NTSB Board Meeting AA Flight 587

Airplane Motion and Vertical Stabilizer Loads

John O'Callaghan

Location of Wake Turbulence Encounters

- FDR accelerations were typical of wake encounters
- Crew commented on wake turbulence
- Simulation indicates wake encounter
- NASA wake study supports encounter
- Wake was similar in each encounter

Effect of the Wake Encounters on the Airplane Motion

- NASA study indicates nothing unusual about wake.
- NTSB simulations determined that the effect of wake on airplane motion was minor.
- The airplane was not in or at risk of an upset.

Control Inputs Following Start of First Wake Encounter

- First officer responded with column & large wheel inputs
- First officer did not use the rudder pedals
- Small changes in pitch and roll angles
- Airplane motion was unremarkable

<u>Time = 09:15:51</u>

- Start of second wake encounter
- Airplane in climbing left turn
- Controls approximately neutral

<u>Time = 09:15:52</u>

- Large right wheel input
- Full right pedal input
- Pedal used to help control roll
- Pedal not necessary
- Wheel alone sufficient to control roll
- Full wheel and pedal inputs unnecessary and excessive

Control Inputs Following Start of Second Wake Encounter

Sideslip Angle Buildup Resulting From First Officer's Control Inputs

 Airplane flew as commanded until vertical stabilizer separation

Calculation of Vertical Stabilizer Loads

- Loads dependent on airspeed, sideslip angle, and rudder deflection
- Aerodynamic loads determined by wind tunnel testing during airplane development
- No wind tunnel data available at the extreme sideslip angle corresponding to vertical stabilizer separation
- Other methods required to compute loads at time of separation

Computational Fluid Dynamics (CFD)

- CFD is the use of computers to mathematically determine the aerodynamic characteristics of airplanes.
- CFD is used increasingly in the industry to supplement wind tunnel data and optimize airplane designs.

Computational Fluid Dynamics (CFD)

- CFD is the use of computers to mathematically determine the aerodynamic characteristics of airplanes.
- CFD is used increasingly in the industry to supplement wind tunnel data and optimize airplane designs.
- Airbus CFD code has demonstrated capability for solving flow problems such as flight 587 vertical stabilizer loads.
- CFD studies directed by NTSB and reviewed by NASA Langley Research Center.

CFD Results: Pressure Distribution Over Vertical Stabilizer

CFD Results: Streamlines of Flow at High Sideslip Angle

Bending Moment

Base of Vertical Stabilizer

Airplane encountered wake turbulence twice

- Indicated by FDR, CVR, simulation, and wake analysis
- First officer's control inputs following second encounter were unnecessary and excessive
 - Simulation indicates wake had minor effect on motion
 - Airplane was never in an upset condition

Airplane responded to control inputs as expected until vertical stabilizer separation

• Simulation indicates large sideslip angles were the result of control inputs

Vertical stabilizer separated at a bending moment load well above ultimate load

• Determined by wind tunnel and CFD analysis

National Transportation Safety Board

American Airlines Flight 587 Belle Harbor, New York November 12, 2001

NTSB Board Meeting October 26, 2004

