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Abstract: Many rivers in the Western U.S. suffer from high salinity content due to both natural and human-induced causes. Computer
simulation models are often used to estimate future salinity levels and identify mitigation needs. To date, estimation of future natural sal
loading has utilized linear relationships between natural flow and natural salt. We develop a nonparametric regression technique to fit
functional relationship between natural flow and natural salt. The main advantages of the nonparametric technigjué&arprior
assumptions have to be made as to the underlying form of the relationshi@)aawtly arbitrary relationshiglinear or nonlinearcan be
modeled. In addition, we develop a resampling scheme to provide confidence intervals of the natural salt estimates from the nonparametr
model. We apply this model to data from a stream gauge at Glenwood Springs, Colo., on the Colorado River. We show that the new
natural salt model reduces the average overprediction of salt mass shown in the existing natural salt model for the period 1941-1995 &
approximately 15%78,000 metric tons
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Introduction tion models have been used to determine salinity control needs in
these basins. Such models require several inputs, including the
In arid and semiarid river basins with significant irrigation needs, assumed future hydrologic inflows, the salt loading associated
salinity tends to be high due to both natural causes, such as salinavith those inflows, the future projections of development
springs, and human-induced causes, such as return flows fronthroughout the basin, and the additional salt loading associated
agricultural use. Locations such as the Brazos River basin inWith that development. Future hydrologic inflows and the associ-
Texas and the Colorado River basin in the western United Statesated salt loading can be estimated from “historic natural flow.”
are afflicted with salinity problems. In the Colorado River basin, The term historic natural flow refers to the flow that would have
salinity levels in the river must be maintained to meet fixed nu- occurred in the absence of any human development, i.e., no up-
meric criteria at several points in the Lower Basin. Minute No. Stream reservoir regulation or upstream deplefBureau of Rec-
242 of the International Boundary and Water Commission, United lamation (BOR) 1987. Historic measured flows are altered by
States and Mexico stipulated that water delivered to Mexico have human development that has varied through time. To remove
an average flow-weighted salinity of no more than these variations, the variability of human development from mea-
115 mg/L+30 mg/Labove the average annual salinity at Impe- sured flows, natural flows are derived from historic streamflow
rial Dam(U.S. Department of the Interior 20pAlthough similar measurements. In some cases, upstream depletions may be negli-
standards have not been set in the Brazos River basin, high salingible or, at least, invariant with respect to time, so that only a
ity levels impact the management of reservoirs and the usability correction for upstream reservoir regulation is warranted. These
of water for irrigation(Wurbs and Karama 1995; Wurbs et al. flows are commonly referred to as “unregulated flowSaleh
19935. 1993; Wurbs et al. 1995 In either case, the salt loading that
To ensure that future requirements are met, computer simula-would be associated with the inflows, herein referred to as “natu-
ral salt” loading, must be estimated. In this way, we can separate
"Hydraulic Engineer, Bureau of Reclamation, Univ. of Colorado, the natural and human-induced variability for flows and associ-
UCB 421, Boulder, CO 80309-0421. E-mail: prairie@colorado.edu ated salt loading entering the river. Thus, estimating natural salt is
2Assis_tant Pro_fessor, Dept. of Civil, Environmental, and Architectural gn issue important for the development of data essential to drive a
E?g';ﬁighg"c)u;g’ﬁ E;g?gﬁgr’agfg dﬁ%’ Boulder, CO. 80309-0426. gjmyation model. Unfortunately, estimating natural salt is not as
3Bo.u|djergcgn 0 ! tions Office M B f Reclamation. €25y as determining natural flow. For example, estimating crop
yon Operations Ice Manager, bureau or Reclamation, . .
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Ic.usbr.gov However, the salts returning with irrigation return flows are not
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diversions, and removing the salt load associated with reservoirric model for estimating natural salt and demonstrate its applica-
releases and return flows from the measured historic salt load.tion to data from the stream gauge at Glenwood Springs, Colo.,
Similarly, natural flow was found from measured historic flow on the Colorado River. We also compare this new salt model to
minus the effects of reservoir regulation and evaporation. A linear the model proposed by Mueller and Osen and show that the mod-
regression was used to develop a relationship between natural sakeled overprediction is reduced by a significant amdiapiproxi-
and natural flow. To estimate the uncertainty in the relationship, mately 14%. We conclude with a brief discussion and recom-
the residuals from the regression were first fit to a normal distri- mendations for future work.
bution and a value generated from that residual distribution was
then added to values generated using the regression.

