DEPARTMENT OF HEALTH AND HUMAN SERVICES

ADVISORY COMMITTEE ON BLOOD SAFETY AND AVAILABILITY

TWENTY-THIRD MEETING

VOLUME I

Wednesday, April 7, 2004 9:05 a.m.

Grand Hyatt Washington 1000 H Street, N.W. Washington, D.C. 20001

PARTICIPANTS

Mark Skinner, J.D., Acting Chairman Jerry Holmberg, Ph.D. Judy Angelbeck Mark Brecher, M.D. Edward Gomperts, M.D. Paul F. Haas, Ph.D. Christopher Healey, J.D. William A. Heaton, M.D. Jeanne Linden, M.D. Karen Shoos Lipton, J.D. Lola Lopes, Ph.D. John Penner, M.D. Merlyn Sayers, Ph.D. John Walsh Wing-Yen Wong, M.D. Non-voting Government Representatives

James S. Bowman III, M.D. Jesse Goodman, M.D. Matthew Kuehnert, M.D. Harvey Klein, M.D. Karen Midthun, M.D. Olga Nelson

LTC Ruth Sylvester

C	\cap	N	т	E	N	т	S
<u> </u>	0	τv	T	ш.	τv	T	\sim

AGENDA ITEM

PAGE

Call to Order and Conflict of Interest - Dr. Jerry Holmberg	4
Committee Updates - Mark Skinner J.D. Action Plan for Implementation of Advisory Committee Recommendations of January 2004	10
- Overview - Dr. Jerry Holmberg - Blood Monitoring - Capt. Lawrence McMurtry	10 14
Committee Discussion/Recommendations	27
Report from CMS Overview of MMA - Dr. James Bowman III Questions and Discussion	35 55
Recommendations - Ms. Cynthia Read Questions and Discussion	66 73
Public Comment	74
Final Rule: Bar Code Label Requirements for Human Drug Products and Biological Products - Ms. Elizabeth Callaghan	76
Topic: Impact and Assessment of Methods to Reduce the Risk of Bacterial Contamination of Platelet Products	
Review of January 2003 Recommendation - Dr. Jerry Holmberg	89
American Association of Blood Banks Standard for Bacterial Testing of Platelet Products - Dr. Kathleen Sazama, President, AABB	96
College of American Pathologist (CAP) Phase I Requirement on Bacterial Testing of Platelets and Implementation of Methods to Reduce Bacterial	
AuBuchon, M.D.	110
Committee Questions and Discussion	

C O N T E N T S (Continued)	
AGENDA ITEM	PAGE
Approved Devices/Procedures to Reduce the Risk of Bacterial Contamination in Platelet Products and Current Thinking on Future Field Study Design - Jaroslav Vostal, M.D., FDA	165
Approved Methods for Reduction of Bacterial Contamination Risk	
BioMerieux - Mr. A.C. Marchionne Pall - Dr. Jerry Ortolano	205 218
Blood Center Experience	
Florida Blood Services - Mr. Timothy Malone, MT(ASCP)SBB Puget Sound Blood Center - Richard B. Counts, M.D.	244 274
Hospital Experience	
University of Minnesota Medical School - Robert J. Bowman, M.D. American Hospital Association - Ms. Mary Beth	298
Savary-Taylor	321
Adjournment	328

PROCEEDINGS 1 2 DR. HOLMBERG: I'd like to call the 3 Twenty-Third Meeting of the Advisory Committee for Blood Safety and Availability to order. 4 5 I've asked Ms. Olga Nelson if she would please read the conflict-of-interest statement. 6 7 MS. NELSON: This was sent to me by the 8 Office of General Counsel. During your 9 appointment, you may not personally and substantially participate, such as recommend, 10 11 influence, or decide in official committee matters 12 in which you, your spouse, your minor child, your 13 general partner, or an organization which you serve 14 as an officer, director, trustee, general partner, 15 or employee as a financial interest. That's for 16 each committee member. 17 Is that what you had in mind? 18 DR. HOLMBERG: Yes, that's fine. Thanks. Dr. Brecher, would you like to make a 19 20 statement? 21 DR. BRECHER: Thank you, Jerry. 22 Because this meeting revolves around the

question of bacteria contamination of blood, 1 2 platelets specifically, and because of my position 3 as an expert in this area and the fact that I have received grant funding from virtually every company 4 5 that is interested in this area or served as an ad 6 hoc consultant to these companies, in order to 7 avoid any perception of conflict, I am going to 8 recuse myself as Chair. Mark Skinner will chair 9 this session, and I'll basically recuse myself from actively participating in this meeting. 10 11 That said, I do want to say that I have no 12 proprietary interest in any of these products. I have no shares of stock, nor does my family. In 13 14 fact, the only shares of stock my family have is 15 each of my girls has one share of Disney stock. 16 [Laughter.] 17 DR. BRECHER: However, if there are any 18 specific questions that the committee would like to put to me in my role as an expert in this area, I 19 20 can answer those questions. 21 Thank you. 22 DR. HOLMBERG: Thank you. We're pleased

to have Mark Skinner as our Acting Chair for this 1 2 meeting, and between Mark on one side and I on the 3 other side, we'll try to make sure that things are guided smoothly, and I'm sure that he will do an 4 5 extremely competent and great job. 6 I'd like to make a roll call at the present time. Mark Brecher? 7 8 DR. BRECHER: Present. 9 DR. HOLMBERG: Larry Allen? 10 [No response.] 11 DR. HOLMBERG: Judy Angelbeck? 12 DR. ANGELBECK: Present. And can I just make one other statement, Jerry? 13 14 DR. HOLMBERG: Yes. 15 DR. ANGELBECK: As we discussed on the 16 phone, I am a conflicted member of the committee 17 since I am an employee of Pall Corporation and will 18 be presenting today. 19 DR. HOLMBERG: Thank you. 20 Celso Bianco cannot make it today. I have received e-mails from Celso, and he is recovering 21 22 very well. Many of us went through that difficult

1	time with him, and I'm sure that many of you lifted
2	up many prayers for him. He in his e-mail thanked
3	everybody for their concerns and also mentioned
4	that he hopes to be back in play by the end of the
5	month. So we know that Celso will be missed today
6	at this meeting.
7	Ed Gomperts?
8	DR. GOMPERTS: Present.
9	DR. HOLMBERG: Paul Haas?
10	DR. HAAS: Here.
11	DR. HOLMBERG: Christopher Healey?
12	MR. HEALEY: Here.
13	DR. HOLMBERG: William Heaton?
14	DR. HEATON: Here.
15	DR. HOLMBERG: Jeanne Linden?
16	DR. LINDEN: Present.
17	DR. HOLMBERG: Lola Lopes?
18	DR. LOPES: Here.
19	DR. HOLMBERG: Garji Pahuja?
20	[No response.]
21	DR. HOLMBERG: John Penner?
22	[No response.]

```
DR. HOLMBERG: Jerry Sandler?
 1
 2
               [No response.]
 3
              DR. HOLMBERG: Merlyn Sayers?
              DR. SAYERS: here.
 4
 5
              DR. HOLMBERG: Mark Skinner?
 6
              MR. SKINNER: Here.
 7
              DR. HOLMBERG: John Walsh?
              MR. WALSH: Here.
 8
 9
              DR. HOLMBERG: Wing-Yen Wong?
10
              DR. WONG: Here.
11
              DR. HOLMBERG: Karen Lipton?
12
              MS. LIPTON: Present. And could I also
13
     just state for the record that, after discussion,
14
     we were considering whether I should recuse myself
15
     from discussion today. It's my understanding that
     the discussion today will focus not on the AABB
16
17
     standard but on implementation of bacterial
18
     testing, and so it would be appropriate for me to
19
     continue to participate as a committee member.
20
               DR. HOLMBERG: Yes, ma'am.
21
               Okay. Non-voting members: Dr. Epstein
22
     could not make it for this meeting, and so in his
```

place we have Dr. Jesse Goodman, who is the
 Director of CBER. He will have to be leaving later
 today, and Dr. Midthun will be sitting in his
 place.

5 Dr. Klein? 6 [No response.] 7 DR. HOLMBERG: Jim Bowman? 8 DR. BOWMAN: Here. 9 DR. HOLMBERG: Matthew Kuehnert? 10 DR. KUEHNERT: Here. 11 DR. HOLMBERG: Ruth Sylvester? 12 COLONEL SYLVESTER: Here. 13 DR. HOLMBERG: Did I miss anyone? 14 [No response.] 15 DR. HOLMBERG: Okay. Thank you. I'll turn it over to Mark Skinner, please. 16 17 MR. SKINNER: The first item of business 18 today is to recognize Dr. Holmberg, who is going to review the previous actions of this committee. 19 20 DR. HOLMBERG: Our January meeting was 21 conducted on January 28th and 29th, and as most

22 events here in January, weather was very

unpredictable. So we did have a cold meeting, but 1 2 we got a lot accomplished. 3 The topic of that meeting was the role of the government in the national blood supply, whole 4 5 blood and plasma, plasma fractions, both in daily medical/surgical use and local/national disasters. 6 7 What we looked at what the National Blood Policy of 1974. We also looked at how other 8 9 national blood programs were developed in other countries, with overview by Dr. McCullough, and 10 11 Canada, Israel, and the U.K. presenting their 12 programs. 13 We also had a presentation from the 14 National--or the Interorganizational Blood--I'm 15 sorry, the AABB's International--Interorganizational Task 16 Force--I'll get it right--on 17 the National Blood Reserve, and I'll be 18 highlighting some of those issues. 19 The Interorganizational Task Force on 20 Domestic Disasters and Acts of Terrorism prepared a 21 plan for the National Blood Reserve to respond to 22 sudden and unpredictable civilian or military needs

1 from loss of donors or donations or increased use. 2 Again, there's a typo there. Sorry. 3 The National Blood Reserve was a combination of government and private sector 4 5 control, primarily looking at 2,000 units 6 controlled by the government, held by government 7 through the DOD, and 8,000 controlled by 8 government, coordination by the Interorganizational 9 Task Force, but held in regional blood centers. 10 The concept was explained to us as a surge 11 capability with the DOD having the initial surge 12 and the private sector having also a surge capability to have about 10,000 units available to 13 14 be able to move into two major cities, and then the 15 sustained support would be the adequate or the 16 effective information exchange back to the blood 17 centers to recruit donors and to build up the blood 18 supply. 19 I have to say that in the interim of two 20 months, we have presented this to the Acting 21 Assistant Secretary for Health, Dr. Beato. We are

22 moving ahead on some of these concepts. One of the

1 things that the committee has to understand is 2 that, as each one of your organizations has to face 3 a financial budget, we do also. And so we are looking at ways that we can support this and 4 5 implement a National Blood Reserve. 6 At this time I don't have specifics how we 7 would do it. We are taking the recommendations 8 from the committee, and we are moving forward with 9 those recommendations. Hopefully by the August meeting we will have more specifics for you. 10 11 I didn't see that. I thought I was 12 building on a slide. The recommendations from the committee 13 14 were to take steps to increase the national daily 15 availability to five to seven days, fully fund the 16 DHHS Blood Action Plan in the area of private and 17 government monitoring, and to increase the blood 18 supply; and also to address funding needs at all 19 levels of the blood system to support product 20 safety, quality, availability, and access through targeting of additive resources and appropriate 21

22 reform to the CMS reimbursement system for blood

1 and blood products, including plasma-derived 2 therapies and their recombinant analogues; also to 3 establish a National Blood Reserve consistent with the committee's recommendations of January 2002 by 4 5 increasing daily collections through an enhanced 6 program to expand and sustain volunteer donations. 7 The committee endorses the element of the National 8 Blood Reserve as developed by the AABB 9 Interorganizational Task Force. 10 With that, I'll turn it over to Captain 11 McMurtry to explain a little bit about our blood 12 monitoring. 13 CAPTAIN McMURTRY: Good morning. I'm Mac 14 McMurtry. I think I may have met a few of you in 15 the past. I'm glad to be here to visit with you 16 this morning. I want to talk about the blood 17 monitoring. You realize or you know that this has 18 been a gleam in everybody's eye for quite some 19 time.

20 As you are aware, there was a recognition 21 that there needed to be some sort of blood 22 monitoring as far back as the 1960s when Doug

Serginore (ph) and Ted Wallace started a monitoring
 program. It was good for what it was; however, it
 was a very lengthy process. Some years they had
 funding for it; some years they didn't. And, over

5 time, it just turned out to be not a practical 6 plan.

7 The AABB and the National Blood Resource
8 Center, of course, have done a lot of work with
9 monitoring the blood supply. The annual survey

10 that AABB does is sort of the gold standard for the 11 amount of blood that's transfused in the country 12 each year. But, once again, that's something that 13 comes out once a year, and clearly, if it comes out 14 once a year, it's not timely information. It's not

15 the sort of information that the Department's 16 looking for to make sort of on-the-fly decisions. 17 The FDA has come up with their plan, 18 TransNet. TransNet certainly has its advantages. 19 It has its disadvantages. It is a very good plan,

20 one that the Department has considered at length, 21 and, in fact, as we move forward with a monitoring 22 plan, we're going to adopt a lot. I think we're

1 going to probably just take the whole thing over 2 and fold it into our emergency response plans. 3 So, as I said, the TransNet system is very good and will be used in the future. And then 4 5 there's the HHS Sentinel system. This is the plan 6 that we've been working with now for about three 7 years where we have 29 Sentinel sites throughout 8 the country. Primarily they're hospitals with 9 three transfusion centers. We receive daily blood inventory information from them. And while this is 10 11 not a representative sample by a long stretch, it 12 does illustrate variations in the blood supply. It 13 was up and functioning in August of 2001, so when 14 we had the 9/11 attack, we were able to illustrate 15 very nicely what the blood supply did and how 16 it--what the level of it was for the 42 days before 17 the blood began to outdate. 18 What we have devised now is a new system, a representative sample of hospitals and blood 19 20 collection centers, and we're calling it BASIS, the 21 Blood Availability and -- Blood Availability and 22 Safety Inventory System. I'm sorry. I don't know

why that's not rolling off. I normally can say it 1 2 fairly easily. 3 We're going to be collecting sample blood data--we're going to be collecting data from a 4 5 representative sample of blood collection centers, 6 and what I have got here is the table that we're 7 using to explain what the stratification is that 8 we're using to collect -- to determine blood centers. 9 We're looking at the number of units that the collection centers collect within a year's period 10 11 of time and then taking--we have--let me back up. 12 We have contracted with Economic Systems, 13 Incorporated, to look at our plan or to look at our 14 program and devise a way to get a representative 15 sample of collection centers and hospitals. And 16 they have told us that of the collection centers 17 that collect this amount of blood each year, we 18 need two of those, and then right on straight through, so that we end up with a sample of 37 19 20 blood collection centers. With the hospitals, we're using the 21

22 American Hospital Association survey. We're using

the number of surgeries performed each year as a surrogate for the amount of blood that's used because we don't really have a correlation between surgeries and number of transfusions yet. So, as I said, the number of surgeries is what we're using to stratify.

7 It's interesting to me--and I don't really
8 understand it, but there are a certain number of
9 hospitals that respond to the AHA survey where they

10 don't list the number of surgeries that they 11 perform. So we have a category that we're going to 12 collect of hospitals that we don't know how many 13 surgeries they do. We have a low on up to a high 14 number of surgeries. We're going to end up with

15 131 hospitals in that sample.

16 That will give us, what they tell us--and 17 we believe it to be true--a sample of hospitals and 18 collection centers in the country that will 19 describe the universe very nicely. And so any 20 conclusions that we draw about the blood supply

21 should be accurate, with a 95-percent confidence 22 interval.

1 In the past, with the Sentinel system what 2 we have done is collect information on all blood 3 types. We are told--and we believe this--that we don't need to have all blood types; that if we 4 5 simply get information on Os and then this 6 information on platelets, that will describe the 7 blood supply quite nicely, also. What we'll 8 collect, we'll collect different information from 9 the hospitals than we will from the blood 10 collection centers. 11 I have this--actually, this chart is a 12 little out of date. We have a line here for wastage. We're not going to collect that 13 14 information. But we will be collecting the rest of 15 it. And that should be enough to tell us what we 16 need to have to make conclusions about the blood 17 supply. 18 We're also going to look at some 19 qualitative data elements. There's going to be 20 input fields where we will ask if surgery was delayed, was an order not filled completely. If 21 22 that's the case, was the blood product purchased

1 from an alternate supplier? Was a non-standard 2 protocol used in patient care because of shortage? 3 These shortage comments have proven to be very valuable to us in the past, and we're going to 4 5 continue to collect this sort of information. 6 When are we going to do this? Well, 7 that's the big question, isn't it? It is our intent to begin to phase this 8 9 program in starting this year with a phase-in of blood collection centers, and then in next fiscal 10 11 year we hope to phase in the remaining transfusion 12 services, the other hospitals, which is another 13 103, something like that, that will come in next 14 year. 15 I wanted to put up here what our 16 principles are. What is BASIS going to do? We 17 want to gather data that can support broader, 18 longer-term assessments of the status and direction of the nation's blood supply and improve the 19 20 knowledge base underlying consideration of 21 departmental policy decisions.

22 There has been some thought about BASIS

and it having some added value for the reporting sites, and we've gotten conflicting messages on that. Some hospitals that are Sentinel sites now and report every day, they think this is wonderful, some of them do, because it tells them about blood

6 usage that they weren't aware of in the past, and 7 they use it as a tool on a monthly basis. Others 8 don't see that value in it. The value in it for us 9 is that it gives the Assistant Secretary of Health

10 information about policy decisions made by the 11 government.

12 One of the things that I want to stress is 13 that the Assistant Secretary for Health is the 14 national blood safety officer. Decisions about

15 blood policy rest with her, and this gives her 16 information that she can use on what's actually 17 happening with the blood supply so that these 18 policy decisions can be made.

19 An example of this is we have contractors

and servicemen coming back from Iraq and Afghanistan.
There's a leishmaniasis deferral for a year
for those people. What's that doing to the blood

1 supply? Do we really know? I'll tell you the 2 answer to that is no, we don't know what that 3 deferral policy is doing to the blood supply. We're involved in a discussion today about 4 5 platelets. What is the new policy doing? How is it affecting platelet supply? We don't know. We 6 7 don't know. It's our hope that with a fully 8 functional BASIS operation going that we'll have 9 answers to questions like that. Does this new AABB 10 policy or the new bacterial detection policy affect 11 platelet supply? What is leishmaniasis doing to 12 the blood supply? And then in a minute, we're 13 going to talk about a national blood policy, and we 14 think that a monitoring program--we don't think. 15 We know that a monitoring program is essential to 16 any sort of national blood policy. 17 Let's see. There's a thing that BASIS 18 doesn't do, and our plan is that it is not intended to support a regular direct governmental 19 20 involvement in the day-to-day operations and 21 decisions of blood centers, hospitals, and/or 22 community transfusion services. I want to be real

clear about that. This is not a way for the
 government to meddle in the affairs of blood
 centers around the country. That's not our intent
 by any stretch of the imagination.

5 What we're hoping is that it will generate 6 data to enhance discussions and decisionmaking 7 broadly across the entire blood community, whether 8 it's within the government or outside the 9 government. There will be a good, strong database 10 that people can use in their discussions about 11 blood policy. 12 Another thing that BASIS will do will help 13 with critical instant response. This actually is a 14 fairly nasty slide so let me explain what it is. 15 None of the print works. 16 This is a schematic of what we intend for 17 BASIS to do. We're going to be collecting 18 inventory data from hospitals and blood centers. 19 The information that we collect here will go into a 20 secure Web input. That then will be aggregated and transmitted into a database. This is the 21 22 day-to-day, routine inventory information that

we're looking for. I'll explain this in a minute.
 This database then will generate output
 reports, which is here, and these output reports
 will go to our office and the Assistant Secretary

5 for Health, and this will be updated--this whole 6 stream right here will be updated every four hours 7 so that we're aware of fluctuations in the blood 8 supply. As I said, this is the day-to-day, routine 9 blood monitoring.

10 This side over here is in the event of a 11 critical incident. This database, the information 12 in this database will translate--does translate or 13 transfer over to the database that's maintained in 14 the Secretary's command center. The fact is this

15 is just a mirror of this one. This will be16 available in the command center, once again,17 updated every four hours.

18 In the event of an event, affected areas, 19 regardless of where it is--whether it's some

20 hospital someplace or--what was it last night?
21 There was a train wreck in Jackson, Mississippi.
22 So if there's a problem in an area, we will

actively go to that area and ask them to input
 data. We'll give them a password where they can
 load onto the website and put their information
 into this secure website. This goes in and mixes

5 with the day-to-day monitoring, comes down to 6 output reports, and then, once again, goes to our 7 office and the Assistant Secretary for Health so 8 that if we have to make decisions about blood 9 supply issues, that can be done down here.

10 What kind of decisions would we make? 11 Well, back this past summer, we had a shortage 12 issue. We got the Secretary of Health and Human 13 Services to roll up his sleeve, and there were lots 14 of cameras there. He made an appeal for donations.

Apparently, people came out and the blood supply came back up. So these are the sort of things that we're expecting out of this right here.

18 And then, as I said, there's a National19 Blood Reserve. As Jerry just reviewed with you,

20 this is the recommendation from last time that we
21 establish a blood reserve. This is a critical part
22 right down here that we need to increase the

1 national available inventory to five to seven days. 2 There's also the issue of ad campaigns, 3 trying to get more people to come out and donate blood. That's what you need to do if you're going 4 5 to increase the available inventory. But what is a 6 five- to seven-day inventory? We're in a position 7 right now that we don't know what a five- to 8 seven-day inventory looks like. 9 There are studies that have been done--and I think you can probably see it yourself in your 10 11 individual sites -- that as supply goes up, demand 12 goes up along with it, and they kind of go up 13 together. So if you demand following supply, how 14 do you know what a five- to seven-day inventory is? 15 And then you add in the effect of any sort of ad 16 campaigns that might be out there. Does that 17 really increase--you can probably count and see if 18 it increases donations, but does it actually increase supply? We don't know. And so we're 19 20 hoping that with BASIS we'll be able to actually see a five- to seven--we'll be able to see what a 21 22 five- to seven-day supply looks like?

1 So, anyway, we're hoping to get that 2 implemented beginning this year with our phase-in 3 and then the rest of it following in the next 4 fiscal year. 5 So, anyway, that's it with the update on monitoring. If you have any questions, I'll be 6 7 happy to answer them. 8 MR. SKINNER: Questions, Jeanne? 9 DR. LINDEN: Just a request. The tables didn't print out on the handouts of the slides. 10 11 Would it be possible for the committee members to 12 get a copy of those tables? 13 CAPTAIN McMURTRY: You bet. 14 DR. LINDEN: Thank you. 15 MR. SKINNER: Colonel Sylvester? COLONEL SYLVESTER: On your system, it 16 17 updates every four hours. Is this manually entered 18 data? 19 CAPTAIN McMURTRY: Right now it is. 20 There's a gleam in our eye that we'll be able to 21 do, not a direct link but the plan is for the 22 reporting sites to be able to dump into a file that

1 can then be accessed by our server. 2 There's a reluctance on the part of a lot 3 of folks to have the government computer tap into the local computer. The IT guys get real skittish 4 5 about that. So if we dump into a separate file, they're happy with that. That's what we're hoping 6 7 to do. 8 MR. SKINNER: Dr. Holmberg? 9 DR. HOLMBERG: I just wanted to make a point of clarification. The update every four 10 11 hours is primarily because it will not be entered 12 at set times by all places across the country in different time zones. And so we want to be able to 13 14 capture that throughout the day. 15 At some point in time during the day, it 16 will be stabilized, the data will be stabilized, 17 and we're working through some of the advantages of 18 that. 19 However, one of the things I would like to 20 make a point of clarification on is that Captain 21 McMurtry mentioned as far as what would we do with

the data. The data will be used to make decisions

22

1 in working with the AABB's Interorganizational Task 2 Force. So I didn't want to give the perception 3 that, you know, government is going out there doing their own thing and trying to control the issue. 4 5 The Assistant Secretary for Health is responsible 6 for the blood activity within the country, and she 7 would definitely be working with the AABB 8 Interorganizational Task Force. 9 As we mentioned at the last meeting, this has to be a government/private sector endeavor, 10 11 especially with the blood reserves. 12 MR. SKINNER: Jeanne? 13 DR. LINDEN: In terms of critical events, 14 I understood you're talking about would occur at 15 sites that are not part of your random--or, excuse 16 me, representative sampling. 17 CAPTAIN McMURTRY: That's correct. 18 DR. LINDEN: So can you elaborate a little bit on how you would enroll these sites that are 19 20 not set up to be communicating with your system, 21 keeping in mind that communication systems may not 22 be completely functional, so I assume you have

1 backup systems arranged. Can you just tell us a
2 little bit more about what you have set up in your
3 plan for that to get these sites able to
4 communicate?

