ŝ1 and Ŝ2 are the unit vectors of the base stars expressed in the SCF. From a priori
attitude knowledge, the cell pointed by the BD and the surrounding cells are known at
the measurement time. The catalog stars in those cells are considered as candidate stars
for identi�cation. With the assumption that the estimate of the BD is close to the true
BD, the candidate stars are paired by the distance from the estimated BD. The cosine of
the angle between two paired catalog stars, i and j, is

Di;j
c = Ŝi � Ŝj ; (4.6)
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Figure 4.3: Catalog cell pattern near the south pole. The number of stars in each cell is
given inside parenthesis.

where Ŝi and Ŝj are the unit vectors, de�ned in Equation 3.2, expressed in the CRF. Thus,
the match is considered as found if the condition

jDi;j
c �D1;2

m j � " (4.7)

is satis�ed, where " is an error window depending on both the star tracker measurement
error and the star catalog position uncertainty. If " is too large, the possibility of a
misidenti�cation increases. If it is too small, a misidenti�cation is unlikely, but the number
of identi�ed stars are apt to decrease.

It is reasonable to say that the selected catalog stars, Ŝi and Ŝj, likely match the mea-
sured pair of stars, Ŝ1 and Ŝ2, when Equation 4.7 is satis�ed. To resolve an inevitable
180� ambiguity stemming from the angular distance comparison, the magnitude test is
performed. This is processed in two steps. First, the two catalog stars i and j must have
a magnitude di�erence greater than the magnitude error bound, �. The � is determined
by combining the star tracker magnitude error and the catalog magnitude uncertainty.
Second, the magnitude of the catalog star i must be close to that of the measured star 1
(or 2) within �, while being di�erent from the magnitude of catalog star 2 (or 1) more than
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�. If these conditions are satis�ed, the base stars, 1 and 2, are temporarily considered to
be identi�ed.

Failure to resolve 180� ambiguity by the magnitude test will occur in two situations. First,
the magnitudes of catalog stars may be unmatched with those of the measured stars in
any combination. In this case, the catalog star pair, which satis�ed Equation 4.7, are no
longer considered as possible matches for the measured star pair. The catalog star pair are
discarded and other pairs of candidate stars are examined sequentially. Second, when the
brightness of the two catalog stars (or two measured stars) are too close, their separation
with the parameter � may not be obtainable. In this situation, the third identi�ed star
is required to solve the 180� ambiguity problem of the base stars. Even though the base
stars pass the magnitude test, the third identi�ed star is still necessary because there is
relatively high probability of �nding an invalid star pair match produced by too many
catalog star combinations, the unregistered (on star catalog) background stars in the true
sky, nearby space debris and/or ghost images [54] of the CCD star tracker. For this reason,
the star identi�cation is not initiated when only two stars (or less) are in a frame of the
star tracker, and that frame is simply discarded.

The third star is searched for in the remaining candidate stars, whether the 180� ambiguity
of base stars are cleared or not, until a star satisfying the following conditions is found :

jDi;k
c �D1;3

m j � "

jDj;k
c �D2;3

m j � "; (4.8)

where k and 3 are the indices for the third star in the catalog and in the measurement,
respectively. If the magnitude test for base stars is successful with the matches of (i; 1)
and (j; 2), Equation 4.8 is the condition which must be satis�ed for the candidate star to
be the third identi�ed star. In contrast, if there remains a 180� ambiguity problem in the
base stars, another chance exists to match the third star by exchanging the order of the
base stars using the conditions :

jDi;k
c �D2;3

m j � "

jDj;k
c �D1;3

m j � ": (4.9)

If the third star satis�es Equation 4.8 or Equation 4.9 and the measured magnitude of the
third star is within the error bound of the corresponding catalog magnitude, all three stars
are presumed to be identi�ed. After the third star has been identi�ed, the fourth star is
matched in a similar way that was used for the third star. This process will be continued
until all the measured stars (up to �ve or six stars) are checked with the candidate stars. If
an observed star is not matched with any catalog star in this procedure, it is considered to
be a false measurement and it is ignored. When only three stars are identi�ed in a FOV of
the CCD star tracker, there remains a chance of misidenti�cation which will be discussed
in the next section. If four or more stars are identi�ed, the probability of misidenti�cation
is extremely small (negligible) primarily because the stars are searched in a limited number
of cells with an orderly process and the estimated BD will be very close to the true BD.

The values for " and � are critical for the star identi�cation. Those values can be initially
determined by the noise characteristics of the star tracker measurements and the star
catalog uncertainty, and must be adjusted in the real data process after launch. The outline
of the star identi�cation algorithm developed in this section is illustrated in Figure 4.4.
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Figure 4.4: Outline of a star identi�cation algorithm
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Figure 4.5: Example of a star distribution in a CCD star tracker frame. An isosceles
triangle is drawn by base stars (1 and 2) and a star at 30 (or 40).

4.1.3 Misidenti�cation

Using the PMA, the measured stars can be absolutely identi�ed or unidenti�ed. For
the latter case, the angular velocity detected by the gyros will enable prediction of the
spacecraft attitude until identi�ed star data are available. When only three stars are
identi�ed, there is a possibility of misidenti�cation if they satisfy

D2;3
m
�= D1;3

m : (4.10)

This is the condition that three identi�ed stars form an isosceles triangle with the third
star on or near the vertex in the symmetric line, as illustrated in Figure 4.5. When two
base stars are located at the positions 1 and 2 and the third star is located at position
3, there is little chance of a misidenti�cation. However, the misidenti�cation likely occurs
when the third star is located on or near the symmetry line between the base stars. Then
the three stars (1,2 and 3) form an isosceles triangle. If the distinctive magnitudes of
the base stars are known by the magnitude test, the third star located at or near the
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symmetry line provides more con�dence on the correct identi�cation of the base stars.
However, as long as the 180� ambiguity of the base stars is not resolved and if the third
star is located at or near the symmetry line, insu�cient information exists to distinguish
the base stars. That measurement frame is simply discarded and rendered as unidenti�ed
at the expense of the loss of the possible correct matches. Since it is not likely to have two
(for example, 30 and 40 in Figure 4.5) or more stars located on or near the symmetry line,
the case of only three identi�ed stars would need to be checked for the possible source of
the misidenti�cation. Therefore, procedures to detect the isosceles triangle with a 180�

ambiguity must be added to the star identi�cation algorithm.

In addition to the isosceles triangle shape, there could be other special geometric con�gu-
rations made by observed stars. For example, if there is a background star in position 400

(symmetric about the base line to the third star in position 3), it may be misidenti�ed as a
star 3 regardless that the star (400) is a registered star in the star catalog or a simple back-
ground star. We can imagine other special geometries formed by three, four or �ve stars
which require more sophisticated star identi�cation algorithms to avoid misidenti�cation.

There are other sources of misidenti�cation that originate from non-geometrical reasons.
One example is space debris (or other satellites) near a star tracker BD. Since the star
tracker does not discern these sources from a real star, debris may cause misidenti�cation.
(Debris actually caused a more serious problem in the star tracker performance of the
X-ray Timing Explorer (XTE) spacecraft [9]). Ghost images of the CT-601 have been
reported as an identi�cation error source [54]. The star identi�cation algorithm must be
su�ciently smart to consider ghost images as background stars that are unregistered in
the mission star catalog.

It is possible in the attitude estimation procedure to detect the measurement frame which
has misidenti�ed stars. The abnormal discontinuity of quaternions (or the computed an-
gular velocity) obtained by Single Frame Attitude Determination (SFAD) methods (Chap-
ter 5) could be interpreted as an outbreak of the misidenti�cation. Even though we suppose
that the PMA could include the detection of various misidenti�cation sources, the complete
escape from the misidenti�cation would not be easy.

4.1.4 Simulation Results

The star tracker measurements were simulated for four circular orbits with 94� inclina-
tion using the algorithm developed in Section 3.1. The respective initial positions are
0�; 45�; 90� and 135� right ascensions at the equator. The time interval between succes-
sive FOVs is 0.1 second. The measurement noises were computed based on the 1� values
given in Section 3.1.3 for generating realistic simulation data.

The PMA was applied to the simulated star measurement data and the results are sum-
marized in Table 4.1. In the simulation, the possible maximum number of FOVs for each
orbit is 57901 corresponding to a 10Hz measurement rate for one GLAS orbital period.
Since the minimum number of stars necessary for the identi�cation process is three, the
number of frames containing at least three stars are shown in the second column of Ta-
ble 4.1. The � in the third column is a parameter representing the range in which the
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third star is considered in a position to form an isosceles triangle with base stars. It is
computed by

� = jD1;3
m �D2;3

m j (4.11)

which means the distance di�erence between two sides of triangles other than the base
line. In other words, if the third star, 3, is located at a position to make the right side
of Equation 4.11 less than �, the three identi�ed stars are considered to form an isosceles
triangle. These stars are regarded as possible misidenti�cation cases and are abandoned.
The identi�cation processing is resumed in order to �nd another group of stars which do
not construct the isosceles triangle de�ned by Equation 4.11.