In the Colorado River basin, Malone et 81979 calculated Background on Salinity in the Colorado River Basin
natural salt by removing the estimated agricultural salt loading
and measured point source salt loading from the measured his-The salinity of the Colorado River became an important issue
toric salt loading. The agricultural salt loading was estimated by when the Mexican government strongly objected to the quality of
two techniques. The first technique developed a relationship forthe water Mexico was receiving in 1962. The average annual
agricultural salt loading dependent upon a base leaching factorsalinity of water delivered to Mexico in that year was
and diversion efficiency. The base leaching factor related soils 1,500 mg/L (Nathanson 1978 Such high salt concentration
information to the amount of salinity added for a given return made the water unsuitable for irrigation, municipal, and industrial
flow. The second technique computed the base leaching factorwater uses.
dependent upon the change in historic flow and salt over time, the  In response to Mexico’s concerns and after years of negotia-
diverted flow, and the evapotranspiration from agricultural lands. tions, Minute No. 242 of the International Boundary and Water
These techniques computed different estimates for agricultural Commission dated August 30, 1973, was signed. Minute No. 242
salt loading. Malone incorporated the difference between the two stipulates that water delivered to Mexico must have an average
techniques as an error term on the agricultural salt loading. There-flow-weighted salinity of no more than 115 rigt30 mg/L
fore, the natural salt loading included natural salt loading, un- above the average annual salinity at Imperial Dam. Subsequently,
known diffuse source salt loading, and any measurement error.the Colorado River Basin Salinity Control Act of 1974 was en-
The natural flow was calculated by removing human development acted to ensure that the United States could meet its obligation to
(including reservoir regulation and consumptive ufem the Mexico under Minute No. 242.
historic flow. Minute No. 242 sets a variable salinity standard for the

Mueller and Oser{1988 proposed a different technique that Mexico delivery, but does not set numerical water quality critera
avoids the need to first estimate the human-induced salt loading.at any fixed points in the basin. Numerical criteria resulted from
They developed a multiple linear regression to fit historic salt separate U.S. legislation that set policy regarding water quality.
dependent on historic flow and several development variables, The Federal Water Pollution Control Act Amendments of 1972
including reservoir regulation, consumptive use, exports, and ir- required the development of fixed point numerical critera for sa-
rigated acres. The development values were then set to zero andinity in the Colorado River Basin. The fixed point numeric critera
the natural flow was substituted for the historic flow, arriving at a were set in 1975: 723 mg/L below Hoover Dam; 747 mg/L
relationship between natural salt and natural flow. The natural below Parker Dam; and 879 mg/L at Imperial Dam.
flow was calculated by removing flows resulting from human These numeric salinity criteria were developed from the 1972
development, including reservoir regulation, consumptive use, average annual salinity concentrations at each location and are
and exports. This technique was applied to 20 gauges in thecurrently unchanged.ee 1989; U.S. Department of the Interior
Upper Colorado River Basin and is the technique currently used 2001). To predict these flow-weighted average total dissolved sol-
by the BOR to estimate natural salt from natural flow. The tech- ids concentrations at all locations a computer simulation model is
nique does not include the information available from the residu- utilized that models the impacts of further human development on
als of the regression. Rather, the residuals are equalized and agdotal dissolved solids concentration. An important step toward an

sumed random normal noise. informative computer simulation model includes understanding
Recent modeling studies of the Colorado River system have the sources of salinity and incorporating the sources in the simu-
exhibited systematic overprediction of salinity that is likéhps- lation model.

sibly) caused by overprediction of natural salt. This paper pre-

sents a new natural salt model developed using nonparametric

techniques to capture both the observed linear and nonlinear re-Salinity Sources

lationships between natural flow and natural salt. The addition of

a residual resampling technique incorporates the information Natural and human-induced salinity results from point and non-

available from the residuals of the regression, adding the variancepoint sources. Natural point sources that have been identified in-

around the regression into the new salt model’s results. Unlike theclude seeps and saline springs. Some springs originate from deep

technique used by Wurbs et al., our residual resampling techniquegeological formations containing brackish water. Natural non-

does not need to assume a distribution for the residuals. We fol-point sources of salinity generally originate from the weathering

lowed the approach of Malone and determined an estimate ofand dissolution of underlying rocks or soils overlaying the rocks.

human-induced salt loading. The estimate of human-induced salt Human-induced salinity predominantly results from irrigated

loading was used to estimate natural salt loading. agriculture. Agriculture increases salinity concentration through
We first provide background information about the importance two processegl) Salt concentration an@) salt loading. The salt

of modeling salinity in the Colorado River basin and present a concentration process is a result of evapotranspiration from crops,

description of the salinity sources and remediation methods. Next,which consume water but leave salts behind in the soil. Return

we further discuss the existing modeling efforts for estimating flows to the river from the diversion typically contain the same

natural salt loadings. We then develop the statistical nonparamet-salt mass present in the diversion water but with less water,
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hence, higher concentration of salt. Additionally, reservoirs con-
centrate salt by evaporation, when water is lost from the reservoir Naturat Flow Model
but salt is conserved.