5 CAPTAIN McMURTRY: I wish I had my 6 favorite cartoon. It's one that I just love. It 7 shows this university president-type guy talking to 8 two scientists with the Einstein hair and the lab 9 coats, and on a blackboard there's a bunch of

10 figures on one side and a bunch of figures on the 11 other side, and in the middle it says, "Something 12 magical happens." And one says to the other, 13 "Somehow I was looking for something a little more 14 specific."

We are aware that there can be some communication problems, and so that's one of the things that we're beginning to address, to figure out how we would get data in.

19 Setting that issue aside, the intent is

20 that--and let's just use this train wreck last 21 night. Let's say that we have a lot of casualties 22 there. What we would do is identify the affected

1 hospitals and blood collection centers in that 2 area. We would actively call them up on the phone, 3 ask them if they would contribute data to the command center, give them the passwords necessary 4 5 to log into BASIS, and then we would ask them to 6 update on a regular basis--I keep using "basis" as 7 a word and then "BASIS" as a name. But you 8 understand. 9 So we would ask them to input data at 10 regular intervals so that we would be able to know 11 what's going on in that area to see if there was 12 any action that needed to be taken in conjunction, as Jerry said, with the Interorganizational Task 13 14 Force. There might be things that need to be 15 16 done. There might not be things that need to be 17 done. But we would know without it being a 18 helter-skelter arrangement. 19 MR. SKINNER: Karen? 20 MS. LIPTON: Jerry, I very much 21 appreciate, and you, too, Mac, talking about

22 coordination. The one thing we do have in place

now is an ability to communicate immediately, and
 we have a number of default mechanisms that allow
 us to get in contact when everything goes does,
 which it invariably will. But perhaps we could

5 make sure that we coordinate on that end so that 6 we're both not trying to collect information from 7 blood centers and hospitals in this situation, 8 because that actually is something that we do 9 routinely in these situations.

10 MR. SKINNER: Other committee comments or 11 discussion? Dr. Sayers?

12 DR. SAYERS: I'd like to say something 13 promoting the value of knowing the availability of 14 the national blood supply and endorsing the concept 15 of BASIS. Some of us here were present at Blood 16 Products Advisory Committee meetings and 17 Transfusion Spongiform Encephalopathy Advisory 18 Committee meetings when the whole concept of geographic deferral for donors who might have been 19 20 exposed to variant CJD was being discussed. And 21 what was disappointing was that when the deferral

22 period for those donors was under discussion, it

1 became very obvious that some of those advisory 2 committee members wanted to know how much 3 additional donor deferral actually could be tolerated. And that was an important consideration 4 5 when the decision was, well, shall we defer 6 individuals who've spent two months overseas or 7 should we defer individuals who've spent eight 8 months overseas, when those discussions were on the 9 table.

10 Alan Williams put together information for 11 the TSEAC to review in deciding how long those 12 deferral intervals should be, and it was obviously 13 earnest information that he put together, but it 14 was incomplete because we really did not know how

15 robust the national blood supply was at the time.
16 Had we had the information that BASIS might have
17 been providing, I think we would have had a better
18 handle on being able to satisfy committee members'
19 needs to know what that deferral inventory should

20 be without at the same time jeopardizing the 21 availability of the blood supply by being too 22 aggressive in deciding how long that overseas

1 period should be before donors earned deferral. 2 I think had we known some of the BASIS 3 information back then, we probably would have been able to make better decisions when it came to 4 5 deferring donors to reduce the hypothetical risk of 6 variant CJD transmission. 7 I didn't intend that to be a sermon, so I 8 apologize. 9 MR. SKINNER: Captain McMurtry, I'd like to ask you a question. Is the intent of this 10 11 system at some point designed to be able to provide 12 prospective answers? The scenarios you've talked 13 about are going to give us a retrospective answer in terms of what's occurred. You posed the 14 15 question originally in today's discussion we don't 16 know what the impact will be of the bacterial 17 contamination changes, which really is forecasting 18 into the future. Can this system help us answer those questions as well? 19 20 CAPTAIN McMURTRY: It depends on who you talk to. No, actually, we feel that with a 21

representative sample that we're going to have, and

22

as large a representative sample as we're going to
 have, once we establish a good, solid baseline, we
 can do a lot of predictive studies with this
 program.

5 MR. SKINNER: Other discussion? 6 [No response.] 7 MR. SKINNER: Thank you. 8 At this point the committee will turn its 9 attention to CMS, and Dr. Bowman is going to give 10 us a overview and update us on some of the issues 11 related to the Medicare Modernization Act. 12 DR. J. BOWMAN: Hi. My name is Jim 13 Bowman. Does everybody have a copy of the 14 three-page paper handout that was available at the door? If anybody doesn't have a copy, raise your 15 16 hand and I'll... 17 It'll be a little difficult to follow the 18 music with the handout. It's probably going to be 19 difficult to follow the music with the handout. 20 But we'll try to stumble through that. As Captain Mac said earlier, when a bill gets passed by 21 22 Congress, something magical happens, but I think

you're probably interested in more specifics, and
 that's basically what I'm going to try to do for
 you in the next few minutes.

5 about specific sections of this bill than I am. I
6 recognize that. And to the extent that you
7 identify any inaccuracies, please point them out to
8 us at the end of my discussion so that we can get
9 it on the record.

Many of you are much more knowledgeable

10 There's a lot of background material that 11 will be posted on the website for the committee 12 meeting and also in your handbook. We're not going 13 to go over that at this point because of time 14 limitations. So that's why I have the paper

15 handout.

4

16 The paper handout is not an official 17 document. The Department and CMS has some very 18 specific information that is available on the 19 website that identifies and addresses the Medicare 20 reform bill, which is now officially called the 21 Medicare Modernization Act, or MMA. And I refer 22 you to that for specific details of the overview of
the bill itself. I primarily want to address 1 2 issues that most of you are interested in, which is 3 how payments for blood products are affected by this bill. And so that's what I'm going to confine 4 5 the discussion to at this time. 6 The bill itself is about 674 pages. Ιf 7 you count the front page, the inside cover, the backside cover, and the back page, 678 pages. I 8 9 brought a copy along for everybody to see. It 10 probably weighs about five pounds. It's a fairly 11 hefty document. This is all double-spaced and 12 single side. So if you put two sides to a page, you can reduce it a little bit. 13 14 You can access the bill on the CMS website, the URL address in the handout, and 15 16 there's numerous other ways to access it, also. I 17 would encourage you not to print it out. You'll 18 probably go through \$10 worth of paper, ruin your 19 toner cartridge, and you may even break your 20 printer if you do that. But you can certainly--it's a PDF file, and you can certainly 21 22 print out specific sections of it to work with.

1 I'd also call your attention to another 2 document that's available that is fairly helpful. 3 It's call the "conference agreement." The conference agreement is a document that's put out 4 5 by the Congress, and it basically summarizes in a 6 fair amount of detail the intent of Congress, 7 especially the conference committee, when the bill 8 was passed, for each section of the bill. In each 9 section, it addresses the current or present law prior to passage of the bill. It addresses in 10 11 detail the House version, the Senate version, and 12 then the agreed upon conference agreement that 13 appeared in the final bill. 14 It does provide some detail and some 15 insight into the intent of Congress. I would point 16 out that it doesn't have the force of law that the 17 bill itself has. And so that is another useful 18 document. 19 Now, on the handout, the very first page 20 is a fairly mundane and dry list of sections of the 21 bill. It has a number of titles, Title I through, 22 I believe, Title XII. And the reason I put these

1 there is just for your information so you won't get 2 confused with the Social Security Act, which also 3 has titles. In particular, Title XVIII of the Social Security is the title that authorizes the 4 5 expenditures for the Medicare and Medicaid 6 programs. So I just want to make sure people do 7 not get confused about that. The new Medicare 8 bill, MMA, has a number of sections. I believe it 9 goes up to--I'm not sure--1,200 or so. But they're 10 not all sequential, so there are certain sections 11 that are dropped out in the conference agreement. So you won't see 1, 2, 3, 4. There may be some 12 13 gaps. It doesn't mean they left anything out in 14 the final bill when you see it printed out. It 15 just means that those were not included in the 16 final bill. 17 I'd ask you to take a look at the second 18 page or the back of the first page on your handout. I want to provide some clarification because when 19 20 we talk about payments for blood products, we're 21 really talking about several different things. 22 There's blood, which, you know, comes right out of

your vein when you bleed. Okay? That's whole
 blood. And I'm not meaning to, you know, talk down
 to anybody. Like I said, I want to try to get us
 all on the same page and singing from the same

5 tune, if we can, even if it's a very simple tune.
6 The payment can be affected by whether
7 it's blood, whether it's a plasma-derived therapy
8 agent, or whether it's clotting factors. And even
9 under clotting factors, a lot depends on certain

payment systems as to whether it's a natural clotting factor that's derived originally from blood or whether it's recombinant and is not in any way at all associated with blood. So I just want to get that out in the open to begin with.

Basically our payment systems under the Medicare program depend on where the services are rendered and by whom. And so, for instance, blood primarily is provided in the inpatient hospital setting in acute care hospitals. At least the vast majority, more than 90 percent is. And that's a certain payment system. There's a certain

22 authorization in the Social Security Act under

Title XVIII for that. And there's certain 1 2 specifications of the way that's paid. Most of you 3 are familiar with that. It's under the DRG system. The hospital outpatient department is 4 5 another setting, and, by and large, a good portion 6 of the blood that is used in blood products used in 7 the hospital outpatient department fall under the 8 Hospital Outpatient Prospective Payment System, 9 sometimes called HOPPS--not to be confused with the beverage category. And our division director over 10 11 at CMS, Cindy Read, is going to address some of 12 those issues in a few minutes. Finally, there's the physician office 13 14 setting, which is another setting that sometimes we 15 find blood and blood products provided. And that's 16 provided for under completely separate authorization, which 17 is the physician fee schedule. It's 18 provided for under a different section of Title XVIII of the Social Security Act. So those are 19 20 three separate settings, and I'll try to run over those very briefly. And I provide a fair amount of 21 22 background material under each section for you to

1 refer to later on.

Now, when we get into the MMA provisions,
some of the payments are going to be determined by
when this service is furnished. For instance, if

5 it was furnished in 2003 or prior years--of course, 6 that's before the MMA was passed. It was enacted 7 December 8th of this past year, and most provisions 8 don't start until, obviously, January 1, 2004. And 9 a number of them start January 1, 2005, and January

10 1, 2006, and thereafter. So there are certain 11 special provisions written into the bill to allow 12 for a transition, if you will, for some of the 13 payments for blood products. We'll get to those in 14 just a few minutes. I don't want to say much about

15 the inpatient hospital setting for blood 16 transfusion payments because those are not really 17 changed much at all by the MMA provisions. 18 Now, having said that, there are some

19 significant changes for the hospital inpatient

20 payments in general under the MMA, and I've listed 21 a few of those. There's a lot of additional monies 22 that are going to be infused--sorry for the

1 pun--into the hospital systems, but not 2 specifically for blood products. So I want to make 3 that clear. The second setting I want to address, 4 5 which some people think may be the most confusing, 6 is the physician office setting. And that should 7 be on the second page, I think, the second full 8 page. I'm not going to go into the verbiage. 9 That's just to provide some background information for you to refer to later. 10 11 Primarily the blood and blood products do 12 not have a specific benefit written into legislation. However, most of the services that 13 14 are provided in the physician office setting would 15 be considered incident to the physician service. 16 And that's where a lot of the payments are made for 17 a lot of different kinds of services and products 18 within the physician office setting, and that's 19 where blood falls. 20 Now, the main sections that address this

20 Now, the Main Sections that address this
21 in MMA are Section 303(b), and basically what
22 Section 303(b) does is it amends a section--and

1 again, we're getting confused somewhat because 2 we're talking about sections of the MMA and then 3 sections of the act. But it amends Section 1842(o) 4 and then the paragraphs that fall under 1842(o).

5 And it amends these areas which address payment and 6 physician office setting.

By and large, currently these products are
provided in the physician office setting, 95
percent of something called AWP, which all of you

10 are familiar with--average wholesale price. Most 11 of you are aware it's not necessarily an average, 12 it's not necessarily wholesale, and, actually, it's 13 probably not necessarily a price. But, anyway, 14 that's the way it's written right now.

15 That's going to change. The first thing 16 that's probably most important is that it will stay 17 at 95 percent AWP for certain categories of blood 18 and blood products, and that's listed toward the 19 bottom of that page. I'm not going to read all

20 these off to you, but primarily these relate to 21 products that are provided in the year 2004, our 22 current year. Blood clotting factors are listed.

It does address certain vaccines and certain
 separately billable dialysis drugs that fall under
 the End-Stage Renal Disease program, which is a
 separate authorization.

5 Now, the next section toward the bottom 6 there is that the blood and blood products are 7 actually excluded, if you will, from most of these 8 provisions. If you turn to the back of that page 9 and look under paragraph (f), which is toward the

10 top of that page, I put the quotes there directly 11 from the act. What it says is, "In the case of 12 blood and blood products, other than blood clotting 13 factors, the amount of payment shall be determined 14 in the same manner as such amount of payment was

15 determined on October 1, 2003." Basically there's 16 no change for the blood and blood products.

17 Clotting factors are put in parentheses18 there, and that's because it was the intent of19 Congress not to include that. And so clotting

20 factors will fall under the rest of the changes to 21 Section 1842(o).

22 There are certain provisions for payments

in 2004, and then payments afterwards fall under some changes to Section (o), which is the addition of a new paragraph, which is paragraph (4). And we're still toward the top of that page. You'll

5 see a section where it says, "The default amount is 6 85 percent AWP, as AWP is defined on April 1, 7 2003." Okay.

8 Then there's a section right after that 9 that says that except for the defaults, there's a 10 Table 3 in the Federal Register that was published 11 on August 20, 2003, and those percentage of AWP are 12 the ones that will apply. So the default will 13 apply if it's not listed in Table 3 of the Federal 14 Register on August 20, 2003.

Then, finally, the Secretary may substitute other percentages, and that's based on some data and information that is supplied by the manufacturers to CMS prior to January 1, 2004. Well, it's obviously past January 1, 2004, so that

20 probably doesn't help the manufacturers at this
21 point. But any information that was supplied, the
22 Secretary will take that into consideration, and at

1 any rate, it would not be less than 80 percent of 2 AWP. 3 Now, we get into the bigger changes, which is something called the average sale price 4 5 methodology, and we're about midway down the page. And this is a new section that's added to the 6 7 Social Security called Section 1847A, and this is 8 going to become effective beginning January 1, 9 2005. That's next year. 10 Basically what it does, it pays physicians 11 a premium of 6 percent over an amount that is 12 determined to be the acquisition cost for the 13 physicians. In other words, the physicians are 14 going to get 6 percent, if you will, to cover 15 overhead, office expenses, and things like that. 16 Now, I would clarify that physicians also 17 receive separate payments for actually infusion 18 services themselves. That's a whole separate issue that's addressed by both CMS on an annual update 19 20 basis as part of the physician fee schedule and also within the bill. But in terms of the cost of 21

22 the drugs themselves, what we call the average sale

1 price as defined in the act, which is also--the 2 methodology is actually described in the bill 3 itself. The physicians will get a premium of 6 4 percent.

5 There basically are two types of drugs 6 that are considered the multiple-source drugs and 7 single-source drugs. There's details in the bill 8 itself that describe how those average sale prices 9 are determined. In the case of a single-source

10 drug, actually it's the lesser of the average sale 11 price or something called the wholesale acquisition 12 cost, which, again, is described in the bill 13 itself.

Now, there's another section that's added just after that called Section 1847B, and this is a section that basically is termed "the competitive bidding section" or "competitive acquisition." First let me say that physicians do not have to choose to be paid or reimbursed under Section 1847B. They're allowed to revert back to

21 the default system, which is Section 1847A,

22 primarily. But that's up to the individual

1 physician for him or her to decide. 2 This will become effective January 1, 3 2006. It's basically a section where there's certain methodologies set up for different 4 5 geographic areas of the country for identifying competitive bidding for certain drugs and 6 7 biologicals. 8 There's a lot of details to be worked out. 9 There will be some contracts that will be awarded 10 based on competitive bidding. There has to be at 11 least two bids. There are some other details 12 involved with that section. 13 I would point out, there's a section in 14 the bill--and that's down at the bottom of that 15 page--that's called "exclusion authority." Basically it states, "The Secretary may exclude 16 17 competitively biddable drugs and biologicals, 18 including a class of such drugs and biologicals, 19 from the competitive bidding system under this 20 section. If the application of competitive bidding to such drugs or biologicals," and then it follows 21 22 one of two separate criteria, "is not likely to

1 result in significant savings or is likely to have 2 an adverse impact on access to such drugs or 3 biologicals." In which case, if the Secretary so determines, then the payment for these agents and 4 5 products will revert back to Section 1847A 6 methodology. 7 So the competitive bidding is an option 8 that physicians may or may not choose, at their 9 choice, and also there's exclusion authority that 10 we should be aware of. 11 The final section I want to cover is the 12 Hospital Outpatient Prospective Payment System, OPPS or HOPPS. It's kind of complicated. I'm not 13 14 going to go into the details of how it's currently 15 paid for right now. Cindy Read is going to address 16 some of these issues in a few minutes. 17 Prior to the passage of the MMA in 18 December, Medicare basically paid for drugs in the outpatient hospital setting under three different 19 20 methods. Primarily most drugs are basically 21 bundled or incorporated into the payment for 22 something called an ambulatory payment category,

which is--essentially it's a DRG for the outpatient 1 2 setting, okay? DRGs came into the inpatient 3 setting back in 1983. The ambulatory payment categories, APCs, came into effect as a result 4 5 of--somebody help me here. It was several years ago under one of the acts of Congress. So it was 6 7 as prospective payment system for the outpatient 8 setting. 9 However, certain drugs were recognized as 10 being high cost at the time of implementation of 11 the Outpatient Prospective Payment System, and they 12 were given something called transitional passthrough status 13 or transitional passthrough payment. 14 And then there were certain others that even though 15 they didn't qualify or meet the criteria for 16 transitional passthrough, separate APC categories 17 were identified and created for those drugs and 18 products. 19 The most obvious--I think a lot of you are 20 familiar with it--is whole blood and fresh blood 21 products themselves--not fresh blood but cellular 22 components of blood, are actually paid for with

1 separate APCs in the outpatient section. 2 Now, the new bill does make some changes to this. For one, it classifies 3 radio-pharmaceutical as, in quotes, "specified 4 5 covered outpatient drug, " which basically qualifies 6 it for a separate APC payment. It also makes those 7 drugs or biologicals paid as passthroughs on or before December 31, 2002, also specified covered 8 9 outpatient drugs. Now, these two classes of drugs 10 are going to be paid in a very specified way, 11 according to the MMA bill, and what I placed 12 halfway through the page there is where it says 13 "product type," there are several types. There's a 14 sole-source product, there's multiple-source 15 innovator and multiple-source non-innovator. Those 16 are defined very specifically in the bill itself. And then 17 the payments are going to fall within 18 ranges, so there's upper bounds and lower bounds on 19 the amount of percentage of AWP during 2004 and 20 2005 that those drugs can be paid at. 21 Beginning in 2006, all of these products 22 will be paid an average acquisition cost, and,

1 again, average acquisition cost is a payment amount 2 that's determined very specifically under a 3 methodology defined in the bill itself. I included some background information regarding the 4 5 multiple-source and the sole-source drugs themselves and the specifications for biologicals, 6 7 just for your information. Now, finally, I want to call your 8 9 attention to two sections of the MMA, and that's on 10 the last page of the handout, the very back page. 11 One is Section 303(e) of the MMA, and 12 basically it provides a mechanism for the Secretary 13 to make some adjustments in blood clotting factors 14 payments. And what it does is it relates back to a 15 report to Congress that was made in January 2003 on 16 the payment for blood clotting factors, and it 17 prescribes some options for the Secretary, which, 18 of course, will end up being done by CMS, for determining separate payments for certain aspects 19 20 related to administration and preparation of the clotting factors. And I wanted you to be aware of 21 22 that.

Then, finally, toward the bottom of the 1 2 page, I want to call your attention to a section in the MMA conference agreement, which, again, is sort 3 of the document that accompanied the bill from the 4 5 Congress, that, again, provides an intent of Congress, although it doesn't have the force of 6 7 law. Basically it says the Secretary is directed 8 to compile and clarify the procedures and policies 9 for billing for blood and blood costs in the 10 hospital inpatient and outpatient settings, as well 11 as the operation of the collection of the blood 12 deductibles. 13 Dr. Holmberg has already been in touch and 14 made several visits to CMS with our staff there to 15 begin at least the preliminary legwork for 16 accomplishing this. 17 And then at the very bottom, in bold 18 print, I want to call your attention to the disclaimer because, again, this is not an official 19 20 CMS departmental or Federal Government document or 21 paper. There's no liabilities or consequences that 22 the Federal Government will incur because of this,

and there could be inaccuracies. So I would
 encourage you to consult your trusted sources
 before making any determinations or decisions based
 on this information.

5 Having said that, the staff at CMS are 6 certainly available and willing, obviously, to work 7 with anybody who is concerned or has issues to 8 address regarding blood and blood products 9 payments. That's what we are there for. If we 10 weren't, we wouldn't need our jobs. And so our 11 telephone lines are open, and you are more than 12 welcome to address us by e-mail. I think the my e-mail is in the handout. If it isn't, you 13 14 certainly can get that from Dr. Holmberg. And I 15 think that will conclude my section for now. 16 Jerry, do you want to let Cindy go first 17 before we have any questions or would you like me 18 to--19 DR. HOLMBERG: Why don't we take committee 20 questions and discussion now and then we'll hear 21 from Cindy. Let me just ask the first question, if 22 I may, for purposes of just understanding.

1 The section that relates to competitive 2 bidding and the opportunity for exclusions from that, could you comment on what the current 3 thinking is or what the current status is of 4 5 competitive bidding for blood and blood products? 6 DR. J. BOWMAN: The way I understand it, 7 because of paragraph (f), which was addressed 8 earlier before we got to the competitive bidding 9 section--and this is under the physician payment 10 section--blood and blood products, it says the 11 payment amounts will be determined as they are as 12 of October 1, 2003. I haven't consulted anybody at 13 CMS because, for one reason, competitive bidding 14 will not take effect until 2006, so this is fairly 15 deep into the weeds of that. 16 But based on that section, paragraph (f), 17 it looks like blood and blood products other than 18 blood clotting factors are excluded from Section 1847B, which is the competitive bidding section. 19 20 I'll try to find somebody who can confirm 21 that for me and get back to the committee on that. 22 DR. HOLMBERG: Chris?

MR. HEALEY: Thank you. Thanks for that
 presentation, Dr. Bowman. I think that was very
 helpful. It clarified what is a very complex
 statute.