Table 4.1 shows that all the star tracker measurement frames are reported as identi�ed
(indicated by 100%) if the isosceles triangle formed by the three stars is simply regarded
as a correct identi�cation (� = 0). However, the misidenti�cation occurred in some frames
as indicated in the last column of the Table 4.1, except for the case with 45� initial right
ascension, �. For example, 0� initial � contains 167 misidenti�ed frames, which is 0:3% of
the reported identi�ed frames. Computed results show that when the angle � is increased,
the occurrence of the misidenti�cation is decreased and �nally disappears. There are more
reductions in the total number of identi�ed frames (see the seventh column in Table 4.1)
than the number of misidenti�ed ones (the eighth column). This clearly indicates that
the elimination of the misidenti�cation source results in the removal of some correctly
identi�ed frames. Table 4.1 also shows that the number of frames with �ve identi�ed
stars (the sixth column) increases as � increases. This means that the misidenti�cation
in some frames hinders the determination of correct star matches. The lowest probability
of successfully identifying stars without misidenti�cation was 98:59% in the simulation.
Even though this result is undoubtedly promising, further star identi�cation tests (and
necessary improvements) should be carried out with more background stars in which the
magnitude range covers up to eighth or ninth.

4.2 Direct Match Technique (DMT)

4.2.1 Algorithm

The requirement of more than two stars as well as the relatively high possibility of the
misidenti�cation when only three stars are present in the star tracker FOV were pointed
out as shortcomings of the PMA. The DMT enables us to identify the stars when the FOV
contains only one or two stars. Once the GLAS attitude determination is initialized and
determines attitude in the required accuracy, the DMT can identify almost all stars ob-
served by the FOV. The prediction of attitude can be achieved by applying the kinematic
equation of attitude quaternions, Equation 2.11. Alternatively, the quaternions obtained
by the real time on-board attitude determination can be used. The accuracy requirement
for real time is 10-20 arcseconds(1�). Figure 4.6 illustrates the relations of the coordinate
frames in the DMT. The star tracker observes up to six stars at a measurement time. If
either the predicted or the real time attitude is known, the star positions will be trans-
formed from the SCF to the CRF (the observed CRF in Figure 4.6). If either the predicted
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Figure 4.6: Coordinate systems in the direct match technique
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Figure 4.7: Catalog stars close to measured stars

or the real time attitude is su�ciently close to the true attitude, the small circular area
centered by the observed star will be searched in the star catalog (Figure 4.7). By de�ning
� as the error window radius of the circular area, the catalog star satisfying the equation

d(Ô; Ŝ) < � (4.12)

will be considered as the matched star, where d(Ô; Ŝ) is the angular distance between Ô,
the observation unit vector in the observed CRF, and Ŝ, the catalog star unit vector in
the true CRF. The value for � is determined by the accuracy of the predicted or real time
attitude.

It is easy to see that the procedure described here would provide unique star identi�cation
if the density of star population is considered. Since the HD-1003 star tracker will observe
stars brighter than magnitude 6, the number of stars in the corresponding star catalog is
generally �ve or six thousand. In this case, the stellar density of the catalog is roughly
less than 1 star per square degree. By selecting several tens of arcseconds as the error
window radius, �, in Equation 4.12, we are able to identify almost all stars uniquely. If
multiple stars are found in the error window radius, additional work has to be done with
the comparison of either star magnitudes or the error sizes, d(Ô; Ŝ), in order to achieve
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the unique identi�cation. If no star is found within the radius �, the observed star might
be the non-star object or the predicted (or real time) attitude might have large error.

4.2.2 Catalog Star Search

In the PMA, the area to search for the matched star should be larger than the star
tracker FOV, 8� � 8�. It was required to divide the celestial sphere into many cells in
order to look at the restricted region in stead of the whole sky. (see Section 4.1.1). In
the DMT, a star can be identi�ed by looking at the small circular area whose radius is
usually tens of arcseconds with the observed star at the center. The method sectioning
the star catalog into many cells could be applied to the DMT, but the size of each cell
must be much smaller than that for the PMA in order to e�ciently search the area of the
several tens of arcseconds � radius (Equation 4.12). This would require excessive work to
create and organize more than several thousand cells and access to each cell in the search
process would be problematic when we consider the limited computation time. Therefore,
the DMT developed for the GLAS PAD applies a new approach that does not use the
sectioning of the star catalog described in Section 4.1.1. As the �rst step of the new
approach, the catalog stars whose right ascensions, �, are su�ciently close to the observed
stars will be selected as candidate stars for identi�cation. Since the star tracker is able
to track the stars, the most probable matched star is the one that was identi�ed at the
previous measurement time. By looking at the catalog stars in both the increasing and
decreasing direction of catalog numbers, from previously identi�ed number, k, it is very
likely to �nd catalog stars whose right ascensions, �, are in several tens of arcseconds from
that of the observed star, unless the star is new to the star tracker FOV. Therefore, the
search area can be restricted to :

�0 � � < � < �0 + �; (4.13)

where �0 is the observed star � (see Figure 4.8(a)) and � is the error window radius already
introduced in Equation 4.12.

For a star newly moving into the FOV (see the bottom of Figure 4.7), the � boundary
doesn't help �nd the match and we need to extend the search area. We refer to one of
the previously identi�ed star catalog numbers and need to search � 8� right ascension
range both in increasing and decreasing k directions (Figure 4.8(b)). To reduce the search
time, we may further restrict the search area within � �4� right ascension range from
the predicted BD. Equation 4.12 is applied to the stars residing in the selected � range in
order to choose the correct match for the observed star.

The search method described here performed well in the simulation. However, due to
the nature of the longitude and latitude system for the celestial sphere, a large number
of stars (sometimes all the stars in the star catalog) had to be looked at when the star
tracker observed the vicinity of the polar regions. This search method has been improved
by dividing the celestial sphere according to latitude zones as shown in Figure 4.9. This
zoning of the star catalog is a reduced version of sectioning described in Section 4.1.1. To
avoid looking up to nearby zones, each zone is overlapped with the neighboring zones. This
could enable us to search only a rectangular area represented by thick lines in Figure 4.9(b)
instead of the area indicated in 4.9(a).
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Figure 4.9: Searching area for star identi�cation. Latitude zones more than 4 are expected.

4.2.3 Simulation Results

In the simulation of the DMT, we achieved almost 100% successful star identi�cations
without any misidenti�cation. Table 4.2 shows the results obtained by the DMT when the
same simulation data as for the PMA were used.

Table 4.2: Star identi�cation simulation results using the direct match technique. One
orbital period of simulated data were processed.

RA Total Number of Number of Number of
(�) Observed Stars Identi�ed Stars Misidenti�ed Stars

0� 265738 265735 (99.999%) 0
45� 265003 265003 (100.00%) 0
90� 276872 276867 (99.998%) 0
135� 275330 275232 (99.964%) 0
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Chapter 5

ATTITUDE DETERMINATION

5.1 Single Frame Attitude Determination

In this section, several algorithms will be introduced to determine the spacecraft attitude
from the observed unit vectors. Since these algorithms determine attitude from measure-
ment data obtained by a frame of a CCD star tracker, they will be called Single Frame
Attitude Determination (SFAD) methods in this document.

Because the loss function J(A) in Wahba Problem (Equation 2.20) can be scaled without
a�ecting the optimum attitude matrix, Aopt, it is possible to normalize the weights such
as

nX
i=1

ai = 1 (5.1)

with no loss of generality. Then the loss function can be easily manipulated to

J(A) = 1�
nX
i=1

aiŴ
T
i AV̂i

= 1� g(A): (5.2)

The loss function J(A) will have a minimum value when the gain function g(A) has a
maximum value. The g(A) is given by

g(A) =
nX
i=1

aiŴ
T
i AV̂i

=

nX
i=1

aitr[AV̂iŴ
T
i ]

= tr[ABT ]; (5.3)

where tr means trace of a matrix and the B-matrix or Attitude Pro�le Matrix, B, is,

B =
nX
i=1

aiŴiV̂
T
i : (5.4)

49



The B-matrix is very important since it contains all the information from the measurement
and reference vectors. The construction of this matrix is the beginning of every solution
of the Wahba Problem in this section. Finally, the original Wahba Problem proposed in
Equation 2.20 turns into the minimization problem of

J(A) = 1� tr(ABT ) (5.5)

or the maximization problem of

J 0(A) = tr(ABT ): (5.6)

There exist many SFAD algorithms. The simple description of these methods are given in
the following sections, while the precise derivations of these can be found in the references.

QUEST

The QUEST algorithm is an improved version of the q-method developed by Davenport
[52]. He has shown that the minimization of the loss function J(A) can be transformed
into an eigenvalue problem of a 4� 4 matrix, K :

K =

"
S � �I ~Z
~ZT �

#
: (5.7)

where

S = BT +B

~Z =

nX
i=1

aiŴi � V̂i (5.8)

� = trB:

It was shown that components of the eigenvector corresponding to the biggest eigenvalue
inK matrix are the attitude quaternions. Shuster's QUEST algorithm [39] is a variation of
the q-method in the last step of q-method. It avoids the necessity for solving the eigenvalue
problem and saves computation time by using a simple Newton-Rhapson method. Through
matrix manipulations, Shuster �nally derived a fourth order characteristic equation for �
as

�4 � ��2 � ��+ 
 = 0; (5.9)

where �; � and 
 are de�ned in terms of S; ~Z and � in Equation 5.8. Since �max is known
to be very close to unity when the normalized weight is used, Equation 5.9 is solved for �
with the Newton-Raphson method using � = 1 as an initial value. This is the point where
the QUEST algorithm is preferable to the original q-method from a practical point of
view. In the simulation performed for this study, only one or two iterations were required
to solve Equation 5.9. Once �max is known, the corresponding optimal quaternions can
be quickly computed from

q =
1q

s+ k ~Xk2

�
~X
s

�
; (5.10)
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where s and ~X are also obtained by combining the parameters in Equation 5.8.