Salt loading occurs when water transported through soil \
leaches salts present in the soil and transports them to the river.

The water can be introduced into the soil from human-induced
sources, such as irrigation practices, or from natural sources, such
as precipitation. lIrrigation practices increase the flow through
soils, which increases the total salt loading from previous natural /
salt loading levels.

Limited data are available describing agricultural salt loading,
termedsalinity pickup throughout the Colorado River basin. One
extensive studyBOR 1983 explains how salinity pickup was
calculated in the Grand Valley using a mass balance of salt aver-
ages over 1952 to 1980. The report states that the human-induced

Natural Salt Model

Simulation Model

salinity pickup for the Grand Valley averages Si'ggft‘:digismfszgw,
526,000 metric tons per year£82 metric tons with 95% confi- Concentration

dence. The report suggests that variations in salinity pickup can-
not be due to changes in irrigation practices because variations in
practices could not account for the magnitude of annual variations
the data showed. This report indicated that measuring annual
variations in salinity pickup from agriculture is extremely diffi-
cult. Therefore, for lack of a better assumption, we assume thatqricyiture being too high, and/or natural salt loading being too
agricultural salinity pickup is a constant mass for long-term mod- high.

eling. This assumption is consistent with agricultural consumptive From 1941 to 1995, the historic salt mass in the river passing
use, which has generally been constant since 1941 in the uppegauge 09072500 averaged 13,800 kg/s. The relationship pro-
Colorado River above Glenwood Springs, Colo.. posed by the USGS estimates an average annual natural salt of

In addition to agricultural salt loading, we need estimates of 16 300 kg/s. For the simulation model to simulate the historic
natural salt loading. Natural salt loading contributes an estimatedsalt mass, the human-induced salinity pickup sources would need
47% of the total salinity in the Colorado River bagid.S. De- to removesalt from the river. Current estimates, as reflected in the
partment of the Interior 2001 Natural flow is calculated by re-  simulation model, are that human-induced sources contribute
moving the human-induced effects on flow from observed historic 4,000 kg/s from agricu|tura| salinity pickup and exports remove
flow. Human-induced effects include agricultural consumptive an average 1,300 kg/s. The estimate for salinity pickup by agri-
use, exports, and reservoir regulation, all of which are measuredculture is developed from an extensive study that quantified esti-
or can be estimated. Natural salt can be calculated by removingmates of natural and human-induced gbitns et al. 1965 The
the human-induced effects on salt from observed historic salt. report estimates that, in 1957, natural sources contributed

15,060 kg/s, and human-induced sources contributed 4,051 kg/s

from agricultural salinity pickup and removed 463 kg/s by ex-
Description of Existing Methods for Estimating ports above Glenwood Springs. These values were adjusted for
Natural Salt Loading current basin conditions then input in the simulation model.

Using these numbers, if human-induced sources contributed
no salt above gauge 09072500, the existing simulation model
would still overpredict salt mass. lorns et @1965 indicate that
the human-induced sources of salinity are not removing salt, but

Fig. 1. Flowchart depicting interconnection of existing simulation
model

As stated in the Introduction, the United States Geological Survey
(USGS developed the technique currently used by the BOR on
the Colorado River to estimate natural salt entering the river using
historic (observeg flow and salt data from 1941 to 198Blueller

and Osen 1988 Fig. 1 shows a typical sequence for the existing
simulation model. Natural flow data is input into the model and a
regression-based natural salt model provides estimates of natural § A .
salt. The historical salt is estimated by adding the salinity picked Az‘ ~ J\,\/A A Z\A /
up by agriculture and subtracting the salt that leaves with water & * ¥+ ij /4 M \ /f\\///\‘ \ r"\ ﬂ
exported from the basin. When applying this model for generating Eﬂ 7 \,\f v \V/ \/\ A

future scenarios, the natural flows have to be generated from a 3 V i
stochastic mode(the BOR uses the index sequential method for " v \f / AWV
this purposg and estimates of salinity from agriculture pickup
must be provided. Recently, Prai(i2002 developed a stochastic
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nonparametric natural salt model in an effort to improve upon the 5333360853888 3500505883838%
current approach. yoar