5 To Mark's point, our understanding of the 6 way blood clotting factors are handled is that they 7 are not exempt from the competitive bidding process 8 that takes place in '06, and that is a grave 9 concern to, I believe, the using communities as

10 well as the producers of these therapies.

It is worth noting that Congress recognized the unique nature of plasma-derived and recombinant therapies by carving out IVIg from the competitive bid process. So that is carved out.

15 The AlPI products enjoy orphan status, so they're 16 not subject to the competitive bid as well.

17 It's also our understanding that it was
18 the congressional intent to exclude blood clotting
19 factors from the competitive bid process, and that

20 was discussed in the conference and was in the 21 initial drafts of the conference agreement but, for 22 whatever reason, was inadvertently dropped from the

1 final publication. So I'd just like to alert CMS
2 to that fact and let you know that we're working
3 with Congress presently to try and have a technical
4 correction or find some means of making sure blood

5 clotting factors are also excluded from the 6 competitive bid process.

7 That said, even though they're excluded
8 from the competitive bid, they are then subject to
9 the ASP plus 6 percent, the 106 percent of ASP.

And that is also a concern, frankly, because I think there is widespread recognition that ASP plus percent is inadequate for these unique therapies. I think there is a recognition that the handling and storage conditions that are unique to plasma

15 therapies and the distribution channels that they 16 must go through are unlike many other products. 17 And, therefore, there are added costs associated 18 with them, and the 6-percent margin there is 19 inadequate to assure that physicians are going to

20 have a proper incentive to acquire those, stock
21 them, and provide them to their patients. So we
22 really view it as an access issue, and we are

1 concerned about the 6 percent.

Just one more point, if I could, and that
is, you raised some of the terminology differences
in the MMA and the need for kind of a consistent

5 nomenclature. And I'd just like to echo that 6 point. I think that there is a lot of work that 7 can be done between both CMS and FDA to make sure 8 that like terms are used in the same manner across 9 the agencies. I think it is very easy for an

10 agency to refer to one thing as an orphan drug and 11 another agency to say it's an orphan drug when they 12 mean entirely different things. So I'd just like 13 to try and encourage CMS and FDA to work on that 14 issue, and hopefully with Dr. McClellan's transfer

15 to Administrator of CMS there will be some new 16 avenues to make sure that happens.

But thank you for the summary. I thinkit's very good, and unlike the commercials thatI've seen on TV, I don't think this is the same

20 Medicare. I think it's a different Medicare. And 21 I think at least for the plasma-using community, 22 it's a better Medicare.

1 MR. SKINNER: Other questions of Dr. 2 Bowman? DR. J. BOWMAN: Thanks, Mr. Healey. 3 MR. SKINNER: I'm sorry. Did you want to 4 5 respond? 6 DR. J. BOWMAN: No. 7 DR. SAYERS: Thanks, Jim. I have the 8 sense that you saved the best for last. If you 9 look at that paragraph before your disclaimer on the last page of the Secretary being directed to 10 11 compile and clarify procedures and policies for 12 billing of blood and blood costs in hospitals, is 13 there any timeline for that clarification? 14 DR. J. BOWMAN: No, there is no timeline, 15 to my knowledge. DR. SAYERS: Well, that's kind of 16 17 disappointing. 18 DR. J. BOWMAN: At least not to my 19 knowledge right now, there's no timeline. 20 DR. HEATON: Andrew Heaton, Chiron. I've got a couple of specific questions related to the 21 22 Section 303(b)(1), which amends 1842, and basically

that amends 1842(o)(1) to allocate 95 percent of 1 2 AWP basically prior to January 1, 2004; and then 3 Section 303(b)(2) amends this to a default of 85 percent of the AWP price for blood and blood 4 5 products. So the default percentage then in 6 physicians outpatient setting has just dropped 10 7 percent. 8 I notice that there is a provision in that 9 under Section (C) of 303(b)(2) that would allow the 10 Secretary to substitute other percentages based on 11 data and information submitted by the manufacturer 12 prior to January 1, 2004. 13 What procedures are available to provide 14 guidance to manufacturers to submit this 15 documentation in order to avoid a decrease to the 16 default percentage? 17 DR. J. BOWMAN: Actually, Section (C) 18 was--I abbreviated Section (C) somewhat because there were actually two deadlines. One was October 19 20 1, 2003, and the other deadline was January 1, 2004, for manufacturers to submit additional data 21 22 or information.

1 Interestingly enough, obviously October 1, 2 2003, predated the passage of the act itself, which 3 was signed into law by the President on December 8, 2003. I think Congress anticipated passage of that 4 5 act a good deal earlier than it actually ended up 6 passing. 7 However, having said all that, at this point I'm not aware of any guidance that the agency 8 9 itself has for manufacturers on this particular 10 issue. As some of you are aware, the agency itself 11 is always open and accepts unsolicited information 12 routinely in addition to the information that is solicited during the comment periods of both the 13 14 Physician and the Outpatient Prospective Payment 15 System proposed rulemaking process. But 16 unsolicited information is also always welcome. 17 The different divisions of the agency that 18 have responsibility for both the physician payment 19 and the outpatient -- and inpatient, for that 20 matter--absolutely always welcome additional and 21 supplementary information that can inform the 22 agency and its staff. The staff are there to do

1 their job as best possible and carry out the intent 2 of Congress and the law itself, the provisions of the law. So even though there is no specific 3 guidance there, and even though the deadlines have 4 5 passed--and, for the most part, the payments for 6 2004, as you know, are already in effect and there 7 have been corrections made just recently to those 8 payment schedules, at least under the outpatient 9 setting, the agency is always willing to accept 10 additional information to the extent possible, if 11 there are egregious errors or if there are 12 inequalities that should be addressed in the interest of the beneficiaries and access. 13 14 So kind of long-winded, but unfortunately 15 we don't have any specific guidance on that very 16 specific provision. 17 MR. SKINNER: Other questions or comments? 18 [No response.] MR. SKINNER: There have been a number of 19 20 issues raised relating to either needs for 21 potential clarification or guidance from the

22 Secretary or CMS as we go forward, as well as

1 potential clarifications of what may be 2 congressional intent. Is there interest on the 3 part of the committee of coming back to this tomorrow afternoon with a possible committee 4 5 resolution giving the Secretary some preliminary 6 recommendations on the committee's thinking at this 7 point? 8 I'm seeing nods. 9 DR. HEATON: Since we're going to be 10 discussing the need for bacterial screening, for 11 example, which will significantly increase the 12 wholesale acquisition cost, if the agency, the FDA 13 follows up on the new recommendation to require 14 this or recommend this, I do think that we need to 15 propose to CMS that there be a formal mechanism for 16 recognizing adjustments to the wholesale 17 acquisition cost based on new regulatory guidelines 18 or mandates. And I believe that our committee 19 should make such a recommendation. 20 MR. SKINNER: Chris, is there something that could be done at this point on the issues that 21 22 you raised would be needed?

MR. HEALEY: Absolutely. I think it would 1 2 be important to let the Secretary know that we're concerned about the payment mechanism for blood 3 clotting factors and assuring that access is 4 5 preserved there through an exclusion from the 6 competitive bid process. 7 MR. SKINNER: Okay. Well, maybe the 8 committee could keep those items in mind, and then 9 when we get to resolutions tomorrow afternoon, be 10 thinking between now and tomorrow about how we 11 might want to word such a recommendation. At this point then, we'll move on and 12 13 we'll recognize Cynthia Read to present on the 14 corrections to the HOPPS ruling and the APC Panel 15 recommendations. 16 MS. READ: Thank you. Thanks, Dr. Bowman 17 and Dr. Holmberg, for inviting us down. 18 Before I start, I wanted to introduce a 19 couple of members of my staff. I'm Cindy Read, 20 Director of the Division of Outpatient Care, and I 21 brought several of my colleagues with me: Sabrina 22 Ahmed and Cindy Yen. And some of you I think may

1 have met in person or discussed issues with them 2 over the phone. 3 I don't have any handouts, but I wanted to refer on a few issues to the handout that Jim 4 5 provided you on the MMA. And, of course, we're involved in the setting of rates for the services 6 7 provided in hospital outpatient departments, so the 8 MMA provisions on the OPPS, of course, are very pertinent to what we do. And I'll refer you to the 9 last page. 10 11 I just wanted to add a couple of other 12 things. In addition, the MMA instituted a 13 threshold for packaging services. For 2003, we 14 packaged the cost of the lower-cost drugs, and the 15 threshold we use for determining whether or not an 16 item would be packaged was \$150. And for 2004, for 17 our final rule that we published November 7, 2003, 18 we lowered that threshold to \$50, and the MMA said that we should have a threshold of \$50 for both 19 20 2005 and 2006. The other thing is that for passthrough 21 22 drugs, the existing law before the MMA passed

referred to Section 1842(o), which is the same 1 2 section for establishing the payment rates for 3 drugs and biologicals use in the physician office setting as the basis for establishing payments for 4 5 passthrough drugs. So the changes to 1842(o) that 6 are in the MMA also pertain to how we pay for 7 passthrough drugs under the Outpatient Prospective 8 Payment System. And those are new drugs, and 9 they're drugs for which we established these payment rules for two to three years. That, again, 10 11 is in statute. 12 So the MMA passed in December, and we had 13 to implement many of these changes January 1. We 14 had to publish a rule, which we did on January 6th. 15 That was an interim final rule with comment. We 16 had a 60-day comment period. And between the 17 passage of the MMA and when we published our rule, 18 we had to determine how we were going to classify 19 all of the hundreds of drugs and biologicals in

20 accordance with the MMA provisions.

21 So we recognized when we published our 22 interim final rule that we may have missed some

1 things in the categorization of otherwise the 2 specified covered outpatient drugs. And we offered 3 the opportunity for the public to comment on the classification, and we said that, should we receive 4 5 comments indicating that we misclassified some 6 items, we would make those corrections as soon as 7 possible. And in most cases, we would be able to 8 do those in our April release. 9 At CMS under the Medicare program, we 10 implement changes that requires systems 11 modifications on a quarterly basis. So the next 12 opportunity for making those changes was April 1. 13 And we did implement some changes. I'll call your 14 attention to several change requests that we 15 published, and the most pertinent one, I think, to 16 you all is transmittal 113 or change request 3145. 17 And in that we describe payment rate changes for 28 18 drugs, biologicals, and radiopharmaceuticals, some 19 of which resulted from the reclassification of 20 those items from multiple-source to single-source 21 drugs. 22 For example, we changed the classification

1 in the payment rates for several codes used to bill 2 for immunoglobulin. And those changes, while they 3 were implemented in the systems on April 1, actually are retroactive to January 1st, and where 4 5 hospitals had already billed for those services for 6 the three-month period prior to April 1, our 7 systems are going to go ahead and make a mass 8 adjustment to those particular claims so that 9 hospitals receive the correct payment. If they 10 hadn't billed for them, then the claims that 11 they're submitting from this point forward will be 12 paid in accordance with the correct payment 13 amounts. 14 Now I'll get on to the rulemaking that we have to do for 2005 every year. As Dr. Bowman 15 16 indicated, we go through rulemaking, and we propose 17 a rule generally in the summertime. We're aiming 18 for some time in July to publish our proposed rule 19 for the 2005 update. We'll have a 60-day comment 20 period. And then we will have our final rule that 21 will base the final rule on the comments that we 22 receive in response to our proposed rule.

1 We recognize the importance the blood 2 products play in lifesaving therapy for the 3 patients who are treated, the Medicare beneficiaries in the hospital outpatient setting, 4 5 and since OPPS was first implemented in 2000, August 2002, we have made separate payment for 6 7 blood and blood products in APCs rather than 8 packaging them into the procedures with which they 9 were administered.

10 The APCs for these products are intended 11 to pay for costs for the products. The cost for 12 storage and other administrative expenses are 13 packaged into the APCs for the procedures with 14 which the products are used.

15 In 2002, we used industry data that we 16 received to develop payment rates for the products. 17 In 2003, we applied a special dampening rule. For 18 most services paid for under the Hospital 19 Outpatient Prospective Payment System, we use

20 relative hospital cost data that we get from our 21 claims and cost report information from all of the 22 hospitals. We start from a database of 50 or so

1 million claims to develop those. 2 When we were doing our rulemaking for 2003, we saw that some of the payment rates for 3 blood and blood products were lower than what we 4 5 felt we could tolerate, and we were concerned about 6 the access issues. And so we applied some special 7 dampening rules where the payment rates that 8 resulted for 2003 were really sort of a combination 9 of numbers from our median hospital cost data and 10 the previous payments that were established on the 11 basis of external data. For 2004, we accepted our advisory 12 13 committee's panel recommendations, Ambulatory 14 Payment Classification Panel. And we froze our 15 payment rates for blood and blood products at the 16 2003 level. This gave us some time to look further 17 at our data and some of the issues that had been 18 raised by the committee and presenters at the 19 August meeting. The issue again came up in our 20 February meeting, and Dr. Holmberg and 21 representatives of the industry also came and made 22 some presentations at that meeting.

1 The APC Panel recommendations were that we 2 consider again external data in evaluating the 3 costs of blood and blood products and make adjustments accordingly. And we will consider 4 5 there--we are considering those recommendations as 6 well as looking at ways of refining our own data to 7 determine what payment amounts we will propose for 8 2005. And we are in the process of developing our 9 proposed rule, and we have had a number of meetings 10 with external bodies. We have another meeting 11 coming up soon, and we welcome any comments that 12 anybody has to provide us or any additional 13 information they'd like to share with us. 14 So I think that covers everything that you 15 wanted us to present, Dr. Holmberg. If there's any 16 questions, we'll be glad to answer them. 17 MR. SKINNER: Questions from the 18 committee? Chris? 19 MR. HEALEY: It's really more of a comment 20 than anything. Ms. Read, I just wanted to thank 21 you for all your work and the work of the folks at 22 CMS who made that rapid technical correction to
IVIg, listing it as a single-source. I think 1 2 that's a tremendous step forward in making sure 3 that the patients who rely on that therapy are going to have access to it. Clearly, these are not 4 5 generic products. None of them appear in the 6 Orange Book, and so I was glad to see that CMS 7 acted so quickly with your technical correction and 8 changed that listing. 9 I also know in 2006 you are going to be 10 relying on a GAO study of hospital acquisition cost 11 to establish new payment rates, a step away from 12 the claims-based data, and I applaud that method as 13 well. And just to make you aware, we'll be 14 discussing with GAO some of their methodologies and 15 trying to have input in that process as well to 16 make sure, once again, the unique nature of these 17 therapies is reflected in the study that they 18 undertake. 19 So thank you very much. 20 MS. READ: Thank you. MR. SKINNER: Other questions or comments? 21

22 [No response.]

MR. SKINNER: I'm going to take just a 1 2 moment and do something a little bit unusual. 3 Given that we are going to shift topics now and move into bacterial contamination, public comment 4 5 is not really until tomorrow, but given that these 6 are two different subjects, I'm wondering, given 7 the interest on these two subjects, if anybody from 8 the public would like to address either of these 9 two presentations or ask questions at this point in 10 lieu of waiting until the public comment session 11 tomorrow. 12 If you'd just identify yourself for the 13 record, please. 14 MS. VOGEL: Sure. It's Michelle Vogel 15 from the Immune Deficiency Foundation. 16 First, I would like to thank you for 17 correcting the IVIg situation at CMS under HOPPS. 18 But I'd like to make a comment under the physician side of things under the Medicare bill. 19 20 Basically what is going on is the reimbursement for physicians has been reduced to 80 21

percent of AWP, although Congress put in the report

22

language 95 percent of AWP. So as Chris Healey
 talked about competitive bidding and that there was
 a mistake and language was dropped, the same thing
 happened for IVIg.

5 And what that does to patients is that patients are being dropped out of physicians' 6 7 offices, and it can't continue that way. And in 8 some cases, there aren't local hospitals that do 9 the infusions. So where do these patients go? And 10 that's a big problem because this is a lifesaving 11 therapy. It's not something that they can go 12 without. 13 So I'd like that to be taken into 14 consideration to look upon increasing that 15 reimbursement. 16 Thank you. 17 MR. SKINNER: Thank you. 18 Any other comments at this time? 19 [No response.] 20 MR. SKINNER: Great. We are a little bit

21 ahead of schedule, so we will take a break at this 22 point, and we will return at 10:50, in 15 minutes.

1 [Recess.] 2 MR. SKINNER: The committee is now going 3 to turn its attention to the final rule on bar code labeling, and at this time we are going to hear 4 5 from Elizabeth Callaghan. She's the Deputy Director of the Division of Blood Applications in 6 7 the Office of Blood Research and Reserve in CBER in 8 the FDA. She's the project manager for the Blood 9 Action Plan and has undertaken in CBER the 10 developing of regulations as it relates to bar 11 coding. MS. CALLAGHAN: Good morning, everybody. 12 13 I apologize for not bringing any handouts, but I 14 have been told that the slides I have will be on 15 the Web, in case anybody needs to see them. 16 I intend to give you a short summary of 17 the bar coding rule and how it relates to blood and 18 blood components. 19 The bar coding rule is entitled "Bar Code 20 Label Requirements for Human Drug Products and Biological Products." The proposed regulation was 21 22 published on March 14, 2003, and the final rule,

1 after reviewing comments that came to the docket, 2 was published on February 26, 2004. 3 Now, any of you who have ever dealt with the FDA I'm sure realize that this is warp speed 4 5 for us. But you'll be surprised what one can do 6 when one has to. 7 The effective date of the rule is the 26th 8 of this month, which means within two years all 9 blood and blood components for transfusion must 10 have bar codes on them, must have machine-readable 11 information, and all human drugs must have bar 12 codes. 13 In response to a GAO report on medical 14 errors, Tommy Thompson mandated that FDA put 15 together a rule to help reduce medication errors in 16 hospitals and in other health care settings. In 17 the scope of this rule, medication errors are 18 defined as any preventable event that may cause or 19 lead to inappropriate medication use or patient 20 harm while the medication is in the control of the 21 health care professional, the patient, or the 22 consumer.

1 It requires drugs to contain bar codes, 2 allowing health care professionals to use scanning 3 equipment to verify that the right drug is going at the right dose by the right route of administration, is 4 5 going to the right patient at the right 6 time. This is what they hope to accomplish by 7 putting these codes on the blood products and drug 8 products. 9 Now, in regard to human drug and 10 biological products, they are required to have 11 linear bar codes. They must adhere to the UCC, the Uniform Code Council, or HIBCC, the Health Industry 12 Business Community Council, standards. The bar 13 14 code that is required to be on these drugs is the national drug code number, or NDC number. These 15 16 numbers are the numbers given to drugs that are 17 registered with CDER, or our Center for Drugs. 18 Manufacturers are not required to put lot 19 numbers of expiration dates. They can if they want 20 to, but it is totally voluntary. 21 In regard to blood and blood components, 22 they do not have NDC numbers because they do not

register with CDER. They register with CBER, and
 we do not issue NDC numbers. However, they will be
 required to have machine-readable information which
 is approved by the Director of CBER, and we have

5 also required specific pertinent information to be 6 encoded.

7 Prior to this rule, 606.121(c)(13) read, 8 "The container label may bear encoded information 9 in the form of machine-readable symbols approved by 10 the Director of CBER." However, with the new rule, 11 606.121(c)(13) reads, "The container label must 12 bear encoded information that is machine-readable 13 and approved for such use by the Director of CBER." 14 And I've lost my slides down here.

Okay. You will notice two things. We've changed "may" to "must," which makes it now a requirement. And we have changed "symbols" to "information." We have done this to allow for advancements in technology in case other systems develop such as radiofrequency ID chips or other technology that people would like to use as

22 identifying information.

1 And, of course, in order to embrace the 2 plain language initiative, we have expanded the 3 rule with five additional little sections. We 4 couldn't leave well enough alone.

5 Who is subject to the machine-readable 6 requirements? All blood establishments that 7 manufacture, process, repack, or relabel blood or 8 blood components intended for transfusion and who 9 are regulated by the FD&C Act or the PSH Act.

10 Part two is what blood products are 11 subject to the machine-readable requirements. All 12 blood and blood components intended for transfusion 13 are subject to the machine-readable information 14 labeling requirements of this section.

15 What information must be machine readable? 16 These are where we get into the specific 17 requirements for our blood labels. Each label must 18 have machine-readable information, at a minimum, 19 which contains the unique facility identifier--this 20 could be a registration number, a license number, 21 and for facilities using ISBT, it would be their

22 ISBT identifying number--the lot number relating to

1 the donor; the product code, telling us whether 2 it's whole blood, red blood cells, fresh frozen plasma; and the ABO and Rh of the donor. 3 This section was put in to conform with a 4 5 section in CDER's part of the rule, and it says: How must the machine-readable information appear? 6 7 And it must be unique to the blood or blood 8 component, it must be surrounded by sufficient 9 space so that the machine-readable information can be scanned correctly, and it must remain intact 10 11 under normal conditions. 12 And where does this information go? The 13 machine-readable information must appear on the 14 label of any blood or blood component which is or 15 can be transfused to a patient or from which the 16 blood or blood component can be taken and 17 transfused to a patient. The last part of this sentence is very 18 important. There have been several inquiries since 19 20 the final rule has been published asking just how 21 far down the chain, if you want to look at it, the 22 machine-readable requirements go. The answer is

all the way. All products for transfusion, whether 1 2 they're aliquots, divided units, washed cells, 3 transfusable products and syringes, pooled components, anything you can think of must have 4 5 machine-readable information. 6 In order to keep up with the spirit of the 7 rule, you must be able to scan the product at the 8 bedside prior to transfusion. So, if you have a 9 unit of blood that is divided into syringe 10 components, those components must contain the bar 11 code information so that it can be scanned at the 12 patient's bedside. 13 I think that's it. Are there any 14 questions? 15 MR. SKINNER: Questions from the 16 committee? 17 DR. LOPES: What happens if what's read at 18 the bedside is inappropriate for the patient in the 19 bed. Is there some automatic like a bar code on 20 the patient? 21 MS. CALLAGHAN: That's a good question. 22 Unfortunately, FDA has no control over what

1 hospitals do with patients. That's really CMS's 2 call. And this is the first part of what we hope 3 will be an entire system so that hospitals will be required to scan patients at the bedside and scan 4 5 products prior to them being infused or transfused 6 or whatever drug you're using. It is the beginning 7 of a system that we hope will be in place to 8 prevent medical errors. 9 MR. SKINNER: I have two questions. You mentioned that expiration dates were optional on 10 11 drugs, and you didn't mention expiration dates in 12 relation to blood components, whether those will be 13 required on the bar code. 14 And the second question is how does this 15 apply to plasma products? You talked about blood 16 and blood components, but you didn't talk about 17 plasma products. So if you could address those, 18 also, please.