QUEST Covariance Matrix

A rigorous derivation of the error covariance matrix is given by Markley [21] for the unit
vector measurement. The general assumptions for the errors in the unit vector measure-
ment are as follows :

� Because the vectors V̂i and Ŵi are constrained to be unit vectors, the error in any
one of them must, to the �rst order, lie in the plane perpendicular to that vector.

� The error vector has an axially symmetric distribution about the respective unit
vector.

� Since the attitude estimation error must be independent of the true attitude, the
statistical value for the size of the error in the attitude quaternions is determined
only by the star tracker measurement and the star catalog errors. In other words, the
amount of attitude error must be the same, regardless of the spacecraft orientation,
if we use exactly the same algorithm and the same measurement and catalog errors
for the attitude determination. Therefore, a special assumption can be made such
as

Ŵi = V̂i; (5.11)

which means that the inertial and observation vectors are identical. Most of the
time, Equation 5.11 is not true. But this assumption does not a�ect the values of
error covariance matrix (or �~q).

Thus, the QUEST covariance matrix is derived as [39]

P~q~q =
1

4
�2tot[I3�3 �

nX
i=1

ai ~Wi
~W T
i ]

�1; (5.12)

where ai is a weight of the measurement shown in the Wahba problem. The total mea-
surement error in a frame of the CCD star tracker, �tot, is

(�2tot)
�1 =

nX
i=1

(�2i )
�1; (5.13)

where �i is the sum of the measurement and the catalog errors and is related to the weights
of each measurement by

�i = �tot=
p
ai: (5.14)

Applying the small angle approximation of quaternions in Equation 2.4, the covariance
matrix for attitude error angles becomes

P�� = 4 P~q~q: (5.15)
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The square roots of the diagonal components of P�� correspond to yaw, roll and pitch (1�)
errors, respectively.

Singular Value Decomposition(SVD)

It is well known that any matrix, B, can be decomposed as follows :

B = USV T ; (5.16)

where U and V are 3� 3 orthogonal matrices and

S = diag(s1; s2; s3) (5.17)

with

s1 � s2 � s3 � 0: (5.18)

The Equation 5.17 means that S is a diagonal matrix with diagonal elements s1; s2 and
s3. They are called singular values of B and Equation 5.16 is called Singular Value
Decomposition (SVD) [45].

Assuming that the matrix B in Equation 5.16 is the same as the B-matrix de�ned in
Equation 5.4, Markley derived the attitude matrix, A, as [21]

A = U [diag(1; 1; d)]V T ; (5.19)

where

d � (det U)(det V ) = �1: (5.20)

Polar Decomposition (PD)

A very di�erent approach to theWahba Problem can be given as follows [3] : The Euclidean
norm of the general real matrix Q is de�ned by

kQk2 �
X

Q2
ij = tr(QQT ); (5.21)

where kQk is the matrix norm of Q and the sum is over all the matrix elements. From
the assumed orthogonality of A and the properties of the trace, the matrix norm of the
di�erence of two matrices, A and B, is

kA�Bk2 = tr[(A�B)(A�B)T ] = 3� 2tr(ABT ) + kBk2: (5.22)

Because the orthogonal matrix A that maximizes tr(ABT ) minimizes this norm, the
Wahba problem is also equivalent to the problem of �nding the proper orthogonal matrix
A that is closest to B in the Euclidean norm.

The Polar Decomposition says that every real square matrix can be factored into [45]

Q = PR; (5.23)
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where the P matrix is orthogonal and the R matrix is symmetric positive semide�nite. If
Q is invertible, then R is positive de�nite. This P is the closest orthogonal matrix to the
matrix Q. Assuming error-free observations Wi (i = 1; 2; ::n), Equation 5.4 becomes [3]

B =

nX
i=1

aiŴiV̂
T
i =

nX
i=1

aiAV̂iV̂
T
i = A

nX
i=1

aiV̂iV̂
T
i = AR; (5.24)

where R is a symmetric matrix. Therefore the attitude matrix A can be found by

A = BR�1: (5.25)

A is not necessarily orthogonal because of the error-free assumption for attitude measure-
ment.

Iteration Method (ITER) and Improved Polar Decomposition (IPD)

From the fact that the attitude matrix A is the closest orthogonal matrix to the B-matrix,
the iterative orthogonalization algorithm [3]

A0 = B

Ai+1 =
1

2
(A�T

i +Ai) (5.26)

can be applied until Ai+1 converges to the solution of the Wahba problem.

The PD method can be improved by applying the orthogonalization algorithm in Equa-
tion 5.26 [3], then

A =
1

2
(B�TR+BR�1): (5.27)

This is called the Improved Polar Decomposition.

Fast Optimal Attitude Method (FOAM)

Combining the singular values of the B-matrix (see Equation 5.17), the optimal attitude
matrix can be rewritten as [22]

A = [(�+ kBk2)B + � adj (BT )�BBTB] = �; (5.28)

where the scalar coe�cients �; � and � are determined using the singular values of the
B-matrix. To derive A, the Wahba's loss function is set to

J(A) = �0 � tr(ABT ); (5.29)

where ai is not normalized,

�0 �
nX
i=1

ai 6= 1: (5.30)
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The bene�t of the FOAM over the SVD method is that the coe�cients �; � and � can also
be computed without using the SVD. By matrix algebra, � and � could be represented as
functions of � and B, where � is the root of the following equation :

0 = p(�) � (�2 � kBk2)2 � 8 �detB � 4 kadjBk2: (5.31)

The largest root of p(�) minimizes the loss function J(A). Since �0 is close to �, we have
a very good choice of the initial � and need to iterate only a few times.

Modi�ed Fast Optimal Attitude Method (MFOAM)

All methods except QUEST (and the q-method) discussed up to now in this section produce
rotation matrices rather than quaternions. The quaternions can be extracted from the
attitude matrix using Equation A.5.

The MFOAM [23] is the variation of FOAM in order to compute quaternions directly.
Inserting �0 into Equation 5.28, the approximately orthogonal matrix, A0, is obtained by

A0 =M=�(�0; B); (5.32)

where

M =
1

2
(�20 + kBk2)B + �0 adj B

T �BBTB: (5.33)

Then, the attitude matrix can be orthogonalized while extracting normalized quaternions
q from A0. The extracting equations are a modi�cation of Equation A.5.

5.2 Extended Kalman Filter

5.2.1 Basic Algorithm

The estimation algorithm for the EKF is based on Le�erts et al.[16] and Fisher et al.[10].
Instead of the direct estimation of the four element quaternions, q, the angle error vector,
�~� :

�~� =

2
4 ��x
��y
��z

3
5 =

1

2

2
4 �q1
�q2
�q3

3
5 (5.34)

is estimated with the gyro bias error vector which is de�ned by :

�~b � ~btrue � b̂; (5.35)

where ~btrue is the true gyro biases and b̂ is the estimated gyro biases. �q1; �q2 and �q3
are the vector components of small angle (or error) quaternions. The scalar component of
error quaternions becomes 1, to the �rst order, when a small angle rotation is applied to
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the normal quaternions. In consequence, the dynamic model for the angle error vector is
given as :

d

dt
�~�(t) = [~!(t)]�~�(t) +�~b+ ~�1 (5.36)

d

dt
�~b(t) = ~�2(t): (5.37)

where [~!(t)] is an antisymmetric matrix which is the matrix representation of the vector
product :

[~a]~b = �~a�~b: (5.38)

Now, the conventional linear vector-matrix di�erential equation is speci�ed by

d(�~x)

dt
= F (t)�~x +G(t)~�(t); (5.39)

where

F (t) =

�
[~!k�1jk�1] I3�3

03�3 03�3

�
(5.40)

G(t) =

�
I3�3 03�3

03�3 I3�3

�
(5.41)

~� =

�
~�1
~�2

�
: (5.42)

The propagation equation for the state covariance matrix P (t) is :

Pkjk�1 = �k�1Pk�1jk�1�
T
k�1 +Qk�1; (5.43)

where �k�1 is the state transition matrix from tk�1 to tk and Qk�1 is the process noise
covariance matrix at time tk�1. The subscript kjk � 1 denotes a prediction value before
it is updated at time tk and kjk means the updated value with new measurement at time
tk. The state transition matrix, �(t), is obtained by

d

dt
�(t; tk�1) = F (t)�(t; tk�1) (5.44)

with the initial condition

�(tk�1; tk�1) = I6�6; (5.45)

where I6�6 is a 6� 6 identity matrix. For our system, the state-error transition matrix is

�k�1 � �(tk; tk�1)

=

�
�k�1 	k�1

03�3 I3�3

�
; (5.46)

where

d

dt
�(t; tk�1) = [!̂]�(t; tk�1) (5.47)

d

dt
	(t; tk�1) = [!̂]	(t; tk�1) + I3�3 (5.48)
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subject to

�(tk�1; tk�1) = I3�3 (5.49)

	(tk�1; tk�1) = 03�3; (5.50)

where 03�3 is a 3� 3 zero matrix. Numerical integration, such as a Runge-Kutta method,
is employed to solve for the transition matrix, �(t; tk�1). The process noise covariance
matrix, Qk�1, is used as a tuning parameter so that the optimal value may be found in a
search to achieve the best attitude determination.

5.2.2 Observation Model

Two separate measurement models are used for the EKF.