The existing simulation model, as described above, when ap- —~ Observed Historic Salt Mass
plied to data from the stream gauge 09072%00lorado River 4~ USGS Sait Model

near Glenwood Springs, Cojpoverpredicts the annual historical ] o ) )
salt mass 1941 to 1995, by an average 2,502 kiIograms/second:'g' 2. Observed historical salt and estimates from the United States
(Fig. 2. The overprediction could result from salinity pickup of Celogical SurveyUSGS relationship
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are adding significant amounts. These findings point to an over- ol -
estimation of natural salt by the USGS model. Further research g T ; , < 3’3‘;&%‘3?93'"""“”
intends to extend this analysis to additional stream gauges g o . ostatara
throughout the Upper Colorado River basin. In this study, we are ry Y At S W ot oast e
setting up the analysis framework that will be extended. e 24 IR\ S —

Vaill (1999 performed trend analysis throughout the Upper £
Colorado River basin including gauge 09072500. The report & 9
found significant downward trends for flow-adjusted dissolved- O .
solids concentrations and salt load for the period 1986—1993. But- 2] ?_’ - "ot .

ler (1996 also performed a trend analysis on select gauges in the j T T T T T T
Upper Colorado River basin. This second report found decreasing o 1 2 3 4 5 86
salinity for a given flow at gauge 09095500: Colorado River at
Cameo, Colo. This is the next major gauge downstream of
09072500. The USGS regressions were developed with flow andFig. 3. Several data fitting techniques for data generated from a sine
salinity values from 1941 to 1983; they no longer reflect current function with noise. The local linear polynomials had an alpha of 0.2.
trends in the relationship. The recent trend analysis studies sup-The data is generated wa=sin(x,) —0.2t+e, with g being the noise
port the need to update or replace the USGS regressions to reflectrom a normal distribution with mean 0 and variance 0.2.

current trends in the flow and salinity relationship.

To refine the USGS model would require a reanalysis of the
detailed data on which the regressions were based. Unfortunatelylying relationship between a dependent varialyleand a set of
these data are not available. To improve upon the USGS model,independent variablg). In reality, the dependent variable that is
we propose a statistical nonparametric model that will relate natu- observed has noiséor errop in it, which makes the function
ral streamflow to natural salt. We also present a technique toestimation more challenging. The problem reduces to estimating

x (radians)

provide uncertainty estimates. the function,f, in the model below

y=f(x)p +e 1)
Nonparametric Model for Estimating Natural Salt where,e,=error term;B =vector of model parameters.
Loading Typically, B is estimated as the minimizer of the least-squares

function over all the data points
Nonparametric methods estimate functions locally, in that the es-

timate of the function at any point is based on a small number of min(y; = XB)"(y = XB) 2
neighboring pointgthis point will become clear in the following B
section when we describe the proposed mpded a result, out- Furthermore, parametric techniques fit an equatiiear or non-

liers do not exert undue influence on the overall fit, unlike para- linear for f) for the entire data, which restricts the ability to cap-
metric methodge.qg., linear regression or fitting probability den- ture non-linearity in the data, as will be seen below. In addition,
sity functiong. This provides the ability to capture any arbitrary hypothesis testinge.g., testing the goodness of fit of the model,
underlying functional form and local features present in the data. the parameters, ejcrequires a Gaussian assumption of the error
Nonparametriqi.e., loca) methods are more computationally term and consequently, the data, which further restrict the model
intensive than their parametric counterparts. However, with in- (Helsel and Hirsch 1992If the fitted modelf) does not pass the
creasing computational power readily available, nonparametric hypotheses tests, then a different model is assumed and the fitting
techniques provide an attractive alternative. Kernel-based non-process[Eq. (2), abovg repeated. As can be seen, the model
parametric techniques have been successfully applied to a varietycomplexity is limited by the sample size, thereby restricting the

of hydrologic problems—rainfall modelingLall et al. 1996; capability to capture nonlinear features in small samples.

flood frequency(Lall et al. 1993, Moon and Lall 1994 stream- Nonparametric methods, on the other hand, fit the function
flow simulation (Sharma et al. 1997; Tarboton et al. 1998 locally and make no prior assumption about the functional form,
groundwater applicationgAdamoski and Feluch 1991 and i.e., linear, quadratic. Thereby, providing the capability to capture
streamflow forecasting (Smith 1993. More recently, any arbitrary relationship. Several nonparametric methods exist:

K-nearest-neighbor methods have been developed to improveKernel based, splines, and local polynomials. For a detailed de-
upon the kernel-based techniques and have been applied foscription of these methods and comparisons, see Qw849
streamflow simulatioriLall and Sharma 1996; Prairie 2002nd and references therein. We adopted a local polynomial scheme
daily weather generatiofRajagopalan and Lall 1999; Yates et al. that has been shown to be easy to implement and effe(®ae
2003. The reader is referred to Lalll995 for an overview of jagopalan and Lall 1998; Loader 1999he method and the al-
nonparametric techniques methods and their hydrologic applica-gorithm are described through the following exam(glee Fig. 3.
tions. We generated a synthetic dataset from a sine wave function with
Here, we use the nonparametric regression based on locahoise addedthe noise is normally distributed with mean 0 and
polynomials to model natural salt from natural flowsKAnearest variance of 0.1 to it. Traditional linear regression and quadratic
neighbor(K-NN) bootstrap technique is developed to provide un- fits, as can be seen from Fig. 3, are unable to capture the true
certainty estimates. These are described below. underlying sinusoidal function. A very high-order polynomias
sine function is a higher-order polynomjiadill capture the un-
derlying function, but given the small sample size a higher-order
fit is not feasible. In the nonparametric approach, the underlying
Functional fitting problems, such as the one in this céase, function is evaluated “locally” in that the estimate at any point is
natural streamflow and natural salvolve recovering the under-  obtained by fitting a polynomial to a small number of its neigh-

Local Polynomials

JOURNAL OF ENVIRONMENTAL ENGINEERING © ASCE / JANUARY 2005/ 133



bors. The main parameters then are the order of the polynomial
and the size of the neighborhood. Estimation of these parameters
is described in the algorithm below. The local polynomial fit to
the sine wave datéwith a neighborhood size of 20 data points
and local linear polynomiajss show in Fig. 3 as the solid line—
and it can be seen that this captures the true underlying function

Natural Salt Mass (kg/s)
25
1

. . . - v
very well. One obvious benefit is that outliers or extreme values o | 1 ; R—
do not influence the overall fit, as they do in a parametric ap- T le - . ; e sirc
1 L

proach. Furthermore, the local fitting provides the capability to = .. prockod : . :
capture any arb|.trary .features that m|ght be present. The local 40 80 80 100 120 140 160
polynomial algorithm is presented, with reference to Fig. 3, as

follows:

1. Letus assume that we want to estimate the functiog. at Fig. 4. Scatterplot of natural salt and natural flow for the month of

2. Aneighborhood is defined around The size of the neigh-  Apyil, along with the linear regression fit and the local polynomial
borhood is(K=axn), wherea is a smoothing parameter  (|ocfit) fit

between 0 and 1. Bigget indicates more smoothing. For
example, fora=1 and a local linear fit; it is the same as the
parametric linear regression.is the sample size.

Natural Flow (m"3/s)

3. The neighbors are weighted as per their distance-tean é (Y. - )2
that the nearest neighbor gets the highest weight and the = i
farthest neighbor gets the least weight. The weights can be GCV(a,p)=n7—1 2 4
obtained in many different way®.g., using the inverse dis- (1 _2 h“)
tance with a smoothing functipnThe weights form the ele- i-1

ments of the diagonal matriw.

4. For the neighbors captured in the neighborhgsitown in
the dashed rectanglesa regression of ordep is fit. Typi-
cally, a linear fit works very wel{shown as the heavy solid

where n=sample size)Y;-y, is the residual; and;=diagonal
terms of the hat matrix.

The diagonal of hat matrix, termed the influence matrix, ex-
plains the weight of a data point on the estimate at that point. The

line within the neighborhood _ ~ hat matrix is found in matrix algebra a§(X'X)"'X’ (Eubank
5. The regression is fit using a weighted least squares, i.e.,1999. In the GCV function above, the numerator represents the
ming(y—XB) 'W(y—-Xg), over all theK-nearest neighbors. mean-square errofMSE) while the denominator represents a
6. The fitted regression is then used to estimate.at penalty term that penalizes for increasing the model complexity