MS. CALLAGHAN: The expiration date we didn't require to be bar-coded. Of course, you have to have an expiration date. That is one of the requirements in 606.121. But we didn't require

1 to be bar-coded because smaller facilities who may 2 divide units, who may wash units, may not have bar-3 code capabilities so that they could put the expiration date in a bar-coded form. So it must be 4 5 on there, but you can write it in. It doesn't have 6 to be in a bar code. If more people had bar-code facilities 7 8 that they could use, it would be better, but, 9 unfortunately, we thought that would be too much of a problem. 10 11 Now, I'm not quite sure what you mean by 12 plasma products. Do you mean fresh frozen plasma or are you talking about IGIV and Factor VIII? 13 14 MR. SKINNER: The latter. 15 MS. CALLAGHAN: They are drugs, and they 16 will have to have NDC numbers. After source plasma 17 is collected and is further manufactured, it is no 18 longer a blood component. It is a biological drug 19 product, and it's registered with CDER. So they 20 are required to have the CDER NDC bar number on 21 their products. 22 MR. SKINNER: So they would fall under the

1 first part of the presentation, which doesn't 2 require lot numbers or expiration dates. 3 MS. CALLAGHAN: That's correct. MR. SKINNER: And the rationale for not 4 5 including lot numbers and expiration dates on 6 plasma products is what? 7 MS. CALLAGHAN: I think CDER decided that 8 it was too complicated to begin with. Don't 9 forget, they also said they wanted linear bar 10 codes. The manufacturers, because this rule is 11 extensive and even includes little blister packs of 12 aspirins and one little tablet, they would not be 13 able to put the expiration date and lot number, 14 along with the NDC number, in a bar-coded form, 15 except if they used two-dimensional bar codes, and 16 CDER didn't want to go to two-dimensional bar codes 17 yet. 18 If you read the entire rule, you will see 19 that CDER intends to reevaluate this rule in 20 another 2 years and see if they should include the 21 lot number and expiration date. 22 Blood felt that we were ahead of ourselves

1 here, so we actually said machine-readable 2 information. That way we could require additional 3 information. And if people wanted to use two-dimensional bar codes, as long as the director 4 5 of CBER approved it, that could be done. 6 MR. SKINNER: Other questions? 7 Dr. Gomperts? 8 DR. GOMPERTS: Would you comment on the 9 Agency's thinking around the actual information 10 systems or what are the requirements around those 11 systems validation. 12 MS. CALLAGHAN: That's another good 13 question. 14 CBER does review and approve BECS, Blood 15 Establishment Information Systems. However, 16 hospital information systems are reviewed or looked 17 at by the Center of Radiological Health and Devices of Radiological Health. And I hesitate to say 18 19 this, but they really do not have any requirements. 20 They are considered waived instruments. Hopefully, 21 that will change with time as the systems sort of 22 get together and coordinate because it is very

1 important that all systems be validated, so that we 2 make sure that medication errors are prevented. 3 DR. GOMPERTS: Thank you. 4 MR. SKINNER: One final question. Has 5 CBER made any specific recommendations as to the bar-code technology and what should be used? 6 7 MS. CALLAGHAN: If you're referring 8 specifically to ISBT, at this point, CBER has 9 approved two different bar-code technologies, ISBT 10 and Codabar. We have not made a specific 11 requirement to go to ISBT for two reasons. One, we 12 don't own the system, and if changes were made that 13 we didn't agree with, by requiring the system in a 14 reg, we would have to rewrite the reg in order to 15 not require it any more. I realize this one only 16 took a year, but it's kind of hard to backtrack on 17 something that quickly. 18 And, secondly, we didn't want to impede 19 any advancements in technology if another system 20 became available which was even better. 21 MR. SKINNER: Yes? 22 DR. LINDEN: Can we just go back to the

1 previous question? 2 MS. CALLAGHAN: Sure. 3 DR. LINDEN: Why are the bar codes for plasma derivatives under CDER and not CBER? 4 5 MS. CALLAGHAN: Source plasma and recovered plasma are products of further 6 7 manufacture. They are not required, under our part 8 of the rule, to have bar codes because they are not 9 transfusable products. 10 However, when they are manufactured into 11 products for infusion or whatever you're going to 12 use them for, they then become CDER's drugs. I 13 realize they are reviewed in CBER, but they do 14 register with CDER, and they have NDC numbers. So 15 they fall under CDER's regulation in requiring 16 linear bar codes. 17 DR. LINDEN: So you're saying, basically, 18 they're regulated by both centers. 19 MS. CALLAGHAN: Sort of, yes. We review, 20 and they register. I know it doesn't make sense, 21 but this is the government. 22 [Laughter.]

1 MR. SKINNER: Any other questions or 2 discussions on this topic? 3 [No response.] MR. SKINNER: Thank you very much. 4 * 5 Now, we're going to move on to the main event, the primary topic for this meeting, which is 6 7 the "Impact and Assessment of Methods to Reduce the Risk of Bacterial Contamination of Platelet 8 Products." 9 10 To begin our discussion, Dr. Holmberg is 11 going to review the committee's previous 12 recommendations and action on this topic in January 13 of 2003. 14 DR. HOLMBERG: Before I do that, I would 15 like to recognize that Dr. Penner has joined the 16 table, and it's good to have you with us, John. 17 Also, Dr. Midthun has replaced now Dr. Goodman, who 18 has replaced Dr. Epstein. 19 This is a very difficult subject that has 20 been around for a few years. And I do want to go 21 back, for historical purposes, to review what the 22 committee recommended in January of 2003. Bear

1 with me as I read this. 2 "The committee recognizes that the current 3 leading causes of transfusion-related fatalities are: bacterial contamination of platelets, 4 5 homolysis primarily due to errors, and 6 Transfusion-Related Acute Lung Injury or TRALI. 7 And efforts to address these threats have been made 8 in comparison to other threats. 9 "The committee further recognizes that 10 public attention remains highly focused on residual 11 risk from HIV and hepatitis agents and, less 12 quantifiable, known and theoretical risk. 13 "The committee also finds that 14 technologies already exist that would effectively 15 reduce the risk of bacterial contamination and 16 homolysis, but there are no currently available 17 technologies to reduce TRALI. 18 "Therefore, we recommend that the 19 Secretary take steps to encourage and facilitate 20 implementation of available measures that could reduce the risk of bacterial contamination and 21 22 prevent errors that can result in hemolytic

1 transfusion reactions. 2 "The Secretary encourages research that 3 possibly may improve the safety and extend the shelf life of stored platelets and may result in 4 5 technologies or practices that could reduce the incidence of TRALI, an ad hoc subcommittee be 6 7 formed to develop a process to identify and 8 evaluate residual known and unknown risk affecting 9 blood safety and, secondarily, availability, both in relation to etiological agents and the processes 10 11 used in transfusion medicine. 12 "The subcommittee is tasked to use the 13 process as one tool, combined with other relevant 14 data, to propose prioritization of efforts by 15 government, industry and the health care system to 16 address these risks for further consideration by 17 the committee." 18 I think that recommendation says a lot. It identifies clearly the three main causes of 19 20 transfusion risk. Today, we're going to talk about the number one, which is the bacterial 21 22 contamination of platelets, and I think we've

1 already gotten implication of the secondary risk,

2 the homolysis due to errors, and hopefully what

3 technology can do to help those areas as far as the 4 bar-coding and Transfusion-Related Acute Lung

5 Injury still needs to be an issue that needs to be 6 addressed.

7 The issue before us really is an issue of
8 eleventh hour concern at the Secretary's level. In
9 February, the acting assistant secretary for

10 health, Dr. Beato, was very concerned about what 11 would happen to the availability of platelets, both 12 apheresis and whole blood-derived platelets, as the 13 new standards from the accreditation of facilities 14 by the American Association of Blood Banks and also

15 the College of American Pathologists Phase I 16 requirement.

Dr. Beato, in the absence of data, asked
that this committee look at the impact and
assessment of methods to reduce the risk of

20 bacterial contamination in platelet products. I
21 want to make sure that everyone understands that,
22 first of all, there are people sitting around the

1 table that do have conflicts, there are members 2 here that are specific government or special government employees. There's also representation 3 from other manufacturers. And as we already heard 4 5 from Judy, Judy made mention that--Judy 6 Angelbeck--made mention that she does work for Paul, and also Dr. Brecher made his statement 7 8 earlier today. 9 I want to make sure that everyone understands that those people that are from a 10 11 company are here for their subject matter expert 12 knowledge. They are not here to represent their 13 company. And so we have to make sure that there is 14 a clear distinction on that. 15 And so even to the point of recognizing 16 that, from a company's point of view, you have to 17 separate that out and make sure that you're 18 addressing the technology. We do have technology here, primarily the way the charter is written, to 19 20 address leukoreduction, NAT, various bag

21 manufacturers, the plasma industry and the blood 22 community, the whole blood collection community.

I do not want this to become a session 1 2 where we are trying to tear apart or dissect any 3 standard that is out there or any regulation that is out there or I should say requirement from the 4 5 College of American Pathology or the American Association of Blood Banks. 6 7 The intent is not to review their standard or their Phase I requirement. The whole idea today 8 9 is to review the impact and the assessment of 10 bacterial contamination. So I hope that is very 11 clear. 12 Lieutenant Commander Henry, could you 13 please put my slides up there. I would like to 14 address some of the questions that we would like 15 the committee to carefully consider as we move forward in these discussions. 16 17 Questions: 18 Has there been an impact on the 19 availability of apheresis and whole blood-derived 20 platelets for patient use? 21 Has there been a shift in type of 22 platelets available? If so, has there been a shift

in economics as a result of the implementation of 1 2 methods to reduce the risk of bacterial 3 contamination and platelet products? Has detection of bacterial contamination 4 5 of whole blood-derived platelets been limited to 6 hospitals? 7 Has the endpoint method to detect 8 bacterial contamination of whole blood platelets 9 been sufficient for sensitivity and specificity? 10 Does the federal government need to 11 establish policies for methods for reduction of 12 bacterial contamination and platelet products? 13 Are data sufficient to establish such a 14 policy? 15 Is there additional research that needs to 16 be conducted in the area of methods for reduction 17 of bacterial contamination and platelet products? 18 I know that's a lot. What we'll do is we'll come back to those when we have our 19 20 discussions. Was there a question? 21 22 MS. LIPTON: Yes. I just wanted to

1 suggest, I know we're looking at policies, but I 2 also think if we could add a question about 3 assistance from some of the agencies, and specifically FDA, in addressing some of the needs 4 5 that might help the implementation of this 6 standard, I think that would be a very productive 7 discussion. DR. HOLMBERG: Okay. I will get back to 8 9 you with that question, formerly on that question. 10 MR. SKINNER: Thank you. 11 Our first presentation on the topic, then, 12 will be from Dr. Kathleen Sazama. She's president 13 of the AABB, and she will present on the AABB 14 standards. In her professional capacity, Dr. 15 Sazama is a professional of laboratory medicine at 16 the University of Texas and M.D. Anderson Center in 17 Houston, but today I believe she's presenting as 18 president of the AABB. 19 * DR. SAZAMA: Thank you, Mr. Skinner, and 20 thank you, Dr. Holmberg, for the invitation to 21 provide this information to the committee. 22 Just to put us in perspective, for

decades, bacterial contamination has been 1 2 recognized as a significant risk associated with 3 room temperature storage of platelets. As the blood banking community has succeeded in reducing 4 5 the other obvious infectious risks of transfusion, 6 the magnitude and relative importance of bacterial 7 contamination of platelets has become more 8 apparent. In fact, platelet bacterial 9 contamination has long been recognized as the most 10 common infectious risk of transfusion therapy. 11 The risks listed here is that from 12 published literature in 1 in 1,000 to 1 in 3,000 platelets transfused. And over the course of 13 14 several decades, it has been the second leading 15 cause of death from transfusion, as reported to the 16 FDA, with mortality rates approximating 1 in 60,000 17 transfusions. 18 The agencies themselves have been concerned about bacterial contamination, and the 19 20 FDA has taken steps over the years, over more than 21 a decade, a decade-and-a-half now, to highlight 22 this issue.

1 In 1986, upon a recommendation from BPAC, 2 the 7-day storage of platelets was reduced back to 3 5 days after only a year or so because of a concern about bacterial sepsis and deaths related to them. 4 5 There have been no less than four 6 subsequent BPAC meetings, in which concerns over 7 bacterial contamination have been identified. 8 In 1992, the CDC also weighed in, 9 recommending improved surveillance for this very 10 important cause of transfusion risk. And in 1995, '99, and 2002, FDA conducted 11 12 workshops on this very important issue. 13 In 1998, the CDC also weighed in with a 14 very important study, the BaCon study, which was 15 looking at voluntary reporting for this issue. 16 In 2002, the FDA actually approved two 17 devices: the BacT/Alert culture bottles and the 18 Pall Bacterial Detection System. 19 So these together provide an impetus for 20 us to understand that this is a significant problem 21 and the agencies have long recognized this. 22 Now, there has been a parallel effort, and

in August of 2002, the FDA conducted a workshop on 1 2 pathogen reduction. And during the course of this 3 workshop, it became increasingly apparent that the imminent introduction of technologies aimed at 4 5 reducing or inactivating pathogens was not likely. 6 Therefore, as was stressed in the open 7 letter to the transfusion medicine community, written by some of the nation's leading transfusion 8 9 medicine physicians, including some who are or have 10 been members of this committee, the need to act on 11 bacterial detection became even more pressing. 12 These physicians called for the blood collection 13 committee to immediately initiate a program for 14 detecting the presence of bacteria in units of 15 platelets. 16 This plea was recognized, and the leading 17 experts on AABB's committees identified bacterial 18 contamination as a priority issue on which AABB should focus in order to improve patient care in 19 20 the field of transfusion medicine. Both the Clinical Transfusion Medicine 21 22 Committee, which is comprised primarily of

physicians working in hospital transfusion services
 or other departments who actively treat patients

3 needing transfusions, as well as the

4 Transfusion-Transmitted Diseases Committee, which

5 is a group of volunteer experts in the field of 6 transfusion-related infectious risks, together, 7 agreed that this was an area of concern that the 8 AABB board of directors should act on as an 9 important patient care issue.

10 In light of the science regarding this 11 important health risk, these two committees worked 12 with the AABB Standards Committee to develop a 13 proposed standard to reduce the risk of bacterial 14 contamination of platelets.

As initially proposed in November 2002, AABB's new standard would have required blood banks or transfusion services to have a method or methods to detect bacterial contamination in all platelet products. As is AABB's general practice, the

20 standard did not prescribe any particular method by 21 which facilities would meet this standard. With 22 the introduction of this proposed standard, AABB embarked on a one-and-a-half-year mission to
 understand, and address the concerns of and to
 educate our members about this critical patient
 care need.

5 In December 2002, AABB published an 6 association bulletin, which is our means to provide 7 information to members, providing helpful 8 background information regarding bacterial 9 contamination and outlining possible means of 10 addressing this safety issue. This bulletin 11 included an annotated bibliography of the published 12 literature on this topic and was meant to assist 13 members to a better understanding of the complexity 14 of the issues surrounding bacterial contamination 15 and to help them to develop productive comments to 16 AABB's proposed standard. And, in fact, a comment 17 period by our members is part of the usual process 18 for creating new standards. 19 In response to these measures, the AABB's 20 Blood Bank Transfusion Service Standards Program Unit received more than 50 comments. The AABB 21

22 appreciated these thoughtful comments and thinks

1 that this type of scientific debate contributes 2 positively to our standards development process and 3 the resulting standards. So the board of directors carefully 4 5 considered the public comments we received and the advice of AABB's Blood Banks and Transfusion 6 7 Services Standards Program Unit. In particular, we had extensive discussions about requests, that we 8 9 limit the standard to requiring culturing of apheresis platelets only. The board thought that, 10 11 as a matter of patient care, it was critical that 12 bacterial contamination of both plateletpheresis and whole blood-derived platelets be addressed. 13 14 However, recognizing the complexities of 15 this issue and the difficulties that some 16 institutions might face in implementing the 17 standard, the board agreed to allow an extended 18 implementation period to March 1, 2004, instead of to the date the rest of the standards were 19 20 implemented, which was November 2003. 21 In sum, the new standards address two 22 areas related to bacterial contamination. Either

1 the blood bank or the transfusion service would 2 have to implement methods to limit and detect 3 bacterial contamination, and steps had to be taken to minimize the risk of bacterial contamination at 4 5 the venipuncture site. Specifically, green soap 6 would not be permitted. 7 In March 2003, a year before the implementation date, AABB announced this final 8 9 standard. Again, AABB wrote to our member 10 institutions outlining potential ways to meet the 11 standard. Later, another association bulletin was 12 produced in August and another in October 2003, 13 both again providing background and suggestions for 14 means by which the standard could be implemented. 15 In addition, a CD was developed to 16 demonstrate how swirling could be detected, which 17 is a longstanding method of looking for gross 18 bacterial contamination. 19 As mentioned by Dr. Holmberg, less than a 20 week before the standard was scheduled for 21 implementation, specifically on February 26th, 22 2004, the acting assistant secretary for health,

1 Dr. Christina Beato, wrote to AABB requesting that 2 we delay the March 1st implementation of this 3 bacterial contamination standard, and the concerns that she outlined are listed here and should 4 5 certainly be considered. 6 The list includes QC methods applicable to 7 pre-released testing, potential extension of platelet dating, pooling of random donor platelets, 8 9 and surveillance and reporting protocols for 10 positive test results. 11 Given the fact that this standard had been 12 proposed almost a year-and-a-half prior to this date, and that AABB had provided considerable 13 14 opportunity for public comment, it came as a 15 surprise to us that HHS would make this request at 16 such an extremely late date. Prior to this time, 17 HHS had not raised any official concerns about this 18 standard and, in addition, there are government liaison personnel who sit or sat on all of the AABB 19 20 committees that helped develop the standard and 21 none of them voiced any concern during the 22 extremely deliberative process of drafting this

1 standard.

2 After considering this request from the 3 assistant secretary, AABB's board decided it would 4 not be in the best interests of transfusion

5 patients to delay implementation of this standard.
6 Again, members of the blood banking community, both
7 in the public and private sectors, had known for
8 years that bacterial contamination of platelets
9 posed a serious risk to transfusion recipients.

10 AABB recognizes that we need to do 11 considerably more work to ensure that our standard 12 is implemented in an effective manner that improves 13 patient care without jeopardizing supply. As part 14 of our standard implementation plan, we have done 15 or plan to do the following to educate our members: 16 We have issued flow charts to assist 17 members preparing for AABB assessments. We have 18 published, and will continue to publish, articles in Weekly Report and other standard AABB 19

20 publications about new issues as they arise about 21 this standard. AABB staff are always available to 22 answer questions from any members. Obviously, if

1 the need arises, additional association bulletins 2 will also be published. Tomorrow, I plan to share with the 3 committee additional information about steps AABB 4 5 is taking to collect data and identify important 6 issues surrounding the implementation of this 7 standard. There is no clear or easy path to be 8 taken to reduce the risk of bacterial contamination 9 of platelets. Rather, the Transfusion Medicine Committee is faced with a complex web of issues we 10 11 need to address. However, just because there is no 12 easy answer doesn't mean we shouldn't act. Our 13 patients deserve more. 14 AABB strongly believes that the new 15 bacterial contamination standard will help improve 16 patient care and save lives. We believe that we 17 should stop holding our patients hostage by 18 allowing the perfect to be the enemy of the good. 19 Unfortunately, in the absence of 20 regulations or standard setting, and in the face of 21 limited reimbursement, there has been, and is,

22 little incentive to invest in blood safety advances

such as this. AABB believed it was our 1 2 responsibility to act to serve our patients, even if the FDA had not acted yet in this regard. 3 It is also interesting to note that since 4 5 the publication of our standard, there has been an increased willingness by companies to consider 6 7 developing technologies to reduce the threat of 8 bacterial contamination. 9 Thank you. 10 MR. SKINNER: Are there any questions at 11 this time from the committee? As Dr. Sazama mentioned, she will be returning tomorrow to talk 12 13 on additional aspects of this, but there may be 14 some issues on what she's presented now. 15 Yes, Judy? DR. ANGELBECK: Kathleen, since one of the 16 17 list of questions that Jerry listed in the 18 deliberations that AABB had for their various 19 committees, did you discuss this shift in the type 20 of platelet product available? And I assume that 21 means more apheresis versus the whole blood 22 derived.

DR. SAZAMA: Certainly, the data, with 1 2 respect to availability of platelets and the 3 pattern of use of apheresis versus whole blood derived platelets was considered and considerable 4 5 discussion ensued about that. Currently, the data are about 75 percent of platelets are transfused as 6 7 apheresis platelets, 25 percent still as whole blood-derived platelets, and certainly that 8 9 represents a significant minority of the use. So, 10 yes, consideration was given to that potential. 11 DR. ANGELBECK: Did the committee 12 deliberations think that there would be a shift 13 toward a greater proportion of apheresis used? 14 DR. SAZAMA: I can't speak to the 15 committee's thinking on that. 16 MR. SKINNER: Other questions? 17 Yes, Lola? 18 DR. LOPES: Do I understand correctly that HHS was thinking about moving the storage back to 7 19 20 days from 5, where you said potential extension of 21 platelet dating? 22 DR. SAZAMA: Those were the concerns that
were identified by Assistant Secretary Beato in the
 letter that she sent to AABB, but that was among
 the considerations that should be looked at.
 DR. LOPES: I was sitting here wondering

5 what are the factors that would be involved in even 6 trying to reduce the shelf-life requirement from 5 7 days to something smaller. It seems that the 8 smaller that shelf life is the lower the chances of 9 contamination or at least reproduction are.

10 DR. SAZAMA: I think you really would 11 address a question of availability of the shelf 12 life were shortened to 4 or 3 days from 5 days. 13 Those of us who have been around long enough to 14 remember those days, inventory would be a terrific 15 challenge if a shortening of that shelf life would 16 occur. I think that was part of the measure that 17 looked at, well, can we do something else? Could

18 we look at the threat? Which is with older
19 platelets, the data seemed to suggest that there

20 would be a greater risk to patients from bacteria
21 that might be incubating in those bags. And so
22 looking at that as the measure to both balance

supply and safety was part of the thinking that 1 2 went into the standard setting. 3 MR. SKINNER: Other questions? [No response.] 4 5 MR. SKINNER: Thank you. 6 The next presentation will be by James 7 AuBuchon. Dr. AuBuchon will be presenting the 8 College of American--be presenting on behalf of the 9 College of American Pathologists, the Phase I 10 Requirement on Bacterial Testing of Platelets and 11 Implementation of Methods to Reduce Bacterial 12 Contamination of Platelet Products. 13 DR. AuBUCHON: Thank you. Thank you for 14 the opportunity to present my views on how this 15 country has succeeded and fallen short in 16 addressing the problem of bacterial contamination 17 of blood components, particularly platelets. 18 Before I begin my remarks on this subject, I would 19 like to clarify for whom I am and am not speaking. 20 I am a member of many professional 21 associations and active in the governance of 22 several. I am not speaking on behalf of the

American Association of Blood Banks. Dr. Kathleen 1 2 Sazama, AABB president has already ably expressed 3 the actions and intentions of that organization. The Clinical Transfusion Medicine 4 5 Committee of the AABB, which I chaired last year, identified, along with the Transfusion-Transmitted 6 7 Diseases Committee, bacterial contamination of 8 platelets as the leading cause of 9 transfusion-recipient morbidity and mortality. I am pleased that the AABB's member institutions are 10 11 taking positive steps to reduce this risk, nor 12 should my remarks be taken as the official statement of the College of American Pathologists. 13 14 As the chair of the Transfusion Medicine 15 Resource Committee of the CAP, I have been closely 16 involved with the issue of bacterial detection in 17 platelet units, and I am pleased that the 18 accreditation program of the college addresses this issue directly. I would refer the committee 19 20 members to the written statements submitted by the 21 CAP. 22 I would now like to take a few moments to

1 make it clear that I am not representing any 2 commercial entity. On this slide, I have listed 3 all of the support that my laboratory has received in the last decade for research and development 4 5 activities related to bacterial contamination of 6 blood components. As you can see, the slide is 7 blank. 8 [Laughter.] 9 DR. AuBUCHON: While we have been active in the field and have been able to make a variety 10 11 of contributions, none of this work has had any commercial support. 12 13 For example, when our medical center 14 undertook culturing of all platelet units in 1999, 15 we did that because we felt it was an important 16 addition to our procedures that would improve 17 recipient safety. The preliminary validation 18 protocol was undertaken using uncommitted reserves, 19 and the ongoing procedures are supported by the 20 medical center's operating budget. The money, about \$30,000 a year has been well spent--we will 21 22 get to that later--but no direct or in-kind

1 assistance came from any commercial source. 2 On this slide, I have listed all of the 3 biomedical companies in which I hold or have held equities or salaried positions at any time. As you 4 5 can see, this slide is also blank. There are none. 6 I have served as a consultant to a variety 7 of commercial entities that do business in the field of blood banking. A number of these 8 9 companies have an interest in detecting 10 microorganisms that may be contaminating units of 11 blood, although my input to these companies has 12 extended to many other fields as well. Because 13 these consultations take some of my time, I am 14 compensated. However, none of the compensation is 15 in the form of stock options or other equities, as 16 I do not want my thoughts or future advice tainted 17 by financial implications. In these interactions, 18 I try to speak my mind and let the chips fall where they may. 19

20 To illustrate this, I note that I have 21 served as a consultant to both Hemasure and Pall, 22 both of which were involved in the manufacture and

sale of leukoreduction filters. As this committee
 is aware, I believe that the most appropriate use
 of leukoreduction technology is selectively;
 directing it toward those patients in whom it

5 offers demonstrated benefits.