Unit Vector Filter (UVF) Observation Model

The measured star position is converted into a unit vector which is assumed to have the
same noise characteristics for all three components regardless of the angle that the vector
makes with the BD [34] [37]. The corresponding measurement covariance matrix is de�ned
as :

Rk = �2kI3�3; (5.51)

where �2k is the variance of the star measurement noise on each component of the unit
vector at time tk. The measurement residual, ~zk, is de�ned by :

~zk = Ŵk � Ŵkjk�1: (5.52)

Ŵk is the unit vector measurement in the OBF and it is given by :

Ŵk = AkV̂k +� ~Wk (5.53)

where V̂k is the unit vector of the same star in the CRF and Ŵkjk�1 is the prediction from
:

Ŵkjk�1 = Akjk�1V̂k; (5.54)

where � ~Wk is a white Gaussian noise. By representing the rotation as a matrix exponential
[38] :

Ak = e�[�~�]Akjk�1

� (I � [�~�])Akjk�1: (5.55)

Inserting Equations 5.53, 5.54 and 5.55 into Equation 5.52 :

~zk � [Ŵkjk�1]�~�k +�Ŵk: (5.56)
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The sensitivity matrix, Hk, can be derived as :

Hk = ([Ŵkjk�1]
...03�3): (5.57)

QUEST Observation Model

The QUEST is a deterministic algorithm to compute the attitude quaternions from si-
multaneous vector measurements of celestial objects [39]. The vector measurement in the
QUEST is given by :

Ŵk;i = AkV̂k;i +�Ŵk;i; (5.58)

where the subscripts, i and k, are the measured star index and the measurement time,
respectively. The QUEST algorithm furnishes attitude quaternions, pk, as well as the error
covariance matrix, Rk, which is given by :

R�1
k =

nX
i=1

1

�2k;i
[I � (AkV̂k;i)(AkV̂k;i)

T ]; (5.59)

where �2k;i is the variance of star i's measurement noise at time tk and n is the total number
of the measured stars in the star tracker. The square roots of the diagonal elements of
Rk are angle errors of the QUEST attitude. In the EKF, the QUEST quaternions, pk,
are combined with the predicted estimated quaternions, qkjk�1, using to build the O-C
residuals, �zk, by

�zk � 2pk 
 q�1
kjk�1; (5.60)

where 
 is a quaternion composition analogous to an algebraic addition of two successive
rotations [52]. qkjk�1 is obtained by using the attitude propagation :

d

dt
q(t) =

1

2

(~!(t)) q(t) (5.61)

from the estimated quaternions qk�1jk�1 in the previous measurement time, tk�1. and

(~!) is :


(~!) �

2
664

0 !z �!y !x
�!z 0 !x !y
!y �!x 0 !z

�!x �!y �!z 0

3
775 : (5.62)

The O-C residuals is divided into vector and scalar components :

�zk �
�
~zk
1

�
; (5.63)

where the last component of �zk is, to the �rst order, 1, because �zk is expected to be a
small amount of rotation. The observation-state equation thus is

~zk = �~�k + ~vk

= Hk�~xk + ~vk; (5.64)
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where ~vk is a discrete white Gaussian noise vector originating from the QUEST measure-
ment error. The sensitivity matrix, Hk, is

Hk = [I3�3
...03�3]: (5.65)

5.2.3 Kalman Filter Update

The EKF update equations are :

Kk = Pkjk�1H
T
k (HkPkjk�1H

T
k +Rk)

�1 (5.66)

�x̂kjk = Kk~zk (5.67)

Pkjk = (I �KkHk)Pkjk�1(I �KkHk)
T +KkRkK

T
k (5.68)

for both observation models. Note that �~xkjk�1 = 03�3 in the EKF. For the UVF obser-
vation model, the update procedure is applied only when the measurement time changes.
Finally, the new estimates at measurement time tk are

qkjk = 2��̂kjk 
 qkjk�1 (5.69)

b̂kjk = b̂kjk�1 +�b̂kjk: (5.70)

5.3 Batch Method

The normal equations for batch estimation are :

�x̂k = (HT
k R

�1
k Hk + �P�1

k )�1(HT
k R

�1
k ~zk + �P�1

k ��xk) (5.71)

Pk = (HT
k R

�1
k Hk + �P�1

k )�1; (5.72)

where �x̂k and Pk are the estimated state and covariance matrix at epoch time tk while
��xk and �Pk are the a priori state and covariance matrix at the same epoch time. Without
any previous estimates, �Pk is speci�ed with arbitrarily large values. The terms containing
the measurement covariance matrix, Rk in Equation 5.71 and 5.72 are computed by

HT
k R

�1
k Hk =

nX
i=1

( ~Hi�(ti; tk))
TR�1

i
~Hi�(ti; tk) (5.73)

HT
k R

�1
k ~zk =

nX
i=1

( ~Hi�(ti; tk))
TR�1

i ~zi; (5.74)

where ~Hi is the same as Hk in Equation 5.65 :

~Hi = [I3�3
...03�3]: (5.75)

Ri is the measurement noise covariance matrix at time ti and ~zi is the O-C residual vector
de�ned in Equation 5.63 as ~zk. The transition matrix �(ti; tk) is obtained by :

�(ti; tk) = �(ti; ti�1)�(ti�1; ti�2) � � ��(tk+1; tk); (5.76)
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by computing transition matrices between all successive measurement times. This equation
allows us to propagate attitude information from ti to tk considering noisy gyro data at
each measurement time. Therefore, the attitude angle errors and gyro bias errors are
determined by Equation 5.71 :

�x̂k =

�
��̂k
�b̂k

�
(5.77)

at the epoch time, tk. Finally, quaternions and gyro biases at tk are obtained by :

qk;m = 2��̂k 
 qk;m�1 (5.78)

b̂k;m = b̂k;m�1 +�b̂k; (5.79)

where m is the iteration number. These are actually the same form as Equation 5.69 and
5.70 for the EKF, however, the states (q and ~b) are renewed over the previous values at the
epoch time in the batch estimation. The iterative procedure continues until the following
condition is satis�ed

j~qk;m � ~qk;m�1j < �; (5.80)

where � is a pre-set value. Once the quaternions and biases are estimated at the epoch, the
quaternions in every measurement time can be simulated by using Equation 5.61 through
the time interval for batch. It is assumed that the estimated gyro biases are constants
over a batch interval. At the next epoch, these gyro biases are used as initial values for
another iteration.

5.4 Simulation Results

The CCD star tracker, Ball CT-601 or Raytheon HD-1003, has a capability of observing
�ve or six stars simultaneously within the tracker FOV. Only a maximum of �ve stars
were processed in our simulation. It is expected that the determined attitude quality will
be slightly improved by increased number of stars in a FOV, whether it is noticeable or
not.

Figure 5.1 shows the angle errors of the QUEST quaternions obtained from one orbital
period of star tracker simulation data. Errors computed by comparison of the determined
attitude with the true attitude show the noise-like behavior (the center part). There
are two lines in the upper and lower parts corresponding to the computed 1� values.
Figure 5.2 shows the angle errors obtained from MFOAM with the same simulation data.
The attitude errors (and also the computation times) obtained by two algorithms do not
indicate noticeable di�erences. The uncertainty in each of the roll and pitch axes is about
3.5 arcseconds(1�). The yaw error which is the angle error about an axis perpendicular
to the tracker FOV is around 70 arcseconds(1�). The estimation error in yaw is always
much bigger than those in roll and pitch because the yaw axis (the zenith direction) is
assumed to be aligned with the star tracker BD. For the pointing knowledge of the laser
beam toward the nadir, it is required to know accurate angle rotations about the roll and
pitch axes, but not about the yaw axis.
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Figure 5.1: QUEST angle errors in arcsecond

Figure 5.2: MFOAM angle errors in arcsecond
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Table 5.1: SFAD output statistics. Mean errors are the averages of the determined yaw,
roll and pitch errors from the known true attitude over one orbital period. The 1�s are
the averages of the square root of the diagonal terms in the covariance matrix.

Method Axis Mean Error 1�
(arcsec) (arcsec)

yaw 0.23 67.95
QUEST roll -0.00 3.40

pitch -0.02 3.45

yaw -0.04 67.95
SVD roll 0.01 3.40

pitch -0.01 3.45

yaw -0.39 112.72
PD roll -1.50 5.52

pitch -0.27 5.71

yaw 0.55 67.95
IPD roll 0.04 3.40

pitch 0.03 3.45

yaw 0.11 77.15
ITER roll 0.00 3.86

pitch -0.01 3.92

yaw -0.00 68.17
FOAM roll 0.00 3.41

pitch -0.00 3.48

yaw 0.00 68.17
MFOAM roll 0.00 3.41

pitch -0.01 3.48

The results of attitude errors of all the SFAD methods discussed earlier are compared in
Table 5.1. The �ve methods, QUEST, SVD, ITER, FOAM and MFOAM, do not show
noticeable di�erences in the 1� values. The approximate CPU times on a Hewlett Packard
(HP) model 735/125 Unix machine, with 125 MHz processor, are compared in Table 5.2.
Two algorithms, QUEST and MFOAM, show relatively fast performance. While the CPU
time is important in real time attitude determination and control, the di�erences shown
in Table 5.2 might be unimportant in post-processing. As long as there are no distinctive
di�erences in accuracy, however, it would be better to choose the algorithm with the
fastest performance. Figure 5.3 shows the attitude angle errors from the EKF with the
QUEST observation model. For the attitude propagation between star measurements,
simulated gyro data were used. Noise-like true attitude errors and bounds (1� envelopes)
show signi�cant improvement comparing to QUEST solutions (Figure 5.1). When less
than three(� 2) stars are observed, gyro data are used to predict the attitude. During
the absence of star tracker data, the 1� envelope could not be drawn in Figure 5.3. The
large covariance values were obtained by the restart of the EKF with the new star tracker
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Table 5.2: SFAD computation time obtained by time command in HP 735/125 Unix
machine with 125 MHz processor for one orbital period (� 5800 seconds).