7. This is repeated at all points where we need the estimate. (i.e., model parameters which depend upon the order of the poly-
As mentioned before, the “local fitting” of the regressions pro- nomial, p).
vides a great flexibility in modeling any structure that might be
present in the datéinear and nonlinear The neighborhood size
(o) provides the amount of smoothing and hence, the flexibility.
When the neighborhood size is the same as the number of datd! IS important to quantify the uncertainty.e., confidence inter-
points and the fit is linear, we reproduce the traditional linear V&!S) Of the estimates from the nonparametric salt model. In the
regression. For a nonlinear function, we would expect a smaller case of linear regression the uncerta|.nty. estimates are ot_)talned by
neighborhood size. assuming the errors to be normally (_jlstrlbu(etielse! and legch
The model parameter§.e., o« and p) can be estimated by 1992. Here, we developedi&-NN residual resampling technique

L - . ~, 2 to quantify the uncertainty of the estimates from the local regres-
minimizing an objective function such as the cross-validation sion method. In this method, we resampoe bootstrap residuals
(CV) function: . ’

within a neighborhood of the point of estimate and add them to
the mean estimate from the local regression. This is described
Lo with the help of Fig. 4. Let us suppose that the natural flow.is
_+ 2 We find the corresponding mean natural salt mass estipate,
CVla,p)= ngl (¥i=y-i) @ from the local polynomial regression. Next, we fikdnearest
neighbors(within the dashed rectangle bpxo x, shown as a
circle around a data point. We resample one of the residuals using
a weight function that gives larger weight to the nearest neighbor
and smallest weight to the farthest neighbor. Let us say that we
pickede,. This is added to the mean estimg{e¢o get a simulated
valuey; =y;+e. We repeat this process several times to obtain an

Quantifying Uncertainty

wherey_;=estimate ak; by droppingx;, y; from the fit. The CV
function above is computed for several choicesxadnd p. The
choice that minimizes this function is selected. When a dataset is

small, Loader1999 recommends using CV; therefore, we used gngemple of natural salt estimatescatThe 5th percentile of the

this technique to findx andp in our applications here. . ensemble provides the 5% confidence interval and so on. The key

The generalized CVGCV) function, on the other hand, is &  point here is that, by resampling residuals locally, non-Gaussian
good estimate of the predictive capability of the model when the features that might be present in the data can be captured by way
dataset is largefCraven and Whaba 19y Surthermore, it obvi-  of asymmetric confidence intervals, unlike traditional methods,
ates the need for dropping an observation as in the case of CVthat provide only symmetric intervals assuming Gaussian distri-
thereby, saving computation time. The GCV function is given as bution.
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Application of Model 9 e}
We applied the nonparametric model to natural streamflow and ° }
natural salt data from the gauge at Glenwood Springs, Colo. =]
Natural salt mass is “backcalculated” from the observed historic > 1
salt mass and salt load data from the simulation model as =
*  data points with noise
. = eeet soumo
natural salt = observed historic salt o K [7 Coftnorperanen
. . TN T T T T
+ salt with water exported out of the basin 5 1 0 1 o
— salinity pickup from agriculture X

(values based on simulation mojel Fig. 5. Scatterplot of synthetic data set with mild nonlinearity,

The salt removed by exports and the salt added by agriculturealong with local polynomial and United States Geological Survey
for the period 1941 to 1995 were taken from the data used to regression fits
drive the simulation model. In the simulation model, agriculture
annually adds 124,000 metric tons of salt above gauge 09072500.
As stated previously, a constant salinity pickup is a fair assump-
tion, because agricultural consumptive use was basically constant . . .
1941 to 1995. To determine the monthly salt added by agriculture the CrOSS'V"_ﬂ“dated residuals and RMS.E'. The cro§_s-valldated
the annual tons were distributed to monthly values as a function RMSE provides a measure of the predictive capability of the
of each month's percent of annual return flow. For example, if M°del:

June 1943 generated 86% of the annual return flow in water year

1943, then in June 1943 the monthly salt added from agriculture

would be 124,000 metric tons times 86% or 106,640 metric tons. Results

The exports remove a constant concentration of 100 mg/L. The

tons removed by exports vary with flow, according to the relation- We discuss results from synthetic data first, followed by the re-
ship between flow and salt mass. The natural flows are the ob-sults from the real application.

served historic flows minus the total human-induced consumptive
use.