6 I was speaking out in opposition to the 7 universal amplification of leukoreduction at the 8 same time these companies were supporting it. I 9 felt entirely unencumbered in offering my views

publicly, and they appeared to appreciate my honesty. I am an academic, and my stock in trade is open and forthright expression of what I believe is the most appropriate approach to solving a problem. Bending my opinions for financial gain

15 would be counterproductive.

16 So, then, why am I so passionate about the 17 quality of what's in this bag? It's because these 18 platelets go into patients over 4 million times 19 each year in this country alone. And these are not

20 abstract recipients. They are real patients, real 21 people who deserve the best that I can provide for 22 them. The soapbox that I have been wearing out

over the last few years has been dedicated to
 focusing our attention on the biggest risks in
 transfusion and then identifying ways to reduce
 them.

5 Over the last 2 decades, we have had 6 enormous and enormously gratifying success in 7 reducing the risks of the diseases the public understands and knows. 8 The low level of viral risks that we have 9 10 achieved should allow us to focus on other larger, 11 persistent problems that we haven't dealt with yet: 12 Problems such as missed transfusion that 13 has continued to occur at the same rate for half a 14 century and kills two dozen patients in this 15 country every year and that most hospitals think or 16 hope only happens somewhere else; 17 Or transfusion-related acute lung injury, 18 thought to occur every 5,000 transfusions, with a fatality rate that claims at least 50 to 100 19 20 patients annually, but for which we don't yet have 21 a good answer; 22 Or the topic of today's discussion,

bacterial contamination of platelets, which occurs 1 2 at about 1,000 times the frequency of HIV 3 transmission and which leads to the death of more 4 than 100 patients every year in this country. 5 It is comparisons such as these that 6 motivate me to try to improve the transfusion 7 support that we provide. 8 Steps to limit and detect bacterial 9 contamination carry the burdens of cost and logistic complexity. Are they worth it? Let's 10 11 compare this risk to others this committee has 12 discussed in the past. 13 West Nile Virus was recognized as a 14 disease transmissible by transfusion in 2002. 15 According to reports to the FDA, five transfusion 16 recipients died due to meningoencephalitis in FY 17 '02 because we had no way to test the blood supply 18 then for this virus. 19 As a result, special deferral criteria 20 were implemented in an attempt to identify infected 21 donors. A massive push was initiated by the FDA 22 and several companies to develop a nucleic acid

1 amplification test, and this entire effort,

2 culminating in a precipitous implementation of a

3 nationwide clinical trial, received substantial FDA

4 oversight, assistance and encouragement.

5 In that same year, the Agency received 6 reports of 17 deaths due to bacterial contamination 7 of blood components. As this committee has heard 8 previously, this is undoubtedly an underreporting 9 because of the difficulty in recognizing the cause

10 of infection in the thrombocytopenic and 11 neutropenic patient. The true number is probably 12 tenfold higher.

13 Another comparison: The first issue14 brought to this committee after its creation was

15 that of HCV look-back. This was finally 16 implemented as a substantial undertaking by blood 17 suppliers, and hospitals and physicians, with a 18 cost in excess of \$330 million. Unfortunately, 19 benefit was restricted to well less than 1 percent 20 of those notified, approximately 2,200 patients

20 of those hotfilled, approximately 2,200 patients
21 from over 10 years of transfusion. Note that not
22 all of those benefitting would have necessarily

died or suffered ill effects from their HCV 1 2 infection. 3 Bacterial detection in platelets, on the other hand, offers the potential of avoiding the 4 5 deaths of several hundred patients every year or several thousand over a 10-year period. Clearly, 6 7 tackling the problem of bacterial contamination is 8 a worthwhile endeavor. 9 This point is driven home by the experience reported from Johns Hopkins. The rates 10 11 of post-transfusion death after transfusion with apheresis, that is, single-donor platelets, is 12 13 huge--14 per million--and that after transfusion 14 with platelet concentrates derived from whole blood 15 units is astounding--62 per million units. 16 Given that about 50 to 60 percent of 17 platelet transfusions in the U.S. are currently 18 apheresis units, these data would predict more than 100 patient deaths annually from bacterial 19 20 contamination. However, for a long time, I have heard, 21 22 "But we have never seen a case here." Recognition

of bacterial contamination is difficult because of 1 2 the kinds of patients who usually receive 3 platelets. Most of them also lack enough white cells to fight infections, and they have frequent 4 5 fevers. So the cause of a fever or even sepsis 6 after transfusion is usually not recognized. 7 For example, in a study of over 3,500 platelet transfusions, patients and units were 8 9 cultured when there was a 2-degree rise in 10 temperature or a 1-degree associated with other 11 symptoms after a transfusion. Fully 1 percent of 12 all transfusions met these criteria, and 10 cases of bacteremia and 4 cases of sepsis were uncovered. 13 14 Most telling to me were the observations 15 that a 1-degree temperature rise and symptoms was 16 associated with a contamination rate of 27 percent, 17 and a 2-degree rise was associated with a 18 contaminated unit 42 percent of the time. Bacterial contamination is not a rare problem. 19 Ιt 20 is a common problem that is rarely recognized. 21 Once the problem was recognized for its 22 magnitude, some felt there was no good way to deal

with it. Culturing techniques were foreign to
 blood bankers and did not provide an instantaneous
 answer, leaving the potential for having to recall
 a unit, after it had been sent to a hospital or
 transfused. Blood centers were concerned about

having to utilize recall systems that might not
interdict a hot unit before transfusion. However,
these techniques have come to be adapted and
adopted, particularly for apheresis units.

10 The promise of a rapid post-storage 11 detection system remains in the future, leaving 12 hospitals that transfuse platelets derived from 13 whole blood units to use microscopy-based 14 techniques or applying urine dipsticks to detect 15 biochemical changes in infected units. Not only 16 are these techniques much less sensitive than 17 culturing, but they put hospital transfusion labs in the position of qualifying a unit for 18 transfusion, a position they are unused to. 19

20 Hospital transfusion services would rather
21 that blood centers take the responsibility for
22 qualifying a whole blood-derived platelet unit for

1 transfusion, and blood centers feel that they do 2 not have the right tools to address the problem 3 with these kinds of units. As a result, although apheresis units are 4 5 generally being cultured today by the blood centers 6 that collect them, whole blood-derived platelet 7 units are not being cultured, but are being 8 examined by techniques that are much less sensitive 9 and more likely to give false positive results as 10 well. 11 The College of American Pathologists and 12 the AABB came to recognize the importance of the 13 problem and the potential of the means available to 14 address it. Around the same time, in the fall of 15 2002, both adopted requirements that steps be taken 16 to detect bacteria and offered guidance regarding 17 methods that could be utilized to do so. So the 18 U.S. has begun to test its platelet supply for contaminating bacteria several years after this has 19

20 become commonplace in much of Western Europe, but 21 we are finally underway.

22 Probably because of the long lead time

1 given to blood centers holding AABB accreditation, 2 and because of the variety of techniques available 3 for hospital use, the implementation appears to have gone quite well. The CAP has not received 4 5 reports of difficulties associated with the 6 implementation of bacterial testing, and in the 7 past year, the requirement for testing was being 8 met in 97.4 percent of all laboratories inspected 9 by the CAP. 10 So far so good, but there are still 11 several important impediments to expanding the most 12 sensitive testing technique currently 13 available -- culturing -- to all units of platelets. 14 Culturing is usually performed on the day 15 after collection in order for the bacterial 16 inoculum to multiply to the point that it can be 17 detected in a small sample. Based on the work in our lab, and that of 18 Dr. Brecher's, a culture that is truly positive, 19 20 with the most commonly encountered contaminants, 21 can usually be found to be detected in 12 to 20 22 hours. Therefore, most blood centers hold the

units for 24 hours after culturing before sending 1 2 them to hospitals in order to prevent them having 3 to recall a unit from the hospital or, even worse, having to deal with the transfusion of a unit that 4 5 had bacteria in it. 6 Based on their experience with 7 implementation of nucleic acid testing several years ago, blood centers want to stay away from the 8 9 problems associated with trying to track down a 10 unit that has been released to a hospital or issued 11 to a patient for transfusion. 12 An impediment to the success of this system, now generally being used for apheresis 13 14 units, would be an expectation that a cultured unit 15 be made immediately available for release. Blood 16 bankers understand that the culture systems on the 17 market have been approved for QC use only and that 18 no claims can be made about sterility. 19 Were the FDA to attempt to prohibit blood 20 centers from hanging onto a cultured unit for 24 21 hours, the system would suffer significant 22 disruption, and some patients would receive units

1 that would subsequently shown to be contaminated. 2 That just doesn't make sense. Blood centers should 3 be allowed to use these techniques in the most logical, efficient and effective manner without 4 5 regulatory interference that holds the potential to 6 decrease patient safety. 7 The limitation of storage of platelets to 5 days still applies, however. So the additional 8 9 time taken up with culturing, and then holding the unit to ensure that it isn't really contaminated, 10 11 takes 1 to 2 days off of an already short 5-day 12 storage time. That could cause a shortage or 13 increase the wastage rate due to increased 14 out-dating. However, most centers that have 15 adopted culturing as their method of detection have 16 coped with this problem successfully, but at 17 significant expense. Ever since the field of blood banking 18 began to recognize that there was a way to deal 19 20 with bacterial contamination, it saw reextension of 21 the storage period as an important side benefit of 22 culturing. Do platelets stored for 7 days work?

Yes. In fact, the collection and storage systems
 currently available appear to be better than those
 that were approved for 7-day storage in the early
 1980s.

5 The FDA has already indicated to two 6 different companies that their systems can be used 7 to store platelets for 7 days, as soon as the 8 Agency licenses a bacterial detection system, and 9 that's where the rub occurs. To license a culture

10 system, the Agency is requiring a clinical trial 11 with two cultures of every unit--one at the front 12 end of storage and one at the back end--to document 13 the sensitivity of the culturing technique early in 14 storage.

15 That part of a trial protocol makes sense. 16 The problem stems from the numbers. The Agency is 17 looking for ironclad statistical proof, and that 18 implies performing the trial on over 50,000 units 19 at a cost of over \$2 million. The manufacturers of

20 culture systems have nothing to gain in this, and 21 they have been unwilling so far to pay for the 22 trial. A price tag of \$2 million, and the

1 consumption in a trial of \$50,000 units of

2 platelets are expenses that the nation's

3 funding-starved blood transfusion system can ill 4 afford.

5 Another impediment to success is the 6 prohibition of storing pools of whole blood-derived 7 platelets for longer than 4 hours. This means that 8 pooling can be performed only immediately before 9 transfusion. This stems from a concern, never

10 fully validated, that a more dangerous inoculum
11 could arise if bacteria were given a larger volume
12 into which to multiple during storage.

As a result, each unit must be cultured individually if culture is used as the detection

15 system. This increases the expense of materials 16 for culturing sixfold. More importantly, it 17 increases the workload to the point that many blood 18 centers just don't have enough staff to attempt 19 this.

Also, the volume to culture, whatever that minimum is--usually, around 5 to 10 mls, must be taken from each unit. That's a minuscule

proportion of an apheresis unit, but it represents
 10 percent of the small whole blood-derived units.
 Thus, this approach reduces the efficacy of
 transfusion by a similar proportion, an undesirable

5 effect.

6 As I said, the Europeans have been using 7 these techniques for some time, and they have 8 evolved an efficient system. It is common 9 practice, in most Western European countries, to 10 pool platelets made from whole blood units on day 11 one and take a single culture at that point. Great 12 economic and logistic economies are achieved by 13 this approach, and these allow the Europeans to 14 culture their whole blood-derived platelets, unlike

15 in the U.S.

16 It also allows for simple and efficient 17 prestorage leukoreduction, since a single filter, 18 rather than six, can be used. Because of the 19 culturing, European blood bankers are then allowed

20 to store cultured, pooled platelet units for 7
21 days. This system is light years ahead of what we
22 are doing in this country. My European colleagues,

1 frankly, laugh at our using dipsticks and gram 2 stain to try to find bacteria in platelets. "Don't 3 you know that these techniques are insensitive?" they say. "Why don't you just pool and culture 4 5 like we do?" Indeed. 6 Some investigators have generated data 7 that allow us to see just how good the 8 culture-based detection systems are. Dr. Gail Rock 9 has published the results of a double-cultured 10 study constructed similarly to the manner that is 11 being discussed for this country. 12 Her hospital utilizes platelet units derived from whole blood. When they arrived at her 13 14 facility, they were individually cultured by the 15 Pall BDS. Although they were eventually transfused 16 in pools usually of five or six units, each unit 17 was cultured individually since it was not allowed 18 to pool them. This early culture would be considered the test culture. 19 20 Just before issuance for transfusion, the

20 Units were pooled and a culture was performed
22 again, this time using standard microbiologic

1 techniques. This would be considered the most 2 sensitive or control culture, since the additional 3 storage time would presumably have allowed any contaminating bacteria to grow to a higher 4 5 concentration and not escape detection. 6 A negative culture at the later time 7 allows one to verify that the test culture was 8 indeed accurate when it did not identify any 9 bacteria in the units. Twelve thousand sixty-two 10 units were cultured in the Pall BDS, and four were 11 found to be contaminated with bacteria, a rate of 3.3 per 10,000 units. An additional pool was found 12 later to be positive, indicating a residual risk of 13 14 0.8 per 10,000. I should also note that the Pall BDS has 15 16 been improved since the time of this study. Also, 17 as part of this study, I would note that storage

18 was extended to 7 days, and as has been seen in

19 Europe, the 7-day-old platelets provided good

20 clinical support.

So the detection system was not perfect,but what had been gained?

1 Culture early in storage detected 3.3 2 contaminated units per 10,000, and culture later 3 found an additional 0.8, indicating that the total contamination rate was approximately 4 per 10,000 4 5 or 1 per 2,500 units, well within the range that 6 others have reported. 7 The protocol used detected 80 percent of the contaminated units. That is good. What 8 9 worries me is the question, if these platelet units 10 had not been cultured, how many would have been 11 detected as contaminated? A year ago in this 12 country, the answer would have been zero. With the 13 insensitive techniques now generally being used for 14 whole blood-derived platelets, the answer is 15 probably closer to zero than to 3 or 4 per 10,000. 16 The culture-based systems clearly have the 17 ability to detect bacteria. That is why they were 18 approved by the FDA. Unless they can be applied to pools of whole blood-derived platelets, however, 19 20 and unless we can extend the storage time of these 21 units, I fear that this more sensitive approach 22 will not be widely used, and patients receiving

whole blood-derived platelets will not have the
 benefit of the technology that is currently
 available.

4

So prestorage pooling is clearly an

5 important link in extending culturing to whole 6 blood-derived platelets, but extension of the 7 storage of cultured units is more than just an 8 academic concern. If all platelet transfusions 9 were cultured, apheresis units individually and

10 whole blood-derived units by pools, it would cost 11 perhaps \$30 million per year. This implementation 12 would have health benefits, saving a substantial 13 number of lives each year and saving the cost--14 about \$6 million--of treating the infections that

15 would have been caused by the contaminated units.
16 With the extension of platelet storage
17 that could occur, there are savings to be realized
18 as well. Currently, 17 percent of all platelet
19 units outdate before they can be used. Based on

20 this country's experience in the early 1980s, when 21 platelet storage was authorized, briefly, to be 7 22 days, the outdate rate should drop by at least

two-thirds. This would save about 100,000 doses of 1 2 platelets a year or more and result in savings to 3 the blood production system that would cover the cost of performing the cultures all by itself even 4 5 before considering the treatment costs that would 6 be saved. 7 Furthermore, those donors who were 8 donating by apheresis and were no longer needed, 9 could be redirected into red cell donation programs to alleviate the increasing shortage of red cell 10 11 units, another benefit for the system and for 12 patients. 13 At the moment, though, it feels to blood 14 bankers as if we are stuck in molasses. We are 15 trying to do the right thing in culturing units, 16 but we can't make the logistic changes in the 17 system that are necessary in order to extend 18 cultures to all units. What I would like to see is 19 the entire field, the regulated and the regulators, 20 work together to address these problems. We need 21 to focus on the big picture of recipient safety 22 and, as you heard before, not let the perfect be

1 the enemy of the good. 2 We can make scientifically reasonable 3 inferences from in vitro data and from the experiences of Europeans and those who were onto 4 5 this problem first to see what needs to be done. 6 What should be our goals? 7 First, every platelet unit should be 8 subjected to a bacterial detection test that is 9 sensitive. At the moment, that means culturing, 10 although other techniques may become available in 11 the future. To do this, we need to get approval 12 for using testing systems in manners that will 13 cause the least disruption to our platelet supply 14 system. That means we need approval for prestorage 15 pooling and for extension of storage to 7 days. 16 I first proposed a trial to document the 17 sensitivity of culturing 4 years ago. Others have 18 taken up the mantle since then, but we still 19 haven't gotten started because of the enormity of 20 the trial that is being required. We all want to 21 improve recipient safety. 22 I would ask that the federal government

1 congratulate blood bankers for taking the lead and 2 imposing a requirement on themselves that will 3 benefit patients. I would ask that the federal government assist us to get to where we need to be. 4 5 Ladies and gentlemen, if we were 6 transmitting HIV to several hundred or even 10 7 transfusion recipients each year, solutions to the 8 problem would be sought at a fever pitch. There 9 would be congressional inquiries into the problem, 10 and the full attention of the FDA and this 11 committee would be directed at the issue. 12 Thankfully, we don't have that problem. Instead, 13 we have several thousand patients who are suffering 14 needless bacterial infections and several hundred 15 patients who are dying from a problem that we have 16 the means to address effectively. 17 The blood bankers are on top of this. We

18 are doing all that we can to limit and detect
19 bacterial contamination. We need the assistance of

20 the federal government to improve what we are doing 21 to limit the chance of the very problem the 22 assistant secretary was worried about and to

accomplish all of this at the smallest expense. I 1 2 believe that our patients and the taxpayers deserve 3 no less. 4 Thank you. 5 MR. SKINNER: Questions or comments from 6 the committee? 7 Yes, Dr. Wong. 8 DR. WONG: I just have a quick question. 9 Is there inoculum size or dose every time you 10 culture on day one that relates to disease 11 morbidity and mortality, given that most of these 12 patients are on antibiotics? 13 DR. AuBUCHON: Well, certainly, the larger 14 the inoculum that is taken from the unit, at least 15 up to some reasonable level, will increase the 16 sensitivity of the technique. There was a paper 17 published 2 years ago which questioned the 18 sensitivity of culturing, but they used a very 19 small inoculum. Most centers that are using a 20 culturing system today are using somewhere around 5 mls. The Pall BDS has a defined volume that is 21 22 withdrawn for culture, but those that are using a

1 bottle-based culture system are generally culturing 2 5 to 10 mls. That seems to give a very good 3 sensitivity. What the FDA would like to see is a 4 5 double-culture study in order to document that 6 sensitivity, and that's really the only way that it 7 could be documented in a real-world situation. 8 There have been numerous studies where units have 9 been spiked--sterile units have been spiked--with 10 bacteria, and then small volumes, between 3 and 5 11 mls, have been taken out on day one to culture. 12 These have indicated that the systems that are 13 approved for QC use are indeed sensitive. And it 14 was on the basis of those data that the FDA issued 15 that approval. 16 MR. SKINNER: Other committee questions? 17 Dr. Midthun. DR. MIDTHUN: Karen Midthun, FDA. 18 19 I guess I would just like to make a few 20 general comments and just say that obviously we are 21 listening here with great interest. I think this 22 is a complex problem, and we have really come here,

1 together with the other PHS and other agencies, to
2 hear all of the information, gather as much data as
3 we can and all, hopefully, work together to figure
4 out what the best way forward is.

5 MR. SKINNER: Other guestions? 6 DR. KUEHNERT: I wanted to commend you on 7 an outstanding presentation, and I would echo sentiments that this is an extremely complex issue 8 9 that people have been talking about for literally 10 decades, and it is an issue that absolutely needs 11 to be addressed. 12 I agree with the phrase we have heard 13 multiple times already today to not let the perfect 14 be the enemy of the good, but I would extend that 15 to also mean that there are some issues that still 16 need to be addressed, even beyond just the task of 17 a method for detection, and we will get into some 18 of those issues later in this committee meeting. 19 I want to ask you a specific question 20 about some data I wasn't familiar with from Dr.

21 Rock concerning screening of pooled platelets. Do

22 you happen to know the organisms that were

1 identified in those four cultures that you 2 mentioned? And I'm wondering if some of those 3 could have been false positives, whether here was an evaluation of false positives as well as false 4 5 negatives. 6 DR. AuBUCHON: If I recall the study, the 7 units that were found to be positive on initial 8 screening with the Pall BDS were cultured 9 individually again in order to document whether or 10 not there was truly a contaminant. 11 Initially, there were six units that gave 12 a positive signal in the test system. One of them could not be recultured for reasons that I don't 13 14 remember, and one of them, on reculture, was 15 sterile. So it was assumed that that was a false 16 positive, leaving the four true positives. If I 17 recall correctly, they were all skin organisms -- so 18 one a bacillus and three staph. 19 DR. KUEHNERT: I just wanted to follow up 20 on that and see if you had any comment of what the

impact of false positives might be on the system

because that's a possible downside, although I want

21

22

to couch that by saying that, again, I think that
 even finding one gram-negative organism, for a
 blood center to do that, would prevent a fatality.
 And having been at CDC and heard about

5 cases over the years, I have heard the same thing 6 as you said, that somebody saying that they have 7 been in blood banking for 20 years and never seen a 8 case, and then they saw a case, and they now 9 understand the importance of the problem.

10 DR. AuBUCHON: Yes. Well, it is important 11 to shut the door before the horse leaves the barn. 12 The point about false positivity is an 13 important one, and that is one of the advantages of 14 the Pall BDS system, that the unit is never opened 15 to the environment. It's never an open system. 16 Sterile connecting devices can be used to obtain 17 the sample and pass the sample into the collection and detection system, and so the rate of false 18 positivity should be quite low or presumably should 19 20 be zero, if used correctly. I'm not sure how the 21 one false positive occurred in Dr. Rock's study.

The other system that is used for

22

culturing that employs a bottle by necessity has an
 open part of the system, although the sample is
 taken from the unit using sterile connecting
 devices and maintains the closed system of the

5 unit. Ultimately, the sample has to be drawn up 6 into a syringe, and then, with a needle, the sample 7 is inserted through a rubber septum into the 8 bottle. There is always the potential for 9 contamination of the culture at that point. The

10 system is not truly giving you a false positive 11 result. The system is contained, but the unit 12 isn't contaminated. The contamination occurred at 13 the time of actually placing the aliquot into the 14 bottle.

When we began our culturing in 1999, we intentionally did not use a laminar flow hood, as you saw in the photograph. We do this out on a laboratory bench in the general transfusion service laboratory, with all of the techs in rotation

20 taking a turn.