Method user(sec) system(sec) real(min)

QUEST 92.8 23.7 1.58

SVD 99.0 23.5 2.03

PD1 93.4 23.6 1.58

PD2 94.3 23.9 2.01

ITER 107.9 23.2 2.13

FOAM 94.1 23.4 2.01

MFOAM 92.7 23.4 1.57

measurements, but quickly the bound was diminished to the steady-state values.

Figure 5.4 shows the attitude angle errors obtained by the EKF with the UVF observation
model. The batch estimation was performed with a 300 second batch interval and the
results are shown in Figure 5.5. The batch intervals are marked by vertical dotted lines
every 300 seconds in the �gure. The estimated quaternions at the epoch time were prop-
agated for 300 seconds (until the following epoch time) and the propagated quaternions
were used to determine the angle errors shown in the �gure. It can be seen that roll and
pitch errors from the batch method are similar to those of the EKF methods.

Finally, Figure 5.6 shows the EKF with the QUEST observation model, but the EKF did
not use gyro data at this time. Since angular rate information is required for quaternion
propagation, the angular velocity vector, instead of gyro bias vector, was included in the
state vector. Thus the equation of motions are now :

d

dt
�~�(t) = [~!(t)]�~�(t) + �~!(t) (5.81)

d

dt
�~!(t) = ~�(t); (5.82)

where ~�(t) is white Gaussian noise on the angular acceleration. Most of the remaining
equations are similar to the previous ones for the EKF using the QUEST observation model
except for some modi�cations caused by the decrease in the number of noise parameters.
The simulation results shown in Figure 5.3 and 5.6 might raise a question about the
usefulness of the gyro data. However, it should be noted that the simulation did not
include high frequency spacecraft jitter that may not be measured by the star camera,
but could be measured by the gyros. Until the high frequency jitter is considered in
the simulation (or in actual data process), it cannot be concluded that the EKFs, case
using gyro data and case without using gyro data, produce the comparable results for
attitude determination. The approximate computation times, required to process one
orbital period of data on a HP model 735/125 Unix machine, with 125 MHz processor,
are shown in Table 5.3. Both EKFs with the QUEST observation model perform the
computation faster than the EKF with UVF observation model. The batch method, as
expected, is slower than any EKF.
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Figure 5.3: Angle errors from the EKF with QUEST observation model in arcsecond

Figure 5.4: Angle errors from the EKF with UVF observation model in arcsecond
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Figure 5.5: Angle errors from batch estimation in arcsecond

Figure 5.6: Angle errors from the EKF without using gyro data in arcsecond
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Table 5.3: Computation time comparison

Method Obs. Model user(sec) system(sec) real(min)

EKF, QUEST, gyro 149.4 26.8 3.00

EKF, QUEST, non-gyro 143.9 24.7 2.51

EKF, UVF, gyro 341.5 10.1 6.00

BATCH, QUEST, gyro 451.2 92.0 9.08

Figure 5.7 shows the relation between true estimation errors and a 1� bound obtained
from the state error covariance matrix. The numbers on the line are associated with the
tuning parameter, the process noise covariance matrix. As the number increases (12, 13
� � � ), the magnitude of the process noise covariance matrix decreases. The EKF diverges
when the process noise covariance matrix is too small.

Figure 5.7: True errors versus 1� values of EKF estimation (arcsecond)

Figure 5.8 shows the relation between true estimation errors and root mean squares (rms)
of one orbital period EKF estimation. The trend of rms coincides with that of true errors.
This particular case indicates the possibility of using rms values in the �lter tuning of the
actual data where the true attitude is not known.
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Figure 5.8: True errors versus rms values of EKF estimation (arcsecond)
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Chapter 6

POINTING DETERMINATION

Figure 6.1 shows a conceptual sketch of the Stellar Reference System (SRS) which is being
developed by Goddard Space Flight Center to measure the pointing angle of the GLAS
laser beam to the required accuracy (less than 1.5 arcsecond, 1�), relative to the star
�eld. To reduce the alignment 
exibility originating from multiple error sources, such as
spacecraft jitter and temperature variation, all the components of the SRS will be at-
tached to the GLAS optical bench. The SRS consists of a Laser Reference Camera (LRC)
and the Attitude Determination System. The LRC contains optics, called Lateral Transfer
Retrore
ectors (LTR), which are designed to extract and redirect onto the Laser Reference
Telescope (LRT) both a portion of the outgoing laser pulse and a beam from a Collimated
Reference Source (CRS). The CRS is rigidly attached to a side of the star tracker and pro-
vides the alignment information of the star tracker. The LRT also observes a star (LRC
star) which is brighter than 7.5 visual magnitude. All of the images observed in the LRT
are projected onto a 0:5� � 0:5� FOV Laser Reference Sensor (LRS). After locating the
LRC star on the star �eld observed by the star tracker, other illuminated images in the
LRS will subsequently be transformed to the star tracker star �eld in order to determine
the laser altimeter pointing direction in the SCF or the OBF. When the LRC star is not
available, the CRS images projected to the LRS will be monitored to check the stability of
the whole system on the optical bench while the rigid body assumption is being applied.
While the GLAS laser is �red at a 40 Hz rate, the LRS sees the laser at 10 Hz. The
shot-to-shot direction of the laser beam is recorded by the Laser Pro�ling Array (LPA)
with a frequency of 40 Hz. The centroids from 40 Hz laser images observed by the LPA
must be located in the LRS frame and consequently in the SCF. Ultimately, the proper
coordinate transformations would give us the 40 Hz laser beam pointing direction in both
the TRF and the CRF. The details of the SRS instruments, such as mechanical require-
ments, design concepts, construction materials and statistical quantities, are provided in
the GLAS Critical Design Review [47].

6.1 POINTING DETERMINATION ALGORITHM

Once a star observed in either the LRS or by the star tracker is identi�ed, the star appears
as a static point source in the CRF (see Star Catalog in Figure 6.2). The identi�ed
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Figure 6.2: Pointing determination using the Stellar Reference System

tracker stars will allow us to determine the attitude, A(t), at time t by applying attitude
determination algorithms. The attitude matrix transforms the star coordinates in the
CRF into those in the instrument OBF. If the alignment matrix, S(t), which transforms
the star coordinates in the OBF into those in the SCF, is temporarily presumed constant,
the combined matrix, M(t) :

M(t) = S(t)A(t) (6.1)

describes the coordinate transformation from the CRF to the SCF. Once the matrix,M(t),
is determined at every measurement time t, the LRC star identi�ed in the CRF can be
transformed to a dotted line at the star tracker FOV (see Star Tracker in Figure 6.2). The
tracks of the LRC star both in the star tracker FOV and in the LRS FOV are input data
to the least squares method which will be introduced in the following subsection. If the
star in the LRC is brighter than magnitude 6, it will also be seen in the star tracker so
that the projected LRC star positions on the star tracker FOV can be veri�ed/calibrated
with the observed star by the star tracker itself.

6.1.1 Estimation of the LRS frame in terms of the SCF

Figure 6.3 describes the overlap of the LRS FOV on the star tracker FOV, but the LRS
FOV is oversized to well visualize the relation between the two FOVs. Ideally, the two
frames share the common origin. In the real situation, there might be an o�set between the
two origins. This o�set is represented as the coordinate of the LRS origin, (xoffset; yoffset),
in terms of the SCF. In addition, the LRS FOV might rotate by angle � against the SCF.
Finally, the magnitude ratio of two FOVs, F , might change if focal lengths vary. Once we
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know these o�set parameters, (xoffset; yoffset; �; F ), any point in the LRS FOV can be
projected into the star tracker FOV using the following equation :�

xstarLRS
ystarLRS

�
= F

�
cos � sin �

� sin � cos �

� �
xstarST � xoffset
ystarST � yoffset

�
: (6.2)

where (xstarLRS ; ystarLRS ) is the coordinate of the LRC star in the LRS frame and
(xstarST ; ystarST ) is the coordinate of the same star in the SCF. Considering the velocity
of the GLAS/ICESAT and the size of the LRS FOV, we will have approximately 80 points
(i.e. 8 seconds) of the consecutive LRC star measurements in both FOVs. With these
data, the o�set parameters can be estimated by applying the least squares method [45] to
the Equation 6.2. Finally, Equation 6.2 is used to locate the laser point in the star tracker
FOV by inserting the estimated parameters, x̂offset; ŷoffset; �̂ and F̂ :�

xlaserLRS
ylaserLRS

�
= F̂

�
cos �̂ sin �̂

� sin �̂ cos �̂

� �
xlaserST � x̂offset
ylaserST � ŷoffset

�
; (6.3)

where (xlaserLRS ; ylaserLRS) are the coordinates of the LRS laser in the LRS frame and
(xlaserST ; ylaserST ) are the coordinates of the same laser point located in the SCF. Equa-
tion 6.3 is also used for the projection of the CRS point. After the laser points observed
in the LRS FOV are located in the SCF, direction cosines (i.e. unit vector for the laser
pointing direction) can be restored by considering the focal length of the star tracker.
The construction of the laser pointing vector will be made once the laser travel time (i.e.
range) is determined. The inverse of the matrix M(t), M(t)�1, should be applied to
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Figure 6.4: Pointing determination simulation result (10Hz)

transform the laser coordinates from the SCF to the CRF. As discussed at the end of
Section 1.1, the laser spot position vector will be obtained by appropriately combining the
laser pointing vector with the laser pulse travel time and the POD position vector. The
spot location will be produced in the Earth-�xed axes, speci�cally ITRF by the proper
coordinate transformation [32].