Local regressions were developed separately for each month,
just like the existing USGS model. We applied the residual resa- The first synthetic data set is the sine wave data that was de-
mpling technique to obtain the 5 and 95% confidence levels. scribed in the earlier section. As can be seen from that figftice
3) the local polynomial captures the underlying function very well
and it is practically indistinguishable from the true function. Fur-
thermore, the cross-validated RMSE with respect to the true value
We first compared the performance of the local polynomial of the function from the local polynomial is 0.033, which is sig-
method and the traditional linear regression on a synthetic datanificantly lower than the parametric alternatives.
set. We then compared results from the nonparametric model to  We then generated a synthetic data set with mild nonlinearity
those from the USGS model for the years 1941 to 1995. We at the extremes buried in noigEig. 5. The generated data are
evaluated each model's performance on a monthly and annualshown as dots in the figure. The linear regression fits the data
time scale. The annual time series of flow and salt are obtained byquite well and is statistically significantvith a p value of close to
summing the water year months, October through September. We0 on the F tegt However, the linear regression is unable to cap-
also, performed a blind forecast of annual salt for the last 5 years.ture the mild nonlinearity at the ends. On the other hand, the local

First, we compared the regressions developed from the two polynomial captures the true function very well. The fitting
models. Second, we used both models to estimate the natural salRMSE with respect to the true function is 0.047 and 0.129, re-
for the natural flows during 1941 to 1995 and compared their spectively, for the local polynomial and linear regression. The
performance. We also calculated the estimated historic salt fromcross-validated RMSE with respect to the true value of the func-
the estimated natural salt mass obtained from the models andion is 0.049 and 0.130, respectively, for the local polynomial and
compared them against the observed historical salt mass. The esinear regression.
timated historic salt mass is obtained as Owosina(1992 and Loadern(1999 compared nonparametric

regression methods in general, and local polynomials in particu-
estimated historic salt = estimated natural salt — salt from exports lar, to a wide range of synthetic data sets on a variety of measures
(RMSE, bias, etg.and they find that the nonparametric ap-
proaches perform extremely well.

Synthetic Data

Evaluation Criteria

+ salt from agricultural salinity pickup

In addition to visual comparisons, we also provided quantita-
tive estimates such as standardized RMBMSE)—both fitting
and cross-validated. The fitting RMSE is computed from the
model residuals with respect to the true functi@m the case of Table 1 shows the fitting and cross-validated RMSE of the local
the synthetic data seand the natural salt valuéor the real data polynomial method and linear regression for the monthly and the
For the cross-validated case, a point is dropped from the data ancannual regressions. It can be seen that the two methods exhibit
the remaining points are used to fit to the model, which is then comparable RMSE suggestive of a linear relationship for the most
used to predict the value at the dropped point and consequentlypart, with local polynomial providing a lower fitting RMSE. In all

Data from Glenwood Springs, Colorado
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Table 1. Fitting and Cross-Validated Root-Mean-Square E(RMSE)

Fitting RMSE X-val RMSE
LOCFIT LSFIT LOCFIT LSFIT
Jan 0.792 0.794 0.847 0.827
Feb 0.733 0.739 0.784 0.771
Mar 0.754 0.756 0.784 0.778
Apr 0.698 0.700 0.737 0.729
May 0.601 0.609 0.640 0.636
Jun 0.582 0.588 0.622 0.617
Jul 0.421 0.461 0.500 0.518
Aug 0.630 0.635 0.670 0.665
Sep 0.571 0.571 0.600 0.592
Oct 0.586 0.588 0.616 0.609
Nov 0.757 0.762 0.802 0.790
Dec 0.720 0.723 0.791 0.764
Annual 0.401 0.411 0.430 0.432

Note: X-val=cross validated; LOCFIFlocal polynomial method; and
LSFIT=least square linear regression method.

months the alphé.e., the size of the neighborhopdas between
0.9 and 1 further indication, that the relationships are generally
linear.

Fig. 6 shows the local polynomial fit and the existing USGS
salt model fit for April and June—the circles show the data points.
It can be seen that the local polynomial fit does a better job of
capturing the relationship indicated by the scatter in the data. It

salt mass (kg/s)

w-t— USGS salt mass

—#— Statistical Nonparametric Natural Salt Modet (SNNSM)
-~ - 5% confidence interval

She- 95% interval

@

salt mass (kg/s)

==4—USGS salt mass

-+®-- 5% confidence interval
-+ -4+ 95% confidence interval
Natural Salt Mass

[E—

can also be seen that the USGS relationship underestimates thejg 7. The upper graph shows the natural salt estimates from
salt in April and overestimates the salt in June. Furthermore, thehe United States Geological SurvéySGS relationship and the

wider scatter of the data points indicates there is significant vari-
ability around the relationship. The USGS relationship provides
no estimate of the variability i.e., error estimates of the relation-
ship.