We wanted to determine whether or notculturing was feasible in that kind of environment,

sort of a standard transfusion service lab 1 2 environment, or whether we would get too many false 3 positives. We certainly did have some false positives, initially running at a rate of about 1 4 5 per 200 units, and now down to about 1 in 1,000 units. That comes from some changes in sampling 6 7 pouches that are available to us, and our techs 8 becoming more familiar with the technique. 9 Dr. Brecher, who adopted a similar technique, but does the manipulations within a 10 11 laminar flow hood, has a false positive rate that's 12 about half or a third, if I remember, of ours; 13 again, indicating that most of these contaminations 14 are coming at the time that the culture is actually 15 being injected into the bottle. 16 MR. SKINNER: Dr. Sayers had his hand up. 17 DR. SAYERS: Thanks. 18 Jim, what do the Europeans report about their experience reducing the risk of 19 20 transfusion-transmitted bacterial infection? DR. AuBUCHON: I haven't heard much in the 21 22 way of hard data before and after comparisons. I

1 don't have that information. 2 MR. SKINNER: Dr. Heaton? 3 DR. HEATON: Jim, there's an economic conundrum here, in that the FDA has asked for an 4 5 extraordinarily wide-ranging and very expensive 6 trial to justify the creation of an intended use 7 claim for a release test. And one of the ways that 8 one might justify such an enormous expense would be 9 to pursue a 7-day platelet dating extension and 10 indeed pooling. 11 Since you're one of the world's experts on 12 platelet storage, what's your opinion on 7-day platelet dating, the efficacy of platelets at 7 13 14 days and the efficacy of the BCPC pooling? By 15 virtue of your experience, do you believe those to 16 be effective products and therefore a realistic 17 goal of the development for bacterial screening 18 assay program? 19 DR. AuBUCHON: Our laboratory was involved 20 in the performance of clinical trials for the two companies that I am aware of that have submitted 21 22 for 7-day dating. We performed these studies under

1 contract to them. In both of those studies, 2 platelets that had been stored for 7 days were 3 compared to platelets that had been stored for 5 days. One of those companies used an apheresis 4 5 collection device. The other company used a whole 6 blood-derived platelet unit. 7 Certainly, there were differences between 8 7-day-old platelets and 5-day-old platelets, both 9 in terms of recovery and survival. The difference 10 was less than 15 percent for a drop in the 11 recovery. This was felt, at that time, to be an 12 acceptable tradeoff and, in fact, at least for the 13 apheresis platelets, the recovery and survival of 14 the 7-day platelets, 2 years ago in our hands, was 15 better than the published radiolabeled recovery and 16 survival from 20 years previous that led the FDA to 17 license 7-day platelets in the early 1980s. 18 Since that time, Dr. Scott Murphy, who I believe is going to be talking tomorrow, has 19 20 proposed a comparison of stored platelets or 21 treated platelets, any future platelet product

22 submitted to the FDA for licensure not in

comparison to what has previously been approved
 licensed by the Agency, but against an immutable
 standard--fresh platelets.

4 Scott has appropriately pointed out that 5 if we always compare our next advance to our last 6 approach, we may be on a slippery slope to someday 7 where we are comparing something that is terrible 8 to something that is only slightly worse, and

9 that's not appropriate.

10 Instead, we should use fresh platelets 11 from the same donor, reinfused tautologously, as 12 the benchmark for that donor and then compare the 13 treated or stored or however processed platelets at 14 the end of their storage period to those fresh

15 platelets from that same individual.

16 This appears very scientifically sound. 17 We have been engaged in some studies looking at 18 this approach, which we euphemistically call 19 Murphy's Law, and it appears that at 7 days,

20 compared to fresh platelets, we are still getting 21 excellent survival. Scott suggested that at the 22 end of the storage period, the recovery should be
at least two-thirds of fresh platelets. And even 1 2 at 7 days, the currently available systems can meet 3 that requirement. MR. SKINNER: Colonel Sylvester? 4 5 COLONEL SYLVESTER: You said that the AABB 6 members had to implement almost a full year before 7 or the CAP implemented a full year before the AABB, 8 and you reported a 97-percent compliance. 9 Do you believe that's because of perhaps your transfusion services are relying on the donor 10 11 centers to do it or what would be the difference 12 between what you are saying is the standard was 13 accepted and implemented, and everybody's in 14 compliance, and nobody's reported a supply shortage 15 with your member organizations, and yet there's a 16 concern there will be when--the shortage on the 17 AABB's part. DR. AuBUCHON: Well, I am gratified that 18 both those institutions, accredited by the AABB for 19 20 their blood banking and transfusion service 21 activity, and those accredited by the CAP, have, in 22 the main, taken up this responsibility and run with

1 it and have been successful in implementing one 2 technique or another. 3 The CAP Transfusion Medicine Resource Committee approved this new requirement on the 4 5 inspection checklist in the fall of 2002. It was 6 published to initially become effective in December 7 of 2002. So that does appear a little bit earlier 8 than the AABB. 9 There is a slight difference in how the requirement is interpreted, and that with the AABB, 10 11 it is expected that, as of March 1, an institution 12 is performing an appropriate technique, a suitable technique, for detection of bacteria. 13 In the CAP checklist, there are two 14 15 classifications of requirements called Phase I and 16 Phase II. The Phase II requirements are most 17 stringently enforced, and the laboratory has to do 18 precisely what is in the checklist, essentially no 19 exceptions allowed. 20 The bacterial detection requirement, as 21 all new requirements entered as a Phase I

requirement, that allows the laboratory and the

22

1 inspector a bit more leeway in how the laboratory 2 is assimilating this new requirement. But the fact 3 that 97 percent--over 97 percent--of the laboratories received a passing grade on that 4 5 question indicates that they were taking steps to 6 implement one or another of detection techniques. 7 I don't have data to say exactly how they were 8 doing that. 9 MR. SKINNER: If I could ask a follow-up question. The AABB standard, then, as I understand 10 11 it, is mandatory implementation. Yet yours is 12 permissive. Is there a specific reason why the CAP standard is not mandatory? Is it the same reasons 13 14 that Dr. Beato indicated in her reply or is that 15 you don't see a need to make it mandatory because 16 of the voluntary compliance? 17 DR. AuBUCHON: It is anticipated that the 18 CAP requirement will move from Phase I to Phase II 19 within the next cycle of checklists or in 20 approximately 1 to 2 years. That is the standard 21 approach that the CAP uses, rather than the 22 approach that the AABB uses, which is a more

1 delayed implementation and with a public comment 2 period. 3 There are different approaches to dealing with the same problem, and that is any new 4 5 requirement will impose changes in procedure, 6 possibly changes in equipment availability, 7 training, validation requirements and a host of 8 other implementation steps that cannot happen 9 overnight. 10 It would be unfair for a laboratory to be 11 inspected a week after the CAP's first publication 12 of this requirement, to expect them to have everything in place. As you saw, it took some AABB 13 14 institutions a year to get ready. 15 So the two organizations work differently. 16 The end result is the same, and the CAP will be, 17 I'm certain, moving from a Phase I to a Phase II 18 requirement very soon, but it appears that most 19 institutions are already paying attention to it. 20 MR. SKINNER: Dr. Gomperts? 21 DR. GOMPERTS: Jim, just focusing on the 22 failures of the 1-day bacterial screening

1 procedure, those that are identified as bacterial 2 positive at day five, day seven, whatever, would 3 you comment on that. DR. AuBUCHON: I think it is unreasonable 4 5 to expect culture-based techniques performed 6 relatively early in storage to be 100 percent 7 sensitive. It just won't happen. Not all bacteria 8 are going to multiply quickly enough so that a 9 small sample taken one day into storage will by 10 chance happen to have a bacterium that can grow in 11 the system and then be detected. 12 Working in our favor in that kind of 13 situation is the fact that if the organism is a 14 slow grower, it probably will continue to be a slow 15 grower during storage and is less likely to grow to 16 potentially lethal concentration before the time of 17 transfusion. Checking the unit at the time of 18 issue or at the end of outdate I think is an appropriate way to document the sensitivity. But I 19 20 am not greatly concerned that a few contaminated units will be missed. It is better than not 21 22 testing them at all.

1 The question in terms of what that means 2 for extended storage and how we should proceed, I think the appropriate clinical trial endpoint would 3 not be documentation of 100-percent sensitivity, 4 5 that is, the second or control culture at the end 6 of storage always being negative before the agency 7 would approve extended storage. What I think would 8 be appropriate is to ask the question: If we did 9 no testing, no culturing, what would be the infection rate? And if we did this culture 10 11 technique and extended the storage, what would be 12 the contamination rate? And if they're the same or 13 the contamination rate is lower with the addition 14 of the culture early in storage, then that is a 15 winner and, in my opinion, should be approved. 16 DR. GOMPERTS: So you are saying that the 17 false negative is associated with the bacterial 18 type and also the actual bacterial load, that there are no other factors that could impact this? 19 20 DR. AuBUCHON: Well, I am not a microbiologist, 21 but those are the two big ones. 22 MR. SKINNER: Dr. Angelbeck?

DR. ANGELBECK: Jim, with your comments on 1 2 pre-storage pooling of the whole blood-derived 3 platelet, and one of the questions before the committee that Dr. Holmberg pointed out, the 4 5 availability or shift in the type of platelet 6 available, do you think that that pre-storage 7 pooling is essential with bacterial detection to 8 making the whole blood-derived platelet a continued 9 viable option? DR. AuBUCHON: I do. The workload 10 11 involved with testing each--with culturing each and 12 every whole blood-derived platelet unit is 13 phenomenal. Some blood centers, as I believe you 14 will hear tomorrow, have successfully done that, 15 but it has been incredibly expensive and an 16 incredible amount of work for them to do that. 17 They should be congratulated for having 18 accomplished it. 19 However, I think that culturing of a pool 20 will give the same answer and is a less expensive 21 approach. 22 MR. SKINNER: Dr. Linden?

DR. LINDEN: My question actually relates 1 2 to the same issue. You mentioned in Europe that 3 they were routinely pooling prior to storage and culturing. Are they using sterile docking systems 4 5 similar to what or identical to what we have in 6 this country, or do they have, you know, other 7 mechanisms for pooling that are not available in 8 this country? 9 DR. AuBUCHON: I am familiar with the 10 techniques that are being used in the Netherlands 11 and Belgium, in particular, but I think those 12 techniques are fairly standard throughout Western Europe. There is a difference in the type of 13 14 platelet product. They produce platelets through a 15 different system called buffy coat platelets as 16 opposed to platelet-rich plasma-derived platelets. 17 That really should not have any bearing on the 18 bacterial contamination risk. 19 But once the platelet units are prepared 20 from the whole blood unit or the buffy coat units 21 are prepared from the whole blood unit, the further 22 processing is all handled by a sterile connecting

1 device. There are also instruments available in 2 Europe to do the final centrifugation, pooling, and 3 filtering all in one step. And the culturing is--the culture sample, the culture aliquot is 4 5 taken from the pool using sterile connecting 6 devices. At that point they enter the small sample 7 pouch with needle and syringe and place it in a 8 culture bottle just the way that we do. 9 MR. SKINNER: We will have a presentation tomorrow on the Dutch experience where we can probe 10 11 some of the European issues a little bit more. 12 Dr. Penner? DR. PENNER: Jim, we have been experiencing some 13 14 platelet shortages, temporary, in our 15 region. Is this something that is a little more 16 common or is it just a local phenomenon? 17 DR. AuBUCHON: Well, platelets never seem 18 to be in abundance, even in the best of circumstances. All I can tell you is that in my 19 20 area of the country, in the Northeast, we have not 21 experienced any shortages of platelets. However, 22 our blood center is only culturing apheresis

1 products. They are not culturing whole 2 blood-derived products. That leaves the individual 3 hospital to fend for itself and either do nothing or to use one of the lesser sensitive techniques. 4 5 There have been periodic platelet shortages, whole blood-derived platelet shortages, 6 7 even in my part of the country, even though they 8 are not being cultured. So I don't have data on 9 that, but I think Dr. Sazama will have data 10 tomorrow from the AABB about that. 11 DR. PENNER: Because this has been very 12 uncommon for us in the past, and actually I had never experienced it before until recently. So I 13 14 am not sure what is creating this situation, and 15 maybe it is local. 16 DR. AuBUCHON: I guess I would ask you, 17 Dr. Penner, are your whole blood-derived platelets 18 being cultured? 19 DR. PENNER: Yes, they are. 20 DR. AuBUCHON: Okay. 21 MR. SKINNER: If I could follow up just on 22 that as well, again, thinking back to the

difference between the AABB and the CAP standard, 1 2 have you seen a serious impact on availability as a 3 result of implementation of the voluntary standard? And is it a concern about availability that is in 4 5 any way slowing down moving to a mandatory 6 standard, to the Phase II? 7 DR. AuBUCHON: No shortages--no concerns 8 about shortages have been reported to the CAP. So 9 I don't know of any, but you heard Dr. Penner note, you know, some difficulties in his area. I am not 10 11 aware of any. In terms of why the standard was not 12 13 initiated as a Phase II, the concern really related 14 more to the ability of institutions to implement 15 the techniques than to any effect the techniques 16 might have on platelet availability. That was not 17 what was truly driving the issue. MR. SKINNER: Other discussion? Dr. 18 19 Gomperts? 20 DR. GOMPERTS: Jim, there was one particular figure that really hit me, and perhaps I 21

didn't quite understand it. Did you say that

22

approximately half of individuals receiving 1 2 platelets who have a febrile response with a 3 2-degree or above febrile response are associated with bacterial contamination? That is more or less 4 5 what I remember, which means this is guite a remarkable statistic. I don't know the incidence 6 7 of such an occurrence, but I suspect it is not that 8 low frequency, in which case the bacterial testing 9 that Dr. Rock(?) talked about is perhaps missing 10 quite a few of these. 11 DR. AuBUCHON: In the study that I 12 mentioned, 1 percent of transfusion recipients 13 either had a 1-degree rise in temperature plus 14 chills and rigors, or a 2-degree rise in 15 temperature. So that was 1 percent of all the 16 platelet transfusions. 17 After those clinical signs and symptoms 18 were noted, the unit and the patient were both cultured. They documented--I believe I noted ten 19 20 cases of bacteremia and four cases of sepsis. And if the patient had a 1-degree rise and chills and 21 22 rigors, the chance that that was truly a

contaminated unit that could be documented through 1 2 that parallel culturing approach, a patient and 3 unit, the chance was 27 percent, and a 2-degree rise was 42 percent. But that's based on a 4 5 proportion of individuals who met the initial criteria for the culturing study, which was 1 6 7 percent of all platelet transfusion recipients. 8 DR. GOMPERTS: Okay. Thank you. 9 MR. SKINNER: Other questions? Dr. Sayers? 10 11 DR. SAYERS: Thanks. This is follow-up to 12 Ed's question. This study, Jim, were those leuko-filtered transfusion products? 13 14 DR. AuBUCHON: No, I do not believe they 15 were. Not pre-storage filtered, anyway. MR. SKINNER: Dr. Kuehnert? 16 17 DR. KUEHNERT: I just wondered on that 18 study and also in general, I was wondering what the storage times were in that study concerning those 19 20 that developed sepsis and bacteremia. And then the 21 more general question was just about the whole 22 issue of day five versus seven storage time. We

1 talk about the experience in the 1980s about how 2 the storage time was extended and then it was 3 realized that there was a problem--quote, problem--and then it was scaled back. But I wasn't 4 5 ever sure what those data actually were and if 6 there's any data currently existing comparing day 7 five versus seven as far as contamination and 8 whether there's a significant difference. What do 9 we expect? I mean, in looking to do a study, what 10 is the expectation based on the data? 11 DR. AuBUCHON: I don't recall from the 12 paper by Chu, et al., whether or not they reported the storage times of those units. I just don't 13 14 recall. 15 DR. BRECHER: To put factual information

15 on the table, they did. They averaged 4.5 days.
17 But the age of all of their platelets was also 4.5
18 days, the university system getting all the
19 platelets and transfusing them.

20 DR. AUBUCHON: There certainly was 21 attention focused on the age issue from the study 22 reported by Morrow, et al., from Hopkins in the

early 1990s where they noted that most of their
 platelets were transfused on day two or day three,
 but most of their reports of fever and sepsis came
 from platelets that were transfused on day five.

5 It is not unreasonable to think that the 6 longer you store a contaminated unit, the higher 7 the bacterial inoculum will be. Ultimately it will 8 reach a plateau. But for most organisms, 9 particularly the gram negatives and the ones that 10 we are most concerned about, they seem to have very 11 rapid growth curves, and probably reach their

12 maximum within two to three days. So for them, the 13 storage time is less of an issue. Those units are 14 always dangerous.

DR. KUEHNERT: That was something I wanted to point out. I think on the earlier discussion there was talk about, well, what would be the impact of then decreasing to day three, and from, you know, data that has been previously

20 published, it has been shown that really, since 21 fatalities are primarily associated with gram 22 negative organisms, they grow so quickly that

1 reducing the storage time would not be an effective 2 measure. And what we are talking about when we are 3 talking about day five to seven are more likely gram-positive organisms, which do cause fatalities, 4 5 although not in the same proportion as gram 6 negatives. 7 So, again, I was just wondering what the 8 data were as far as the difference between day five 9 and seven, and it doesn't sound like there really 10 is anything out there. 11 MR. SKINNER: I wonder if there are any 12 more questions for Dr. AuBuchon. Yes, Dr. 13 Holmberg? 14 DR. HOLMBERG: Jim, I just have a 15 question. Again, I'm stuck on the CAP Phase I 16 requirement of the 97 percent of the laboratories 17 inspected had implemented the bacterial testing. 18 One of the concerns that the Assistant 19 Secretary for Health has had is the impact this has 20 had on the hospitals, especially in the endpoint 21 testing. And so I have a real hard time 22 understanding that 97 percent, that if that number

of 97 percent is accurate, then we don't have a
 problem at the hospitals.

3 DR. AuBUCHON: The mechanisms that the CAP 4 authorizes in that question for a laboratory to use

5 in order to detect bacteria, or several, it 6 included swirling, which is not accepted by the 7 AABB as a standard technique to be used for routine 8 release of platelets. It's authorized by the AABB 9 in emergency release when you don't have time to do another technique. But it is allowed by the CAP to 10 be used routinely, and that may account for some of 11 12 the difference.

13 There is still some debate in the blood 14 banking community how sensitive looking for

15 swirling is. For those around the table who are 16 not blood bankers, swirling is sometimes referred 17 to as a shimmering opalescence that one sees by 18 holding the bag up to the light and rocking it back 19 and forth. And if a platelet remains in normal

20 disk form, they will line up one against the other 21 and create a small diffraction grid and create a 22 rainbow. And you get many little rainbows being

1 formed, billions of rainbows being formed in the 2 bag, and it appears to be an opalescent bag. 3 That indicates that the pH is in the acceptable range, above 6.2, and the platelets are 4 5 happy. If you have a bacterially contaminated 6 unit, the pH usually--not always--will drop and 7 cause the platelets to sphere up into balls, and 8 they can no longer create the diffraction grid. 9 The technique is, in my opinion, and based on our experimentation in our own laboratory, about 10 11 as sensitive as gram staining. But it is far from 12 perfect. There are others who believe that it is 13 less sensitive than gram staining and, therefore, 14 did not want the AABB to accept it as a routine 15 method. 16 It costs nothing. It can be performed at 17 the end of storage. It takes two seconds. And, frankly, it's fun to do. 19 [Laughter.] 20 DR. AuBUCHON: So this may be the

162

18

21 technique that many of those laboratories are 22 using. Clearly, it is not as sensitive as culture.

DR. HOLMBERG: Again, I just want to echo 1 2 some of your comments that you made as far as 3 partnership and working together, and also Dr. Midthun's comments earlier. The whole intent of 4 5 the letter that was sent to the AABB was also not 6 only to ask about the delay but also to try to get 7 a mechanism so that we could have some roundtable 8 discussion. And the way that we are approaching 9 this is that what we want to do is to have this 10 public forum, which we are having today, and then 11 we will follow up with a roundtable discussion with 12 the parties, all available parties, including all 13 the agencies, Federal Government agencies. 14 DR. AuBUCHON: I am happy to hear that, 15 and I look forward to being able to help any way I 16 can. 17 DR. HOLMBERG: Thank you. 18 MR. SKINNER: Just one last question. On Dr. Holmberg's comment, do you have any specific 19 20 data that indicates how they're complying with the CAP test and how this 97.4 percent breaks out, 21 22 which ones they're using, what percentage are using

```
swirling, what percent dipsticks, what percent
 1
 2
     cultures?
 3
              DR. AUBUCHON: No, I do not.
              MR. SKINNER: Okay. Thank you very much.
 4
 5
              DR. AuBUCHON: Thank you.
 6
              MR. SKINNER: We are a little bit ahead of
 7
     schedule. I don't know if the committee wants to
    have any discussion among itself before we break
 8
 9
     for lunch. We can certainly do that if there are
10
     any comments or questions from the committee in
11
     general.
               [No response.]
12
13
              MR. SKINNER: If not, then we will break
14
     for lunch, and the agenda says we are to come back
15
     at 2:00, but we are a half-hour early, so let's
     reconvene at 1:30. Thank you.
16
17
               [Luncheon recess.]
```

1 AFTERNOON SESSION 2 [1:47 p.m.] MR. SKINNER: I think a majority or more 3 of the committee is back, so if people would take 4 5 their seats, we will get ready to begin this 6 afternoon's presentations. Thank you. 7 The next presentation, we are going to 8 hear from the FDA. We are going to hear from 9 Jaroslav Vostal, who is going to speak to us about 10 the approved devices and procedures to reduce the 11 risk of bacterial contamination in platelet 12 products. Thank you. DR. VOSTAL: Thank you. Good afternoon. 13 14 It's my pleasure to be here and to present some of 15 the FDA current thinking on actually quite a broad 16 area that includes sample diversion pouches in 17 whole blood collection kits, detection of bacteria 18 and platelet products, and also alternate platelet 19 storage such as platelet stored out to seven days 20 or pre-storage pooling. So let me start off by talking about the 21 22 sample pouch. The sample pouch is an idea that

1 suggests that adding a separate bag to a collection
2 set could open up the possibility that you collect
3 your disease testing up front so you don't have to
4 wait until the end of the product collection. And

5 sometimes the venous access is lost at the end of a 6 product collection, and then you have difficulty 7 gaining those disease testing samples. So this 8 way, if you collect them up front, this gets around 9 that problem.

10 The additional benefit of this could be 11 that if there is a contamination at the time of 12 collection of the blood that's going through, if 13 that blood could be diverted away from the product 14 bag, you may have a reduction of bacterial

15 contamination in the final product.

16 Now, there isn't that much data on this 17 that actually proves this concept, but the 18 benefit--but we are understanding of the potential 19 benefits of this idea.

So approximately two years ago, FDA
presented the concept of the design of a sample
diversion pouch at a BPAC meeting, and our design

1 included characteristics such as: it has to be a 2 closed system; the diverted blood is separated from 3 the final blood product by unidirectional flow so it doesn't contaminate the final product; and the 4 5 volume of diverted blood is sufficient to provide 6 samples for disease testing and potentially reduce 7 bacterial contamination in the transfusion product. 8 Since then, three companies have come 9 forward and applied for NDA supplements for sample diversion pouches, and these are the Baxter 10 11 Corporation in January 2003; Pall Corporation, 12 December 2002; and Terumo in September 2003. 13 The criteria for approval of this bag has 14 been conformance with the FDA design proposal to 15 BPAC. We did not require any clinical data if the 16 manufacturers didn't claim decrease for bacterial 17 contamination through the use of their product. 18 These products are on the market currently. However, there have been some growing 19 20 pains with implications of these products, and some 21 of the initial approved designs continue to be 22 improved based on clinical experience.