A simulation result for GLAS laser pointing determination is shown in Figure 6.4. The
LRC star measurement data were created from a star catalog which contains 32511 stars
ranging down to magnitude 7.5. The LRC star measurement noise was in the range of 0.2
to 0.4 arcsecond depending on the star brightness [47]. In addition to the random noise in
the overall SRS, the true shot-to-shot variation of the laser beam direction was given as
0.3 arcsecond (1�). The pointing errors in the �gure are the absolute di�erences between
the true and the estimated pointing directions. For the most part, the pointing errors were
below 1.5 arcseconds, satisfying the accuracy requirement.

6.1.2 Absence of the LRC Star

As shown in Figure 6.4, a half degree LRS FOV will occasionally observe stars. The time
duration before a new star comes in to the LRS appears to be within a few minutes in
the �gure. To determine the maximum or average time between LRC star observations,
simulations covering the whole sky might be necessary. The probability computation of the
star tracker's star observations, from both theory and simulation, indicated that the stars
in our universe do not deviate considerably from the random distribution (see Table 3.4).
Using the Poisson distribution[50], the computation shows that, during an orbital period
of the GLAS, a star will be observed in the LRS more than 100 occasions, meaning at least
a star per minute. Therefore, the LRS would almost always observe a new star within
several minutes after the dropout of an old one, especially in the polar regions where no
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Figure 6.5: Pointing determination simulation result (10Hz, �lled)

solar or lunar blocking would occur. Expecting that the line of sight stability for the
GLAS optical bench would be less than 0.1 arcsecond(1�) during one orbital period [27]
[33], we conclude that the o�set parameters obtained during a LRC star observation can
be used after the star leaves the LRS FOV. When a new star comes into the LRS, the
parameters will be updated and used until another new star is observed. If a noticable
change of instrument alignment between star tracker and LRS occurs, it would be detected
by monitoring the CRS points since the LRS also observes the CRS images projected from
the star tracker CRS. Figure 6.5 shows the simulation results after �lling up intervals
between LRS observations using constant o�set parameters before a new star.

6.1.3 LPA measurement projection into LRS frame

While the LRS sees star, laser and CRS points at a 10Hz rate, the LPA observes the laser
beam at a 40Hz rate. The position of the laser in the LPA needs to be located in the LRS
in order to determine the 40Hz laser beam pointing direction in the CRF. Although the
LPA consists of an array of 80 by 80 pixels, only 20 by 20 array containing the laser point
near its center will be read. An example of the laser pro�le is shown in Figure 6.6. A
method to �nd the centroid (xi;LPA; yi;LPA) of the laser image is :

xi;LPA =

P20
1 n

P20
1 m Im;nP20

1

P20
1 n m Im;n

yi;LPA =

P20
1 m

P20
1 n Im;nP20

1

P20
1 n m Im;n

(6.4)

where Im;n is the laser intensity of m row and n column.

Pre-launch calibration will provide the formula to project the LPA laser point to the LRS
frame. However, the relative position of the LPA frame with respect to the LRS frame
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Figure 6.6: Laser pro�le observed at the LPA

might change slowly due to launch load, temperature variation or instrument aging. The
center of the LPA laser image needs to be located in the LRS FOV after launch. Since
both the LRS and the LPA observe the same laser shots at a 10Hz rate (see Figure 6.1),
these common measurements provide a way to project the LPA image center to the LRS
coordinate frame. Measurements of laser in both LRS and LPA frames will contain both
shot-to-shot noise and measurement noise. The mean position, (xLPA; yLPA) is computed
by :

xLPA =

PN
1 xi;LPA
N

yLPA =

PN
1 yi;LPA
N

; (6.5)

where N is the number of total measurements, i is an index for the individual measurement
and (xi;LPA; yi;LPA) is described in Equation 6.4. Similarly, the mean position of LRS
laser is calculated by :

xLRS =

PN
1 xi;LRS
N

yLRS =

PN
1 yi;LRS
N

: (6.6)

Finally, an individual LPA centroid, (xi;LPAonLRS ; yi;LPAonLRS), is projected into the LPA
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Figure 6.7: Projection of LPA frame on LRS frame

frame by :

xi;LPAonLRS = K(xi;LPA � xLPA) + xLRS

yi;LPAonLRS = K(yi;LPA � yLPA) + yLRS ; (6.7)

where K is the ratio of size di�erence between the two frames. The projection procedure
is illustrated in Figure 6.7 as a linear transformation of a coordinate system whose origin
is located at the mean position of the LPA centroids.

The laser point projection represented by Equation 6.7 is based on the assumption that
the coordinate axes of the LPA are parallel to those of the LRS. The rotation angle of the
LPA frame, �, with respect to the LRS frame is illustrated in Figure 6.8 where the mean
position of the LPA centroids is moved to the origin of the LRS frame. If we consider
the rotation angle �, the observed or uncorrected LPA laser point, (xi;uncor; yi;uncor), will
become the corrected one, (xi;cor; yi;cor), by :�

xi;cor
yi;cor

�
=

�
cos � sin �
� sin � cos �

� �
xi;uncor
yi;uncor

�
: (6.8)

Errors of LPA position, when the rotation is not considered, are computed by :

�ri = (�x2i +�y2i )
1

2 ; (6.9)

where

�xi = xi;cor � xi;uncor

�yi = yi;cor � yi;uncor: (6.10)

Equation 6.8 implies that the size of �ri is determined by both � and �ri, where �ri is
de�ned by :

�ri = (x2i;uncor + y2i;uncor)
1

2 : (6.11)
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Figure 6.8: Rotation of LPA frame with respect to LRS frame

As we mentioned before, the uncertainty of �ri on LPA measurements consists of two
components: measurement noise and shot-to-shot variation. The peak shot-to-shot vari-
ation is expected to be one arcsecond [40]. The magnitude of the measurement noise
would be less than one arcsecond (1�) [25]. The optical bench vibration and instrument
distortion are expected to be 0.45 arcsecond in total (1�). The systematic component for
those errors is not clearly quanti�ed, but the long term line of sight instabilities of the
instrument optical benches observed or required in other missions [13] [27] [33] lead us to
believe that the value should remain within 0:5� (3 �) during 5 years in orbit even in the
worst case. Inserting values

�ri < 4 arcseconds(3�)

� � 0:5�(= 1800 arcseconds);

into Equation 6.8, 6.9 and 6.10, we have

�ri = 0:06 arcsecond:

This is clearly negligible when we consider other error sources in the SRS [25]. Therefore,
Equation 6.7 would be su�cient to project the LPA centroids into LRS frame without
worrying about the e�ect of the relatively rotated coordinate axes between two frames.

6.1.4 40 Hz LPA measurements

Equation 6.7 should apply to 40 Hz LPA measurement data even though the mean position
of the LRS laser image will be obtained from 10 Hz measurement data. In order to use
Equation 6.1 for transforming all of the laser points from the SCF to the CRF, the attitude,
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A(t), needs to be known at a 40 Hz rate. Since the attitude, A(t), is determined from
star tracker and gyro data whose measurement rates are only 10 Hz, a linear interpolation
is required to get the instrument attitude at 40 Hz. This interpolation can be justi�ed
only if the LPA frame is relatively �xed with respect to the LRS frame during the interval
in which the interpolation is applied (i.e. 1 second). If the instrument or optical bench
has signi�cant high frequency jitter, the interpolated attitude might produce unacceptable
pointing error, then it might be necessary to use gyros capable of 20 Hz or 40 Hz rate
measurements.

Figure 6.9 illustrates the overall measurement relations between star tracker, LRS and
LPA. The �nal products of the PAD are laser pointing unit vectors in both ICRF and
ITRF.

6.1.5 Collimated Reference Source (CRS)

The CRS, which will be mounted kinematically to the reference surface on the star tracker,
will maintain true pointing direction and collimation of its own laser pulse. The stability
requirement is 0.2 arcseconds (1�) over a �0:5�C gradient [47]. From the error sources
in the relay of the CRS beam including LRT distortion and LRC centroid error, the
measurement error in the LRC is expected to be similar to that of the LRC star. The
monitoring of the CRS beam image over time will allow us to monitor the SRS structure
stability and to verify the image quality in the LRC. Furthermore, during the loss of star
tracker data due to, for example, solar and lunar eclipsing - the maximum duration is about
20 minutes (see Section 3.3) - the o�set parameters in Equation 6.2 may be presumed as
constants if the CRS image remains in the stable position without any systematic change.
The angular diameters of the Sun and the Moon are both approximately 0:5�, which is
the size of the LRC FOV. As long as the LRC is not under the direct illumination of the
Sun or the Moon, the LRC is expected to provide centroids of both CRS and laser images
at the 10 Hz rate. By applying the algorithm depicted in the previous sections, the 40 Hz
laser pointing determination will be available with the LPA laser images.

6.2 Spacecraft Velocity In
uence on Laser Pointing

In Section 3.3.3, a simpli�ed algorithm, to correct the stellar aberration, was shown. The
PAD of the spacecraft is determined within the CRF and must be corrected for this e�ect,
stellar aberration being the result of the spacecraft (and the star tracker) motion with
respect to the relatively �xed stars. In like manner, the motion of the spacecraft with
respect to a point on the surface of the Earth will cause a similar e�ect that can be
tentatively called pointing aberration. Figure 6.10 illustrates both stellar and pointing
aberrations. Since the aberration is a function of relative velocity, and not the distance,
between the observer and the source, the same algorithm can be applied. For pointing
aberration, the applicable velocity is the relative velocity of the Earth with respect to the
spacecraft. The magnitude of the pointing aberration can be calculated by Equation 3.14
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Figure 6.9: SRS overall procedure
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:

�p =
j~vj
c
sin �

=
j � ~vs=cj

c�= 5:2 arcseconds

where the � is always close to 90� because of the near-nadir pointing direction of the laser.