We applied these two models to natural flow data from 1941 to
1995 and estimated the natural salt. Figiupper graph shows

the estimated natural salt from these two models. The estimated

natural salts were generated at a monthly time steging the
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Fig. 6. Same as Fig. 4 along with the fit from the United States
Geological SurvefUSGS salt model

nonparametric regression. The lower graph shows the annual natural
salt and the corresponding estimates from the USGS relationship. The
confidence intervals are obtained from theé\N residual resampling
technique.

monthly relationshipsand then summed to obtain the annual val-
ues. The estimates from the USGS model are higher than those
from the nonparametric model. The lower graph replaces the non-
parametric salt model line with the annual natural salt. The annual
natural salt is captured between the 5 and 95% confidence. The
USGS model, as expected overestimates the salt mass by 15%, or
78,000 metric tons, greater than the annual average observed his-
toric salt mass. Meanwhile, the nonparametric salt model reduced
the difference between the annual average observed historic salt
mass and the estimated historic salt mass to 0.8%, or
3,600 metric tons.

We computed the confidence levels of the estimates from the
nonparametric model, using the residual resampling technique.
The 5 and 95% confidence levels were computed as described
earlier and are plotted along with the estimates from the nonpara-
metric model and the USGS model. This demonstrates that the
estimates from the USGS model fall outside the 95% confidence
levels of the nonparametric model suggesting that the estimates
from these two models are significantly different. Furthermore,
the confidence intervals are asymmetric, unlike the confidence
intervals one would obtain from parametric models; this suggests
that the assumption of normal distribution of the errors is not
quite valid.

Finally, we performed blind forecast of salt for the last 5 years
using data prior to 1991. The RMSE values are 0.56 and 0.58,
respectively, for local polynomial and linear regression methods.
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Here too, the local polynomial and linear regression show similar comments from three anonymous reviewers in improving the
performance with the nonparametric method showing a slightly manuscript are thankfully acknowledged.
lower RMSE.

Summary and Conclusions Notation

We outlined a technique to calculate the natural salt based on the! "€ following symbols are used in this paper:
observed historic salt mass. We then developed a nonparametric € = €ITOr term at timet;
regression method using local polynomials to obtain relationships H = hat matrix; .
between natural salt and natural flow. Further, we incorporated a Ni = diagonal terms of the hat matrix;
residual resampling technique in the nonparametric model to en- Nj = any individual term of the hat matrix;
able the quantification of uncertainty in the estimates. We showed | = index term;
that this approach can generate realistic ensembles of salinity and | = index term;
also seems to improve upon the USGS salt model. K = number of neighbors;

It is evident that some of the variability captured with the n = sample size; )
residual resampling technique could be attributed to data uncer- P = order of the polynomial;
tainty and not natural variability. To allow the development of the t = time index;
regression framework presented, we used the “best’ available W = weight function; .
data for a single stream gauge. An advantage of the regression X = matrix of the independent variabie
framework presented in this paper is that as data uncertainty is X = independent variable;
addressed the revised data can easily be applied to develop up- Y = dependent variable;
dated regressions; this was not an option with the USGS salt Y* = dependent variable plus an error term;
model. As with all regressions, the writers recognize regression ¢ =~ smoothing parameter;
relationships are only as good as the underlying data, therefore, B = vector of model parameters; and
information interpolated from the regressions should be viewed R = estimate of the mean.
accordingly.

Data uncertainty is an important issue with this work because
natural flow and salinity are not directly measured. Current efforts References
to address this issue include improving methods to compute natu-
ral flow and recomputing natural flow with the improved meth- Adamoski, K., and Feluch, W1991). “Application of nonparametric
ods. Further, new research intends to improve modeling the salt regression to groundwater level predictio€an. J. Civ. Eng. 18,
load attributed to agriculture. This is an extremely difficult value 600-606.
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. . . - pickup calculations.” United States Department of the Interior, Grand
Nonparametric models, like parametric methods, are not with Junction, Colo.
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clear minimum(especially in short data sétand, in such cases, ciated with salinity-control projects in the Grand Valley, in the Lower
the alpha is chosen subjectively by looking at the estimated fit. =~ Gunnison River basin, and at Meeker Dome, western Colorado.”
Extrapolating values too far out from the data set can result in ~ United States Geological Survey, Water Resources InvestigRtigm
large variance. No. 95-4274 Denver. _ _ . .

The flexibility of the nonparametric approach allows it to be Craven P. and Wahba, €1979. "Smoothing noisy data with spline

- . - functions.” Numer. Math,. 31, 377-403.

portable across various sites. This is a very useful feature forE bank R(1999. Spi thi q i ok
agencies such as BOR that like to prescribe a uniform method ucae:' D,ek(ker z.ewp\l(ztraksmoo INg and nonparametric regressivar-
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