1 So let me talk about bacterial detection 2 devices that have been cleared by the FDA. There 3 are two devices that have been cleared: the BacT/Alert by BioMerieux, that was cleared in 4 5 February 2002; and BDS Instrument by Pall 6 Corporation, that was cleared October 2nd. Now, 7 these are specifically cleared for quality control 8 of the platelet collection process. 9 FDA current thinking for clearance of these devices is based on the intended use of the 10 11 device, and it's the manufacturer that presents us 12 with the intended use of their device. We recognize two intended uses. One is quality 13 14 control indication, and quality control is the 15 sampling of a small number of collected products to 16 assure that the platelet collection process is in 17 control. And this could be as few as four units 18 per month. 19 Now, the decision here, the decision to 20 transfuse actually does not depend on the results 21 of this quality control testing. So you don't have 22 to wait for the results. This is different from if

1 you want to come in for an indication that is 2 intended for product release. Here you screen all 3 of the product prior to release for transfusion, and your decision to transfuse depends on the 4 5 results. 6 This slide summarizes some of the points 7 to consider when you're reviewing bacterial detection by automatic culture devices. The 8 9 contamination at the collection is very low, and 10 there needs to be time to allow bacterial 11 proliferation in the product to reach detectable 12 levels. This usually is 24 to 48 hours. 13 On the other hand, to preserve shelf life 14 of the product, you need to sample the product as 15 soon as possible after collection. However if you 16 sample too early, this can lead to a sampling 17 error. If you take a larger sample of volume, this 18 improves sensitivity of the device, but also depletes the product. So all these things have to 19

20 be balanced against one another.

Now, also, detection in the devicerequires proliferation of bacteria in the device,

1 and this usually adds another 24 to 48 hours to the 2 time before you can get a result. And, finally, detection is based on metabolically active bacteria 3 in the device. It may not detect dead bacteria or 4 5 endotoxin that was produced by bacteria that 6 subsequently died. 7 Now, there are some unique characteristics to bacterial growth in transfusion products. 8 9 There's a wide variety of bacterial species that has been reported, and this includes gram-negative 10 11 and gram-positive bacteria. As I mentioned 12 already, the initial inoculum, it was very low, probably in the 1 to 5 CFUs per ml or less. 13 14 However, once bacteria do get into a platelet 15 product, since it's stored at room temperature and 16 has sufficient nutrients to support bacteria, they 17 can quickly amplify and proliferate to tremendous 18 levels, up to a million CFUs per ml. And the rate of this bacterial proliferation in a product is 19 20 dependent on the bacterial species, the storage 21 temperature of the product, and also donor

22 characteristics, such as antibodies or complement

1 concentrations.

2 Now, FDA current thinking on clearance of 3 bacterial detection devices used for QC of platelet products, this is the criteria that we've applied 4 5 to approval or clearance of the two devices that are already on the market. We've relied on in 6 7 vitro testing. This is laboratory testing. In 8 these tests, the devices tested platelet products 9 intentionally contaminated with variable levels of bacteria, which is commonly referred to as a 10 11 spiking study. 12 This type of testing identifies device 13 sensitivity for a particular bacterial species and 14 also the optimal sampling time and the sample 15 volume that the device works with to increase its 16 sensitivity. 17 Now, devices with low sensitivity need to 18 allow time for bacterial proliferation in the platelet product, and thus sampling is done later 19 20 in the storage of the product. 21 Now, this is a graphic demonstration of 22 what these type of spiking studies look like. If

1 this denotes the storage of the platelet product at 2 room temperature, you would spike in bacteria. 3 Usually it's 1 to 10 colony-forming units per ml. And then you'd take a sample of the contaminated 4 5 unit, put it into your device, and read out the 6 device, usually 24 to 48 hours later, and also 7 determine the actual concentration of the bacteria 8 at the time of sampling. It's a relatively 9 straightforward type of an experiment. 10 We did have a lot of discussion early on 11 to decide what was the appropriate list of bacteria 12 that should be tested in these devices, and we 13 finally settled down on a minimal list of bacteria 14 that was actually put together by Dr. Mark Brecher 15 when he was evaluating the BacT/Alert, and he used 16 15 organisms, and his report came out in 17 Transfusion in 2001. 18 Now, other companies can use the same list or a smaller or a longer list of bacteria. 19 20 However, the final labeling of the clear device 21 will reflect the specific bacteria tested in that

22 device.

So that was the criteria for approval of
 devices for quality control. Now we're going to
 move into devices approved for release of platelet
 products for transfusion. The criteria here is

5 more stringent because the device assures that 6 products are not contaminated with greater than a 7 certain level of bacteria, and this is based on 8 labeling of the device which is derived from some 9 of the in vitro studies.

10 For culture-based detection devices, we 11 need to establish the predictive value of an early 12 culture sample. We also need to establish the 13 false negative rate and the false positive rate for 14 the device under actual use conditions.

15 So for these devices, for release of 16 products, we would also request in vitro testing, 17 same as was done for quality control indication. 18 But in addition, we would request a field trial to 19 demonstrate the performance of the devices under

actual use conditions. This would involve sampling
of transfusion products from routine collections.
And particularly for culture-based devices, we want

1 to see a demonstration that culture is also the 2 sample taken early in a storage period are 3 predictive of results of a sample taken at the end of storage or at the time of release of the 4

5 product.

6 Now, here's a schematic of what this type 7 of study would look like, or at least the concept of a study that we envision, and this was presented 8 9 at BPAC in December 2002.

10 These would be normal products collected 11 as part of routine operation of a blood center. 12 There would be the initial culture taken early on, probably 24 hours. Then at the time of release of 13 14 the products or at outdate, a second sample would 15 be taken and also put into the culture so that the 16 results of the initial culture could be confirmed. 17 Now, because bacteria proliferate during 18 this time, the second culture has an easier time to detect the level of bacteria because the levels do 19 20 get higher and higher. So we consider this as the 21 reference standard. 22

Now, the field trial would have several

1 characteristics. One would be a primary endpoint, 2 and this would be a concordance of the first and 3 second culture with 95 percent confidence. The study would establish the sensitivity, specificity, 4 5 and also the predictive value of the first culture. 6 This study may require a large study due 7 to a low level of contamination, and some of the estimates we've received would be that 30,000 to 8 9 50,000 units would have to be screened to determine with sufficient statistical power those criteria 10 11 that we're looking for. Even though this is such a 12 large hurdle, this approach was supported by the BPAC, Blood Products Advisory Committee. 13 14 Now, since the cost of the studies is so 15 large and has been the limiting factor in getting 16 these studies off the ground, we have also 17 considered combining these types of trials with the extension of platelet storage. And, therefore, 18 here are a couple of ideas how using bacterial 19 20 screening can be used to approve future platelet 21 products. 22 As I mentioned already, applying

culture-based bacterial detection for a product 1 2 limits the shelf life by 24 to 48 hours. Now, it 3 would be relatively easy to extend--or it would appear that it would be easy to extend the shelf 4 5 life of platelets. However, the shelf life was already limited by concerns over bacterial 6 7 contamination by the 1986 BPAC. 8 Therefore, application of bacterial 9 screening and shelf life extension could be 10 combined in field trials to reduce the cost of the 11 trial and then eventually to combine them in 12 clinical practice. Now, one way of getting at this would be 13 14 to look at the relative risk of the various 15 products. Currently the risk that we have--and 16 it's not clear exactly what it is, but we'll just 17 call it current risk. And this is what you would 18 get from five-day-old platelets. 19 Now, we know that there is a higher risk 20 to seven-day platelets because of the decision and 21 data that was presented to the 1986 BPAC. So 22 seven-day platelets are at a higher risk. There's

1 also a potential for--that we're also talking about 2 pre-storage polled platelets. 3 Now, there is a higher bacterial risk, and this was established by a paper by Steve Wagner in 4 5 1985, and he compared the bacteria growth rates in single units, single random donor units or the 6 7 pooled units. And since the pooled units has a 8 larger volume, the bacteria can actually 9 proliferate to a higher load and, therefore, be a 10 greater risk to a recipient if they receive that 11 higher load. So based on these two factors, we consider 12 13 seven-day platelets and pre-storage pooled 14 platelets a higher bacterial risk than the current 15 risk. 16 Now, we're not comfortable with the 17 current risk, and we understand all the concerns 18 that were voiced today, and we agree with them. We think that this risk should be reduced to a lower 19 20 risk that would be defined by or enabled by 21 application of a bacterial detection method. 22 So once this is in place, this will become

1 the new current risk. And then any platelets, any 2 platelet products that will be approved should have 3 the same relative risk as the new lower risk 4 established by bacterial screening.

5 Let me just summarize here. The bacterial 6 risk of future products should not be greater than 7 the risk of a five-day platelet screen for 8 bacterial contamination with an FDA-approved method 9 or device, and the relative bacterial risk of a 10 novel platelet product should be demonstrated in a 11 field trial. 12 Here is a schematic of what these field 13 trials could look like, and this is just the 14 concept that we present. We are open to 15 suggestions and discussion about the design of the 16 specifics of these trials. 17 This particular trial tries to combine 18 transfusion of the products stored up to day six and day seven. This could be done under IND if 19 20 these platelets are then screened prior to 21 transfusion with some kind of a point-of-care 22 screening device, such as gram stain. What we

1 suggest that this study should have, it should have
2 a first culture, as done earlier, and then a second
3 culture taken at day six or day seven. And then
4 the results should be compared to see whether the

5 first culture was predictive of those later 6 cultures.

Now, we have also been approached with a
study that's slightly different from this that
utilizes outdated units. And here instead of

10 transfusing the units that go beyond five days, 11 they're allowed to outdate--outdate on the shelf. 12 And then these are tested again to compare against 13 the initial culture or against the day five 14 culture. And the thought is that if you could

15 demonstrate that the risk of day five and day seven 16 is equivalent, that would be sufficient data to 17 approve a device for release of platelets out to 18 seven days.

So those types of studies are more suited for single-donor platelets, also referred to as apheresis platelets. We've already talked about whole blood-derived platelets, and these have a

1 slightly different collection scheme. Here you 2 have, for whole blood-derived platelets, the single units that are collected from single donors are 3 combined into a final pooled product. The current 4 5 standard for this product is that it can be pooled 6 only four hours prior to transfusion, and that's 7 because there's concern about bacterial 8 proliferation in the pool if it's stored beyond 9 four hours.

10 Now, as Dr. AuBuchon mentioned, there's a 11 lot of advantages to pooling up front. You could 12 set it up so there would be only one bacterial 13 detection or one leukoreduction filter. And so 14 economically, those platelets would be better.

15 However, there is that issue about bacterial 16 contamination.

So here are a couple ideas about how
devices could be tested against pre-storage pooled
platelets. In this type of laboratory study or a

20 spiking study, we would have five or six individual 21 units, and we would like to see one of those units 22 contaminated with bacteria. So one of these would
1 be spiked. These would then be combined together 2 into a pool, and as you can see, there's about at 3 least a five-fold dilution effect. And we're concerned about this dilution effect and how it 4 5 would affect the sensitivity of the devices. So 6 we'd like to see evaluation of the devices under 7 these conditions, even in the laboratory situation. 8 Once this is established, I think the 9 study that would demonstrate the--the field trial 10 that would demonstrate the actual usability of this 11 product under a clinical condition would be very 12 similar to what we proposed for the other apheresis 13 platelets. Again, there's an initial culture, and 14 this is confirmed by a later culture to make sure 15 that there's a predictive value to the first 16 culture. 17 Now, solving of the bacteria problem is 18 only half the story, and that's because when you have novel platelet products, you have to worry 19 20 about the efficacy of the products as well as their risk of bacterial contamination. 21 22 So in order for these novel platelet

1 products to be approved, there has to be a 2 demonstration of adequate platelet efficacy after storage. Platelets with extended shelf life or 3 pre-storage pooled platelets need to function as 4 5 well as the current platelet products when 6 transfused. Storage containers need to be 7 validated for extended storage or for pre-storage 8 pooling. 9 I'm now going to describe to you how we evaluate the efficacy of platelet products that 10 11 have been stored under novel conditions. This here 12 is what we referred to as our pyramid of concern. 13 You probably can't see that very well down here, 14 but the level of testing is initiated by in vitro 15 testing, such as tests for platelet biochemistry 16 and platelet physiology. We would reserve that for 17 minimal concerns about platelet efficacy. 18 As we move up to more serious concerns, we then get into in vivo studies, which involve 19 20 radiolabeled platelets. The concept behind this is 21 that a product that has been stored under novel 22 conditions can be radiolabeled and infused into a

1 volunteer, and then you will look at the recovery 2 and survival of those platelets in circulation. 3 And if there is any level of damage, those platelets will most likely be removed faster than a 4 5 standard platelet. So we do a comparison between 6 control and novel platelet products in terms of how 7 they circulate. 8 If there are significant concerns about 9 platelets and platelet damage, we would move on to 10 hemostasis clinical trials. These are trials that 11 look at the ability of the platelet to prevent or 12 stop bleeding in a thrombocytopenic patient. These 13 are relatively expensive studies, so we reserve 14 those studies only for cases of major concern. 15 This side of the slide, I've listed some 16 of the examples of where different changes would 17 fit in terms of our testing scheme. You'll notice 18 there are two gray zones that the applications could fall into, where they could call into the 19 higher zone or the lower zone. 20

21 Now, for very low levels of concerns, we 22 can still use in vitro testing. However, as you

1 start to modify current platelet storage or the 2 solutions that are used to collect platelets, we 3 tend to move into radiolabeled studies. And products that fall under that would be five- to 4 5 seven-day storage container or a new apheresis 6 collection device. 7 Again, if you move up to designing a totally new storage media or storing platelets 8 9 beyond seven days to 14 days and longer, then you start to wonder whether those platelets can still 10 11 work. And, again, you might be convinced that they 12 should be tested in a hemostasis type trial. And, finally, if you have significantly 13 14 modified platelets, like platelet substitutes, or 15 chemically modified platelets, such as 16 pathogen-reduced platelets, those would be used or 17 evaluated in these type of hemostasis trials. So in terms of pre-storage pooling, 18 there's actually a bit of a problem with our 19 20 current scheme. The current scheme is appropriate 21 for validation of single-donor products because

they're autologous, they can be reinfused into the

22

1 volunteer donors. Ethical issues prevent use of 2 this approach with pooled products in healthy volunteers. Because you have five or six different 3 donors that produced that final pool, there would 4 5 be an issue of (?) immunization to the healthy volunteer. Therefore, we don't think that this 6 7 radiolabeled approach can be used in evaluating of 8 pre-storage pooled platelets. 9 To get around this problem, we suggested a new approach back in March 2003, and that was to 10 11 use transfusion responses in thrombocytopenic 12 patients receiving platelet products as therapy. 13 So these patients are going to be receiving pooled 14 products anyway, and it will be just a matter of 15 designing a study around their therapy. 16 What we proposed was that there could be 17 two arms of the study. One arm would be the 18 four-hour pool, and the other arm would be a pool that was stored--pooled together pre-storage and 19 20 stored out to five days. The endpoints of the study would be 21 22 corrected count increments and also the transfusion

1 frequencies between subsequent transfusion. 2 Now the study size will probably be larger 3 than what we're used to with the radiolabeled platelets because the type of patient we're using, 4 5 they're on chemotherapy and there's a lot of 6 reasons for them to have increased platelet 7 consumptions. So that will have to be figured into 8 the design of the study, but probably would be on 9 the order of about 50 patients per arm. 10 So, to summarize where we stand, I'd just 11 like to point out the gaps in the current 12 regulatory landscape. For bacterial detection devices, so far 13 14 these are not cleared for release of platelet 15 products for either day five or day seven products. 16 They're also not cleared for testing, and that's 17 either release or QC testing, of pooled whole 18 blood-derived platelets. Also, they're not cleared for platelet released based on point-of-care 19 20 sampling. Now, I didn't talk about these types of 21 22 devices, but I think these will probably come in

1 the future. 2 And, finally, the efficacy of these 3 products needs to be evaluated, and storage bags or devices are not cleared for pre-storage pooling of 4 5 whole blood-derived platelets, either up to day five or day seven. 6 So these are the studies that we would 7 8 propose that could fill some of these gaps: 9 A field trial of culture-based devices for screening platelets to determine the predictive 10 11 value of a test, and this would be for day five, 12 day seven, or for a pooled product. 13 We'd like to see in vitro tests for 14 bacterial detection of pooled random donor 15 platelets. We'd like to see in vitro and field trial 16 17 for point-of-care bacterial detection devices. 18 And, finally, we'd like to see evaluation 19 of platelet efficacy for bags used for pre-storage 20 pooled platelets. 21 Thank you very much. 22 MR. SKINNER: Thank you, Dr. Vostal.

1 Questions? Dr. Linden? 2 DR. LINDEN: On your pyramid of concerns 3 about platelet efficacy, you didn't mention the extension from five days to seven days on there. 4 5 You only mentioned extension beyond seven days. Is 6 platelet efficacy a concern if one were looking at 7 the five days to seven days? 8 DR. VOSTAL: The concern is still there 9 because even though platelets were transfused out 10 to seven days back in the mid-1980s, the platelet 11 product has changed significantly since then. Now 12 most of the platelets are leukoreduced. Back then, 13 those were whole blood-derived platelets. Now we 14 have apheresis platelets. And, also, the storage 15 bags that are used to store these products have 16 changed significantly since then in terms of gas 17 transport. 18 So we like to see evaluation of the seven-day platelets as well with the current 19 20 storage conditions, and actually I might have just 21 raced over this, but those would fall under the 22 radiolabeled type studies. We already have

1 approved one bag from Gambro Corporation for 2 storage of apheresis platelets for seven-day 3 platelets. 4 MR. SKINNER: Other questions? Yes? 5 DR. LOPES: Do policies in the United 6 States allow us to use the experience of Europeans, 7 who are apparently doing some of these things 8 already? Do we have to start from scratch with the 9 field studies? 10 DR. VOSTAL: Well, this is a very 11 interesting point because Europe in some ways is 12 ahead of us. The difference is that they collect platelets through a different methodology. They 13 14 collect buffy coat platelets as opposed to 15 platelet-rich-plasma platelets. 16 We currently feel that there is enough of 17 a difference between the two products that the PRP 18 platelets used in the U.S. would have to be 19 evaluated on their own. Some of the differences 20 are that there is a higher leukocyte collection for the buffy coat platelets. They get to sit with the 21

product longer, with the white cells present, and

22

1 they may be able to take care of bacteria that are 2 contaminating the unit from the beginning. 3 MR. SKINNER: Dr. Kuehnert? DR. KUEHNERT: Could you go back to--you 4 5 had a slide on risk that compared five-day screened 6 to five-day not screened compared to seven-day. 7 And I mentioned this before, earlier, about--I 8 mean, I think this is a good way to quantify it, 9 but what I'm struggling with is, again, this higher 10 risk based on a 1986 BPAC decision and what the 11 data actually were. And I think this is an 12 important point rather than just sort of an 13 academic point, because I think if you are trying 14 to compare to say that five days compared with 15 seven days is somehow a quantifiable risk and then 16 you're saying that by screening you reduce that 17 risk to some point, you want to know how much 18 you're reducing by and what's acceptable. 19 So with screening at seven days, where are 20 you between orange and red there? Are you 90 21 percent there or 95 percent there? You really 22 don't know unless you know what the risk is at

seven days. So I just wondered if you knew what 1 2 the data were in 1986, and if not, you know, how 3 you're going to sort of estimate that risk there going in, because it makes a difference as far as 4 5 the power, you know, I think needed to -- the power of the study. 6 7 DR. VOSTAL: I think that the 1986 8 decision as based on a relatively small amount of 9 data, and there were anecdotal concerns about 10 sepsis due to platelet transfusions. 11 I don't think they had any type of 12 surveillance in place that would tell them that 13 this is the current bacterial risk across the 14 country. I think we just sort of accept that they 15 recognize the risk there and they move the storage 16 back to sort of help alleviate that risk. 17 DR. KUEHNERT: Is there any idea about 18 what that risk is, though, in terms of just relative risk between five and seven days? I mean, 19 20 is it--you know, is there any expectation sort of 21 going into a study to see, you know, what the 22 effect might be?

1 DR. VOSTAL: I don't know what that risk 2 is. I think, you know, if we talk about doing this 3 kind of study, you know, where you can actually compare the contamination rate at day six and at 4 5 day seven, it may be able to tell you what risk you 6 are preventing--although, I mean, it's different 7 because these will be platelets that are already screened up front, and the ones that are 8 9 contaminated and picked up by the device will be 10 eliminated from that study. 11 DR. KUEHNERT: One other point. The other 12 concern I might have--and this gets to be a concern when you get to doing 50,000 units, 100,000 units. 13 14 You are going to have some rate of false positives 15 at each point, and so there might be a random 16 chance of getting a false positive at one, the 17 first sample and at the second sample, and I 18 wondered how you might sort of deal with that in 19 terms of trying to figure out what the true 20 positive actually is. DR. VOSTAL: I think that's a good point. 21 22 You'd probably have to have a large enough study so

you'll pick up, you know, a significant number of 1 2 true positives that would override your false 3 negative or false positives. 4 MR. SKINNER: Dr. Sayers? 5 DR. SAYERS: Yes, can we make any predictions about the infectivity of products that 6 7 do not have many bacteria in them, are falsely 8 negative by culture on day one, but subsequently 9 positive by culture say on day four? 10 DR. VOSTAL: The question was whether--what was the bacterial risk to those or 11 12 what was the rate? 13 DR. SAYERS: I'm just wondering if we can 14 make any predictions about those products. They're 15 falsely negative, and you're ascribing positivity 16 to them because they do subsequently become 17 positive by culture. And presumably they're not 18 positive by culture early on because there are few 19 contaminating bacteria there. 20 So do we have any predictions we can make about how infective they are, you know, whether 21

193

22 they would be positive in the biological test,

1 which would be transfusion transmission of bacteria 2 in a patient? 3 DR. VOSTAL: Right, I think it all depends on the bacterial load that you end up transfusing. 4 5 If it's a relatively low bacterial load, like if 6 it's 100 CFUs per ml, you know, chances are it 7 would not cause significant mortality/morbidity. But if you would miss a culture up front and those 8 9 bacteria grow up to a million or greater per ml, you know, I think the chances of having a 10 11 significant effect are good. 12 MR. SKINNER: Colonel Sylvester? 13 COLONEL SYLVESTER: Yes, two things. 14 After the 1986 rollback of the date from seven 15 years to five years, did FDA see a reduction in the 16 number of bacteria-contaminated reports? 17 DR. VOSTAL: I'm not aware of any data 18 like that. 19 COLONEL SYLVESTER: And then the other one 20 was: Based on what you're showing, the only way 21 this is going to happen, extension from five to 22 seven days would be if they do the 30,000 to 50,000

1 study to get the device approved, correct? 2 DR. VOSTAL: Yes. 3 COLONEL SYLVESTER: So that study would have to be done first before any of the other 4 5 studies would meet the FDA's standards because it has to be with a cleared device. 6 7 DR. VOSTAL: So the question is can you do the efficacy study first and then the bacterial 8 9 detection later, or --10 COLONEL SYLVESTER: Right. Well, the way 11 I read it is that the studies for extending from 12 five to seven days, they have to be done with a 13 cleared device. 14 DR. VOSTAL: Yes, bacterial. 15 COLONEL SYLVESTER: The only way we're 16 going to get a cleared device is if they do the 17 study with the 50,000 sample, correct? 18 DR. VOSTAL: That's correct. I mean, the 19 device we're talking about is the bacterial 20 detection device, yes. MR. SKINNER: Dr. Heaton? 21

22 DR. HEATON: A couple of points.

1 First, I was present at the 1986 BPAC 2 discussion, and you made the statement that 3 platelet storage has changed a lot since then. The reality is that in 1986 the commonly used random 4 5 donor platelet containers was the Baxter PL732 6 container and then the Cutter (?) CLX, now the (?) 7 CLX. So the random donor platelet containers have 8 changed very, very little between now and then. 9 It's true apheresis containers have changed a lot, but random donor platelet containers didn't. 10 11 Secondly, as I remember, the bulk of the 12 platelet-contaminated events reported, nearly all were transfused at about four or five days. And if 13 14 I remember correctly, there were almost none that 15 were transfused at seven days. And the BPAC was 16 concerned at the theoretical probability that there 17 would be an extrapolated growth between five days 18 and seven days. So to answer Matthew's question, there was remarkably little evidence about the 19 20 incremental risk that you've got between five days 21 and seven days. 22 The question I have for you, though, is a

little different, and that is that the standard 1 2 that you've identified, the 95-percent concordance 3 between day one and the second culture and the 50,000-unit trial in an operating environment and 4 5 doing double cultures on day five and day seven, if you extrapolate the number of platelets that 6 7 outdate in the entire U.S., this would take a 8 manufacturer about a year to do this trial and it 9 would be a multi-million-dollar trial. 10 My question to you is: Has any 11 manufacturer stepped up to the FDA to suggest that 12 they would care to fund such a trial? 13 DR. VOSTAL: Unfortunately, the 14 manufacturers have not stepped forward and 15 evaluated their devices for --16 DR. HEATON: Are you surprised? 17 DR. VOSTAL: Well, I think actually under 18 the current conditions, since the first culture is 19 already being done on a routine basis, collecting 20 the second culture should not add that much cost to 21 this type of a study. 22 DR. HEATON: Yes, but you've got to have

that number of outdates platelets and presumably 1 2 you couldn't use the platelet product in the 3 interim. So you're actually diverting platelet production for the purpose of the trial as well as 4 5 incurring at least two additional culture expenses, in the case of a Chiron assay and nucleic acid 6 7 test. 8 DR. VOSTAL: True, but we've also 9 suggested that you could do it in a way that you 10 could actually transfuse those products if you did 11 it under an IND type study. 12 MR. SKINNER: I think perhaps Roger Dodd 13 could lend some additional information on the 14 question. 15 MR. DODD: Thank you. I appreciate the opportunity, although I'll mention it tomorrow. 16 17 Roger Dodd, Red Cross. 18 We've taken a fairly close look at both 19 the logistics and costs of developing and 20 performing such a study, and at today's rate of 21 outdates, it will take at least two years 22 nationwide to accumulate the outdates. And,

conservatively, it's going to cost about \$5 1 2 million. And we feel that the difficulties of 3 doing this under an IND are truly significant, both in terms of issues of consenting patients and 4 5 charging hospitals to get older products. We don't 6 think that's going to be too popular. 7 So I think that this is a real difficulty, 8 and it may be easier for us to learn to live with 9 what we've got now if we can't get the support of the agency to move ahead if we can only do it by 10 11 logistically infeasible and unaffordable studies. 12 DR. VOSTAL: Thank you. 13 MR. SKINNER: Other committee questions? 14 DR. PENNER: Just a question on efficacy. How do you determine efficacy? 15 DR. VOSTAL: Well, efficacy, currently the 16 17 way we look at efficacy, especially in radiolabeled 18 studies, is we look at what the current standard is, which would be licensed platelets, and we try 19 20 to make sure that the novel platelet doesn't differ 21 from that current standard by more than 10, 20 22 percent.