The pointing aberration will shift the angle of incidence from the laser direction that will
be determined by the PAD processing. In other words, the laser spot will not be located at
the path of the laser determined by the PAD. Instead, the laser will hit the ground at the
path of the shifted direction. Without applying the e�ect of the pointing aberration the
laser pointing direction determined from the GLAS instrument data will miss the actual
laser spot by about 15 meters corresponding to 5.2 arcseconds.

6.3 Systematic Errors

6.3.1 Systematic Errors in the Stellar Reference System

The pointing determination algorithm described in the previous section applied the inverse
of the matrix M(t), M(t)�1, to transform the estimated laser pointing direction from the
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Figure 6.11: E�ect of the BD error in the Stellar Reference System

SCF to the CRF. The laser pointing direction was determined in the SCF by referencing
the LRC star trajectory transformed from the CRF to the SCF using the matrix M(t).
Since we are ultimately interested in the laser beam direction in the CRF, the systematic
errors embedded in the matrix M(t) might be canceled out by two way (i.e. direct and
inverse) implication of the matrixM(t) to and from the SCF at a measurement time t. The
matrix M(t) is the combination of the attitude matrix, A(t), and the alignment matrix,
S(t). The conceivable systematic error sources for the attitude matrix A(t) are the star
tracker CCD array pixel biases, gyro non-orthogonality and aberration correction errors.
The alignment matrix S(t) can contain the systematic error due to the excursion of the
star tracker BD.

The excursion of the BD was added to the simulated star tracker data. The laser pointing
direction was determined by the process introduced in earlier section. Figure 6.11 shows
the computed laser pointing errors (i.e. true laser pointing direction minus estimated laser
pointing direction) for 600 seconds with various amount of the BD error. The �rst plot
(a) is the result when no BD error was included in star tracker data. The average of
the pointing error during the LRC star presence was 0.49 arcsecond. The addition of the
200 arcseconds error on the star tracker BD did not change the pointing determination
error. The average of the pointing error was again 0.49 arcsecond in the second plot
(b). When the BD error becomes 1 degree, the average of the pointing error increased to
0.84 arcsecond as seen in the third plot (c). With a BD error of 5 degrees, the pointing
estimation no longer produces acceptable results as shown in the fourth plot (d). A similar
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simulation can be applied for the e�ect of the systematic errors included in the attitude
matrix A(t). However, di�erent approaches for the attitude systematic errors are discussed
in the following section.

6.3.2 Systematic Errors in Attitude Determination

A Ball CT-601 star tracker was used for the high accuracy attitude determination of
the Midcourse Space Experiment (MSX) mission [12]. The highest accuracy that the
MSX had to achieve for the instrument pointing stability was 2 arcseconds (1�). While
the pre-launch simulation showed the ful�llment of the attitude determination/pointing
requirement, the MSX could not determine the attitude to the required accuracy from the
actual star tracker and gyro data. In the attitude determination simulation before launch,
some fundamental assumptions were made. Eventually, the assumptions turned out to
be inadequate for the actual data processing. One of these assumptions concerned the
characteristics of the star tracker measurement errors. While these errors were presumed
to be adequately modeled as white noise in the simulation, the individual pixel of the
star tracker CCD array included its own bias, eventually, resulting in the error of the star
image centroid. Since the e�ect of the systematic error can not be removed by the usual
statistical estimation procedures, the attitude determined by the white noise assumption
could not satisfy the accuracy requirement.

While the MSX is completely versatile, with science scenarios varying from inertial stares to
whole sky scans to tracking satellites, ballistic missiles and their surrogates, and covering
about anything in between, the GLAS/ICESAT will maintain one attitude scenario :
altimeter laser pointing toward the near-nadir direction in near-circular and near-polar
orbit. A star would come in and move across the 8� � 8� FOV with a relatively constant
rate for about 4 minutes until it exits. By considering 512 by 512 pixels in the CCD
array, a star will stay on a pixel about 0.25 seconds. Unlike the case of the inertial staring
attitude where one pixel sees a star for long duration, the pixel's local bias will a�ect
the star measurement in two or three snaps, and then the star moves into the next pixel
that would be characterized by its own size and direction for bias. Moreover, the attitude
determination algorithms will utilize multiple stars which will be located at all di�erent
pixels in the tracker CCD array at a measurement time. In this situation, the change of
pixel biases of �ve or six star observations should be considered as random and the residual
e�ect of the systematic error sources would be negligible.

By using the bias correction tables within the post facto attitude determination software,
the Roentgen Satellite (ROSAT) mission corrected the star tracker cameras' measurements
in pointing mode [30]. For the GLAS, it is expected that the manufacturer will provide
the built-in bias calibration function of the star tracker [40] to remove both the individual
pixel biases and the large distortion of the CCD array before the data are actually taken.
This self-calibration ability of the star tracker will, at least, reduce the size of the bias
errors signi�cantly, if not remove them completely.

The SRS ability to cancel out the measurement systematic error was also discussed in the
previous section. The laser pointing determination algorithm using the specially designed
SRS will avoid the systematic errors embedded in the alignment matrix S(t), as well as
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in the attitude matrix A(t). When we consider only instrument pointing determination,
the SRS should be able to remove the e�ects of many systematic error sources even at the
inertially staring attitude mode of the spacecraft.

Besides the white noise model for the star tracker measurements, another inadequate
assumption for the MSX attitude determination system was the obtainability of the un-
interrupted star tracker attitude data at its nominal update rate of � 9 Hz. Extensive
analytic studies indicated fairly strongly that glint from the Sun is a signi�cant problem,
possibly because of unanticipated re
ections o� the SPIRIT III (one of the MSX's instru-
ment) shield [12]. The unexpected glint would require the tracker integration time to be
longer than anticipated, which will result in the large image smearing and interrupted data
rate. The Kalman �lters and the batch algorithm introduced in Chapter 2 are capable
of estimating the gyro biases as well as the spacecraft attitude quaternions. The high
frequency attitude update due to 10 Hz star tracker measurement rate will make the gyro
biases include not only true bias but also other e�ects such as gyro non-orthogonality,
gravity or magnetic e�ects [46]. Since the star tracker and gyro unit are located on the op-
tical bench which is designed to hold the rigidity between instruments, the self-calibrating
capability of gyro systematic errors by estimating gyro biases will be kept as long as the
star tracker provides high frequency observations. The failure to achieve the star tracker
measurements at the anticipated rate probably made the MSX attitude determination
su�er from the MSX gyros systematic errors other than true biases. The GLAS requires
the precise attitude/pointing determination in the high latitude regions such as Greenland
and Antarctica (j�j > 60�). Since the Sun and the Moon, the possible cause of the glint,
are located near the ecliptic plane (j�j � 23:5�), the e�ect of the Sun and the Moon light
on the star tracker measurement should be minimal and uninterrupted tracker data rate
is expected. Consequently, the Kalman �lter that estimates both the attitude quaternions
and the gyro bias simultaneously would provide the auto-calibration feature for the gyro's
systematic errors, if the HRG of the GLAS su�ers from problems similar to the MSX gyro.
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Chapter 7

IMPLEMENTATION

CONSIDERATIONS

7.1 Standards

To facilitate generation of the laser pointing direction, the attitude should be expressed
using reference frames common to those used in description of the orbit position. As
discussed by Rim and Schutz [28], the POD process will provide the position of the space-
craft/instrument center of mass in the ICRF which is the speci�c implementation of the
CRF. The determination of the transformation matrix between the spacecraft-�xed axes
and the CRF depends, in part, on the adopted star catalog used with the analysis of star
camera data. In mid 1997, the Hipparcos star catalog was released containing more than
100,000 sources with position precision better than one mas (see Table 3.5). Although
additional analysis will be required, it is expected that the Hipparcos catalog will be the
foundation of the GLAS PAD. Additional stars were available with the Hipparcos release,
known as the Tycho catalog, but with precision at the 30 mas level. Nevertheless, the Ty-
cho contribution contains about one million stars. The Hipparcos source coordinates will
be de�ned for an epoch corresponding to J2000 and the reference system will be realized
through the ICRF. The proper motions in the catalog are better than 1 mas/yr. The Hip-
parcos catalog will link the optical sources (used by Hipparcos) to the radio sources (used
by the IERS) at a level better than 1 mas [20]. Further discussion is given by McCarthy
[24].

Conceptually, the determination of the laser spot location will be determined in the ICRF
using the spacecraft center of mass ephemeris from the POD and the transformation ma-
trix from the PAD to determine the measured height vector. This height vector will be
transformed into the ITRF using the IERS measured UT1, as well as precession and nu-
tation parameters. The same transformation between the ICRF and the ITRF is required
in the POD process. The transformation into the ITRF from the ICRF is well established
at the milliarcsecond level.
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7.2 Ancillary Inputs

Ancillary inputs include the Hipparcos and Tycho star catalogs and a luni-solar-planetary
ephemerides, such as DE-200 or later [42]. The latter complements the star catalog by
enabling identi�cation of solar system bodies in camera images. For the generation of
the transformation between the spacecraft-�xed axes and the ICRF, the velocity aberra-
tion corrections of the observed stars are needed (see Section 3.3.3 and Table 7.1). The
ephemeris of the GLAS satellite determined in the POD processing will be known with
accuracy better than the real time 
ight operations ephemeris. In addition, to expedite
the PAD process, access to the real time attitude determination from the 
ight operations
segment is required. This information will reduce the search time to identify stars in the
star camera images by providing a priori attitude information of modest accuracy.

The POD process requires real time attitude information as well as a modest accuracy a
priori ephemeris. The present algorithm development will pursue independent POD and
PAD processes to simplify software validation, even though these processes (including the
laser pointing process) share common aspects. The common parameters will be made
available through shared �les.

7.3 Accuracy and Validation

An estimate of the attitude determination accuracy is shown in Table 7.1 [47]. While
the star catalog is expected to introduce no signi�cant errors into the estimation process,
the star camera will be the dominant source of error. The RSS of roll and pitch, which
will a�ect the laser pointing direction, is 0.85 arcsecond. The overall RSS of all the error
sources for the laser pointing determination is expected to be 1.20 arcsecond (1�) (see
Table 1.1). The simulation in this document did not include unmeasured errors, stemming
from the unsensed bench vibration and the unsensed angular distortions. Even though
the pointing errors shown in the plots in Chapter 6 will increase slightly when these
unmeasured errors are taken into account, the resultant 1� value should be smaller than
1.20 arcsecond considering the magnitude of the unmeasured errors and our simulation
results.

Detailed discussion for the attitude validation is contained in the Calibration/Validation
Plan [48]. In summary, a �rst order validation of attitude will be conducted by comparisons

Table 7.1: Overall attitude determination accuracy goal

roll(arcsec) pitch(arcsec)

1.Attitude Determination 0.47 0.47

2.Velocity Aberration 0.03 0.03

3.Star Position Accuracy 0.03 0.03

4.Ephemeris 0.01 0.01

RSS(2,3,4) + 1 0.52 0.52
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with the real time determination. This approach, however, is limited because the real time
requirements are about 10-20 arcseconds (1�), compared to 1 arcsecond (1�) required for
science analysis. As described in this plan, validation of the attitude at the 1 arcsecond
level is inherently linked to laser pointing. Experiments to validate the laser pointing will
simultaneously assess the PAD.

7.4 Computational: CPU, Memory and Disk Storage

The Hipparcos catalog contains approximately 120000 stars. This catalog contains infor-
mation about star characteristics, as well as the star coordinates to a resolution of 1 mas.
The storage requirements are approximately 100 MB for the star catalog. The memory
requirements for the estimation process are less than 64 MB. The requirements for the
product of the PAD, the 3 � 3 transformation matrix between spacecraft-�xed axes and
the ICRF, will require about 300 MB/day. Alternatively, about 150 MB/day would be
required if 4 quaternion elements were used at each time instead of 9 matrix elements.
Preliminary tests show that an HP735-level machine can support the required attitude de-
termination; however, further tests will be conducted to provide a more de�nitive estimate
for CPU, memory and disk storage.

The approximate CPU times for one orbital period of data processed with the EKF algo-
rithms on a HP model 735/125 Unix machine were given in Table 5.2. From the table, the
processing time for one day attitude of data is estimated to be approximately 45 minutes
for the EKF using the QUEST observation model and 90 minutes for the one using the
UVF model. The batch algorithm is expected to require about 135 minutes for the same
amount of data. The overall PAD process will require additional CPU time for the SRS
data processing discussed in Chapter 6 and the data preprocessing.

7.5 Sensor Failures

Although the PAD study has been done with a star tracker in the instrument optical
bench, there will exist two additional CCD star trackers (Ball CT-602) mounted on the
spacecraft structure. The primary purpose of the spacecraft star trackers is to provide
data for the real time attitude determination. The spacecraft star tracker data will be
available on the ground and the additional star measurement data can be used for PAD
in post-processing. Since the BDs of the CT-602 star trackers will not be parallel to that
of the instrument star tracker, the contribution of this star tracker to the determination
of the laser pointing direction is limited by the amount of the angle between star trackers'
BDs. However, in case the instrument star tracker malfunctions, the Ball CT-602 star
trackers' data must be used to produce the best laser pointing information.

This idea can be extended when the optical bench star tracker loses data temporarily due
to solar and lunar eclipsing with no permanent failure. Instead of totally depending on the
CRS image stability as discussed in Section 6.1.5, it might be possible to use the attitudes
obtained by the CT-602 star trackers whose BDs are 45� away from the optical bench
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star tracker. The calibrated data of the CT-602 trackers in terms of the instrument star
tracker will provide 10 Hz attitude determination for the PAD with degraded accuracy.

Meanwhile, the situation is not the same for gyro failure since there is no alternative system
in the spacecraft. There are two possible ways to generate angular rates without the actual
rate measurement even though the accuracy level is in doubt. The �rst choice is to use the
Euler equation (Equation 2.18) to compute the spacecraft angular rates. For this case, the
numerical or analytical expression for external torques must be modeled as a function of
time as well as a function of the position and attitude of the spacecraft. The other choice
is already mentioned in Section 5.4 when the EKF simulation results were discussed. The
EKF without using gyro data showed equal or better accuracy in attitude determination.
However, it was indicated that the real spacecraft motion may contain high frequency
noise which can be detected only by gyros. Even though the replaced system/method
to the original PAD system will not determine the attitude to the required accuracy
level, preparation of alternatives to produce the most accurate attitude determination as
a backup plan is prudent.
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Appendix. A

PROPERTIES OF

QUATERNIONS

The four component quaternions are de�ned in Equation 2.1 with a constraint Equa-
tion 2.2. They are often divided into the three component vector, ~q, and one scalar
component, q4 :

q =

�
~q
q4

�
= [q1; q2; q3; q4]

T : (A.1)

The inverse quaternion is de�ned as :

q�1 �
� �~q

q4

�
: (A.2)

This corresponds to the reverse rotation of the same amount of angle �� about the same
rotation axis.

Quaternions, as well as Euler angles, can be used to construct 3 � 3 rotation matrix.
Unlike the Euler angles, which have 12 di�erent sets for the rotation matrix, quaternions
have a unique combination for the rotation matrix such as :

C(q) =

2
4 q21 � q22 � q23 + q24 2(q1q2 + q3q4) 2(q1q3 � q2q4)

2(q1q2 � q3q4) �q21 + q22 � q23 + q24 2(q2q3 + q1q4)
2(q1q3 + q2q4) 2(q2q3 � q1q4) �q21 � q22 + q23 + q24

3
5 : (A.3)

It is easy to see that the change of signs for all quaternions simultaneously does not a�ect
the rotation matrix. Inversely,

q1 =
1

4q4
(C23 � C32)

q2 =
1

4q4
(C31 � C13)

q3 =
1

4q4
(C12 � C21) (A.4)

q4 = �1

2
(C11 + C22 + C33 + 1)1=2;
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where Cij is a matrix component in ith row and jth column. A computationally convenient
algorithm has been developed as follows [35].

q21 =
1

4
(1 + 2C11 � T )

q22 =
1

4
(1 + 2C22 � T )

q23 =
1

4
(1 + 2C33 � T ) (A.5)

q24 =
1

4
(1 + 2C44 � T );

where

T = C44 = traceC = C11 + C22 + C33 (A.6)

and selects the qi which has the largest absolute value assuming it to be positive. The
other three qj's can be obtained by dividing qi into the appropriate three of the following
six equations:

q1q4 =
1

4
(C23 � C32)q2q4 =

1

4
(C31 � C13)

q3q4 =
1

4
(C12 � C21)q2q3 =

1

4
(C23 + C32) (A.7)

q3q1 =
1

4
(C31 + C13)q1q2 =

1

4
(C12 + C21):

One important property is the simple form for combining sequential rotations, q0 and q00,
into an equivalent single rotation, q, by

q =

2
664

q004 q003 �q002 q001
�q003 q004 q001 q002
q002 �q001 q004 q003

�q001 �q002 �q003 q004

3
775 q0: (A.8)

This is the quaternion composition that is usually written as the following form

q = q00 
 q0 (A.9)

using natural order, while some literatures prefer to write the same equation as

q = q0 � q00 (A.10)

using historical order. Thus any set of q's can be solved universally as a simple, nonsin-
gular, bilinear combination of the other two. The matrix representation for quaternion
composition is

C(q) = C(q00)C(q0): (A.11)

Therefore, many equations for quaternion computation are easily derived using the rotation
matrix manipulations.
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From the de�nition in Equation 2.1, quaternions can also be parameterized in terms of
the Euler angles :

q(1̂; �) = [sin(�=2) 0 0 cos(�=2)]T

q(2̂; �) = [0 sin(�=2) 0 cos(�=2)]T (A.12)

q(3̂; �) = [0 0 sin(�=2) cos(�=2)]T ;

where � is a rotated angle and 1̂,2̂,3̂ are rotation axes employed sequentially. For example,
the 3-1-3 Euler angles rotation can be written as

q313(�1; �2; �3) = q(3̂; �3)
 q(1̂; �2)
 q(3̂; �1)

=

2
664

sin �2 cos(�1 � �3)
sin �2 sin(�1 � �3)
cos �2 sin(�1 + �3)
cos �2 cos(�1 + �3)

3
775 : (A.13)

To convert quaternions to Euler angles, the rotation matrix must �rst be calculated from
quaternions by Equation A.3. Then, the Euler angles are derived from the rotation matrix
according to the chosen set of Euler angle sequences.

To transform Euler angles to quaternions, the inverse process of the previous method can
be used. A more convenient way for use in computer programming is as follows [15] :2
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