Now, this approach gets you into trouble
 because subsequent comparisons, you always slide
 down the slippery slope, what Jim AuBuchon and
 Scott Murphy are talking about.

5 We are moving towards the new approach 6 that Scott Murphy proposed, and that sets the fresh 7 platelets as the standard. And then we will 8 compare subsequent products to that uniform 9 standard.

10 DR. PENNER: So you're just really 11 measuring circulation time or at least how long 12 these things stay in circulation, not hemostasis, 13 you don't know whether they're functioning. 14 DR. VOSTAL: Well, let me get back to

15 this. See, right here is actually what we do in 16 terms of evaluating efficacy. We start off down at 17 the bottom of this pyramid where we have minimal 18 concerns with in vitro studies. As our concerns 19 increase, we go to in vivo studies using

20 radiolabeled platelets. If we have significant
21 concerns about damage to the platelets, we move on
22 to hemostasis type clinical trials, and this was

the case with pathogen-reduced platelets.
 DR. PENNER: So there would be some
 hemostasis trials as well as just the
 NDM(?)-labeled platelet circulation?

5 DR. VOSTAL: It depends on how--if we felt 6 that there was significant damage to the platelet 7 caused by storage. For example, there are these 8 gray zones that fall into these two areas. Say you 9 have platelets that you want to store them out to

10 14 days or 21 days, you know, they may be able to 11 circulate but there's no way of knowing whether 12 they can still participate in hemostasis. I think 13 at that point they would probably go into the 14 hemostasis study category.

DR. PENNER: And that would be much more complex, obviously, because you're trying to see whether patients stop bleeding after you give the agents.

19 DR. VOSTAL: That's correct.

- 20 DR. PENNER: Okay.
- 21 MR. SKINNER: Colonel Sylvester?
- 22 COLONEL SYLVESTER: Could you go to the

hemostasis clinical trials in lieu of the 1 2 radiolabeled trials? Like with the work we're 3 doing with frozen platelets, we don't necessarily get a platelet increment, but we can stop bleeding. 4 5 So if the intent is to stop bleeding, would we be prevented from getting to that point because they 6 7 don't stay in circulation? 8 DR. VOSTAL: Right. Those platelets are 9 almost a different type of a product from a normal 10 platelet, so they may have to be considered under a 11 separate category. Most likely radiolabeling, they wouldn't 12 13 stand up to the radiolabeled criteria, so they 14 would have to be evaluated by a hemostasis type 15 study. MR. SKINNER: Dr. Holmberg? 16 17 DR. HOLMBERG: As far as the field trial 18 for the pre-storage pooled platelets, would you 19 consider that under an IND? 20 DR. VOSTAL: Yes, certainly. DR. HOLMBERG: Okay. And do we have any 21 22 evidence--I mean, was that the comment that the

1 BPAC in 1986 just extrapolated the data? Or was 2 there a reduction once the dates were rolled back 3 from seven to five? DR. HEATON: I believe that there was 4 5 perceived to be a reduction, but the bulk of the cases that led to the concern were, in fact, 6 7 transfused between four and five days. There were 8 a few at day seven. 9 MR. SKINNER: I believe Steve Wagner in the audience wanted to comment. 10 11 MR. WAGNER: Thank you. Steve Wagner, 12 American Red Cross. 13 We've done some initial planning for such 14 a study and included some statistical analysis of 15 sample size. And if you adhere to a 95-percent 16 confidence and you also believe that you want to do 17 the study with a power of 80 percent, you'll have 18 to look at over a million samples. Thirty or fifty 19 thousand platelets will hardly give you any power 20 for the study whatsoever. 21 MS. TOURAULT: If I could make a brief 22 comment, I worked for the FDA--my name is Mary

1 Ann--2 MR. SKINNER: If you could just identify--3 MS. TOURAULT: I'm sorry? MR. SKINNER: Just identify yourself for 4 5 the record. 6 MS. TOURAULT: Mary Ann Tourault. I 7 worked for the FDA at the time and collected the 8 fatality reports when the rollback for the days was 9 done. 10 If my memory serves me correctly, at that 11 point in time the number of fatality reports coming into the agency were about 30 to 50 per year, and 12 13 of those, there were usually six to seven due to 14 bacterial contamination. The increase that caused 15 the reduction I think was only three cases, if my 16 memory serves me correctly. 17 MR. SKINNER: I think at this point, then, 18 thank you very much, Jaro, for your presentation, 19 and we will move on to hear from the two companies 20 that have approved devices for bacterial detection, BioMerieux and Pall, and we'll first hear from Mr. 21 22 A.C. Marchionne with BioMerieux.

1 MR. MARCHIONNE: Good afternoon. My name 2 is A.C. Marchionne, and I would like to first begin 3 by saying thank you to the committee for allowing me to present today. I must admit I am a paid 4 5 employee of BioMerieux. 6 It is estimated that one to 1,000 to one 7 to 2,000 platelets are contaminated annually with a fairly high frequency of occurrence, indicated 8 9 here. What that means is of 4 million platelet bags transfused, about 2,000 to 4,000 are 10 11 bacterially contaminated with about 200 to 1,600 12 cases resulting in clinical sepsis as well as 40 to 13 533 deaths potentially resulting. 14 We have designed a system called the 15 BacT/Alert 3D. It consists of a two-bottle reagent 16 system. The first bottle here is our BPA, blood 17 products aerobic. The second bottle is called BPN, 18 blood products anaerobic. 19 The automated portion of the 20 instrumentation is a four-drawer incubator with a bar code scanner here and a touch screen here for 21 22 loading bottles. Bottles are read continuously in

1 the drawers every ten minutes through the platelet 2 shelf life. 3 If we take a closer look at the technology, this is the bottom of the bottles, and 4 5 there is a sensor in there that will detect CO 6 production as a byproduct of a substrate. So as 7 microorganisms grow and metabolize their 8 substrates, CO2 is produced and it is detected in a 9 sensor at the bottom of the bottle, and the sensor 10 will change from a greenish-gray to a yellow. 11 The system operates by measuring three 12 different algorithms. The first one is sustained 13 acceleration of bacterial growth. The second one 14 is the rate of acceleration. And the third one is 15 the initial threshold. 16 Along the left side here, we have images 17 of the bottom of the sensor changing from gray to yellow in the course of five to seven days. 18 19 Within each cell that the bottle is placed 20 into, there is a sensor at the bottom. There is an 21 LED that's being shined off the base of the sensor and a photo diode that is measuring reflectance 22

2

```
1
     units.
 2
               How do you get the sample into the bottle?
 3
     We have worked with numerous companies--Gambro,
     ITL, and Charter--to develop sample devices that
 4
 5
     have been designed to reduce contamination.
                                                  The
 6
     bag on the left here is a Gambro bag, and the two
 7
     devices here are from Charter Medical, and they do
     have an adapter on the end to cover the bottle as
 8
 9
     you inoculate the bottles. ITL is another company
     that manufactures the sampling device, and,
10
11
     unfortunately, I do not have a picture of that
12
     device to show you.
               In this picture, we have a sample being
13
14
     collected from a platelet sampling bag via syringe
15
     that will be inoculated into two bottles in a hood,
16
     and then this is a side view of the drawer. A
17
     technician is loading a bottle into the drawer.
18
     There are 60 slots inside the drawer, each of which
     has a photo diode and LED. So each test is being
19
20
     conducted within each bottle in each cell.
               These bottles have been shown to detect
21
22
     most organisms between nine and 36 hours here. And
```

1 the organisms listed below are organisms that have 2 been known to contaminate platelets. 3 Bring your attention to strep viridans here. In this particular instance, the anaerobic 4 5 bottle is detecting the organisms much quicker than the aerobic bottle. 6 7 Studies have been conducted in the 8 U.S.--these are three papers from Dr. Brecher, who 9 has done extensive studies on the BacT/Alert, and in the U.S. there are existing papers out there, 10 11 but also internationally there are scientists who 12 have studied the BacT/Alert. And the BacT/Alert has been in use as early as 1992, I believe, for 13 14 platelet testing overseas. 15 Our clearance is currently for the 16 two-bottle reagent system. The first bottle is the 17 BacT/Alert BPA, and it is specifically used with 18 the BacT/Alert microbial detection system for 19 quality control testing of leukocyte-reduced 20 apheresis platelet units and, as of March, single units of whole blood platelet concentrates. And 21

22 the BPA culture bottles are used to detect aerobic

```
1
    bacteria.
 2
               Again, the same applies to the BPN culture
 3
     bottles. They are, again, used for quality control
     testing of leukocyte-reduced apheresis platelet
 4
 5
     units as well as single units of whole
 6
     blood-derived platelet concentrates. And the BPN
 7
     culture bottles are used for anaerobic bacteria and
 8
     facultative anaerobes.
 9
               If we take a look at worldwide placements,
     as BioMerieux industry, we have approximately 421
10
11
     systems installed worldwide, 386 of which are
     placed within blood banks. The others are placed
12
     within food companies for detection of bacteria in
13
14
     food products as well as in the pharmaceutical
15
     industry.
16
               Outside of BioMerieux industry, we have
17
     our corporate headquarters in Durham, North
18
     Carolina, which handles the blood culture end of
     our business, and we have thousands of units
19
20
     placed. And what I mean by unit is a 240
21
     equivalent or an incubator that holds 240 bottles.
22
     And there are approximately 6,000 240 equivalents
```

2 Dr. Brecher and Steve Rothenberg have 3 found in practice that the true contamination rates have been three out of 2,397 and four out of 2,397 4 5 for aerobic and anaerobic bacteria, respectively. 6 And all of these organisms were detected early on, 7 which means that a late culture -- no positives were 8 detected with the late culture alone. 9 With respect to anaerobic organisms, we feel that these will be increasingly important with 10 11 respect to potential platelet shelf life extension 12 to seven days. And certainly while the verdict is 13 still out on anaerobes like propioni and kerini(?) 14 bacterium, there is at least one documented 15 fatality from Clostridium perfringens. 16 We also have a product in development 17 right now that I thought I would tell you about. It is called BacT/Notify, and it is a real-time 18 notification system for transfusion centers. The 19 20 BacT/Alert will transmit results to the Internet, 21 and on the transfusion side, transfusion services 22 and centers can scan a bar code and get a real-time

1

placed worldwide.

1 result through the Internet. We believe that that 2 is going to help make the platelets even safer. 3 A positive test result would look something like this. It's customizable and it 4 5 would have the product number or any other data 6 that you would determine important on that page. 7 Does anyone have any questions? 8 MR. SKINNER: Dr. Linden? 9 DR. LINDEN: Could you tell us a little bit more scientifically about your system and how 10 11 it works? You mentioned detecting bacterial 12 acceleration, but I believe you're not really detecting the bacteria directly. Can you speak to 13 14 us more scientifically? 15 MR. MARCHIONNE: Sure I can. There is 16 media inside of these bottles that promote the 17 growth and sustain the growth of bacteria if 18 they're present and inoculated. And those organisms will metabolize substrates that will 19 20 result in CO 2 production that the sensor 21 bottom of that bottle will detect and begin to change in color. 22

in the

DR. LINDEN: Okay. What substrates? I 1 2 mean, can you give us a little bit more detail. 3 Your talk was very generic. 4 MR. MARCHIONNE: Are you talking 5 specifically about the contents of the reagents? 6 DR. LINDEN: Well, whatever additional 7 detail you can give us without being overly 8 proprietary. 9 MR. MARCHIONNE: I can tell you about some 10 of the contents of the reagents, if that would 11 satisfy. For example, in the product insert, in the 12 13 aerobic culture bottles, the media formulation 14 consists of pancreatic digest of casein, papayic 15 (?) digest of soybean meal, sodium polyanethol 16 sulfonate, pyridoxine and other complex amino 17 acids. 18 MR. SKINNER: Dr. Lopes? 19 DR. LOPES: Can you tell us something 20 about the cost per unit of the processed product, 21 tested product? 22 MR. MARCHIONNE: Currently, the average

sales price of the reagents is \$3.50 per bottle,
 and the system is being sold--and when I say
 "system," I mean an incubator with a control
 module. That is being sold for approximately

5 \$60,000 to \$62,000.

6 DR. KUEHNERT: I had two questions. One, 7 you presented some information at the end about 8 this BacT/Notify, which looked interesting as far 9 as electronic notification. But I just wanted to 10 clarify. What this system does, it tells you you 11 have a positive result. It doesn't tell you what 12 the identity of the bacteria is. Is that right? MR. MARCHIONNE: That is correct, and it 13 14 doesn't tell you if it is perhaps a false positive 15 or a true positive at that point. 16 DR. KUEHNERT: So the system gets to the 17 point of saying you have a positive as indicated by 18 the system as a yellow light, but it's up to the

19 blood center or whoever is operating the system to

20 speciate the organism--or see if an organism is
21 present and then to speciate the organism, provide
22 antimicrobial susceptibilities, things that would

be clinically important. Is that right?
 MR. MARCHIONNE: That is correct.
 DR. KUEHNERT: The second question I had
 was about false positives. Do you have a sense of,

5 on average, what the false positive rate is and 6 what the effect is of doing the sampling under a 7 laminar flow hood? Because I saw that in there and 8 I wondered what the difference is, and this sort of 9 has relevance, again, to trying to do some sort of

10 evaluation study because if the false positive rate 11 is high enough, it would overwhelm any true 12 positive that you'd see at day five or day seven. 13 So I just wondered if you had a sense of the 14 numbers.

15 MR. MARCHIONNE: the false positive rate 16 that we've experienced in-house--and I can speak to 17 that, and I think we have some customers here today 18 that will speak on their experiences. But we have 19 seen less than 1 percent contamination rates as

20 false positives. And in terms of the hood, sterile
21 hood, I believe that the sterile hood does indeed
22 help lower that, as well as the sampling devices.

But what we've seen in terms of training facilities 1 2 is that we have seen that there is a learning curve 3 in terms of false positives and initially getting started with the system. And those that have a 4 5 hood have seen a lower amount of false positives. 6 DR. KUEHNERT: I hope the subsequent 7 presenters will give more precise numbers, because 8 one of out 100 would be very concerning. So we'll 9 look forward to that. 10 MR. SKINNER: Dr. Holmberg? 11 DR. HOLMBERG: Your system was approved for the two vials, the anaerobic and aerobic? 12 13 MR. MARCHIONNE: Yes. 14 DR. HOLMBERG: So every facility that has 15 implemented this are using both the aerobic and the 16 anaerobic? 17 MR. MARCHIONNE: Unfortunately not. I am 18 seeing approximately 14 percent of our customers 19 using the two-bottle system. 20 DR. HOLMBERG: So you're telling me that 86 percent of your customers are using aerobic or--21 22 MR. MARCHIONNE: They have chosen to

aerobic, and the product insert, just to clarify,
 makes a strong recommendation to use two bottles
 for optimal detection. But it has been interpreted
 as not being a requirement.

5 DR. KUEHNERT: Just a point of clarification on Dr. Holmberg's question. Is that 6 two aerobic bottles, or is that--they're using two 7 8 aerobic bottles or one aerobic bottle? 9 MR. MARCHIONNE: Good question. They're using one aerobic bottle, for the most part. I 10 11 don't know of anyone using two aerobic bottles. 12 DR. HOLMBERG: But the package insert 13 strongly recommends one aerobic and one anaerobic? 14 MR. MARCHIONNE: Yes. 15 DR. HOLMBERG: And that's what it was 16 cleared with? 17 MR. MARCHIONNE: Yes. 18 MR. SKINNER: Have there been any in-house studies with pooled platelets with your product? 19 20 MR. MARCHIONNE: I have not been involved with those studies, but there have been studies 21 22 with pooled products, definitely.
1 MR. SKINNER: I believe Dr. Brecher might 2 be able to comment on those studies. 3 DR. BRECHER: It's a factual answer here. We have looked at nine bacteria in my lab in a 4 5 pooled platelet matrix, pools of six platelets. 6 Eight of the bacteria species were inoculated at 7 five CFUs or less into the pool, and the pickup time was on the order of 10 to 12 hours. 8 9 Interestingly, that set of experiments, like the previous set of experiments, showed that a 10 11 lot of the organisms were picked up earlier with 12 the anaerobic bottle than the aerobic bottle, even 13 though we think of these organisms as being 14 aerobic. Usually it's been an hour difference, but 15 with strep viridans, you know, we're talking about 16 12, 13 hours faster. 17 Now, we had some informal discussions with 18 the FDA as to the design of that experiment, and the question revolved around what were we looking 19 20 for. Could we detect low levels of bacteria in a pooled platelet matrix. If that was the main 21 22 question, then we thought we would go ahead and

1 just pool the platelets and then put in the 2 bacteria. And they had agreed to that informally. 3 But as Jaro outlined today, now they say, no, we want to see bacteria in just one bag and then pool 4 5 them. So all these experiments will have to be 6 redone. MR. SKINNER: Dr. Holmberg? 7 8 DR. HOLMBERG: Do you also strongly 9 advocate that the laboratory identify the organism? 10 MR. MARCHIONNE: Yes, we do. Upon the 11 alert from the system of a positive, we recommend 12 sub-culturing that bottle as well as gram staining. 13 MR. SKINNER: I don't see additional 14 questions, so at this point we will move on to the 15 presentation from Pall. 16 MR. MARCHIONNE: Thank you. 17 MR. SKINNER: Thank you. 18 Dr. Jerry Ortolano? I got that one right. 19 I apologize for mispronouncing the others. 20 DR. ORTOLANO: I want to thank the committee for the opportunity to present this 21 22 information, and basically we're here to discuss

current issues of bacterial detection, well
 recognized as the number one threat of infectious
 complications associated with the transfusion of
 platelets.

5 I will touch upon four areas. First, I 6 have been asked to really address potential 7 availability problems with implementation of CAP 8 and AABB, and I'll discuss what I know about 9 bacterial detection and how it might impinge upon 10 this question; practical issues of bacterial

11 detection, the pool and store as a solution to the 12 problem; and, finally, I'll give you some data 13 concerning the performance of the eBDS, which is 14 the Enhanced Bacterial Detection System.

First, with respect to the unintended consequences of bacterial detection, as you know and as this committee is addressing, with the market moving towards implementing bacterial detection and in many cases using it as a release criteria, this was not the intention of the FDA. They approved the product for QC and not release

22 criteria.

But there are fallouts with this. Given 1 2 the fact that the market wants to do this, the 3 concerns that were addressed as a consequence were: Would this divert the availability of platelets? 4 5 Basically would people prefer to use apheresis 6 platelets as opposed to random donor because of the 7 cost-related issues. If they're six-unit pools and you have to do six unit bacterial detections, 8 9 that's six times the cost. So it is a legitimate 10 concern. 11 Hospitals may implement alternative 12 methods of bacterial detection, and as we know, we've heard discussed here today that some are 13 14 indeed using dipsticks, some are using pH meters, 15 some are using glucose analyzers. So those will 16 have to be considered as well. 17 The implication however is that there is 18 some kind of a tradeoff between safety and availability, and we submit that pool and store 19 20 makes all that go away. With respect to the two products, 21 22 apheresis deriving from a single donor, we have

1 good experience about what the cost is, what the 2 logistics are to use this product, and its safety 3 and availability. I'll also submit that whole blood-derived pool and story, there's a body of 4 5 experience from Europe that we can latch on to 6 which would suggest that they're comparable, 7 comparable in cost and maybe even less costly, 8 comparable with respect to logistics and safety and 9 availability. This is something we have yet to prove to the FDA, of course. 10 11 Pool and story, the current status for our 12 company is that we are discussing with the FDA--and we'll met again with them on April 15th to discuss 13 14 our data. We have 24-hour corrected count 15 increment data which shows very strongly that we 16 can pool and store for five and seven days and get 17 good data at 24 hours. 18 The literature is replete with comparisons of one and 24 hours with respect to corrected count 19 20 increment and basically show that 24 hour CCI is 21 pretty predictive of what you see at one hour. So 22 since we limited our data collection to 24 hours,

1 we'll offer that and hope that they would accept 2 it. 3 The pool and store systems have been in routine use in Europe, as I mentioned, for years. 4 5 This is what a pool and store system would look like. There are two separate configurations. 6 7 System one is for a leukoreduced random donor platelet concentrate. You see the legs on the 8 9 left? You can actually sterile connect six units onto that system, and you could sequentially 10 11 express them into the bag. These are already 12 leukoreduced. All you need is a sample pouch to 13 collect the sample for bacteria detection, and 14 that's what you see hanging off. 15 With respect to system two for 16 non-leukoreduced random donor platelet concentrate, 17 you have, again, the six legs so that you could 18 express up to six units into a bag. You would then 19 pass that pooled material through a leukoreducing 20 filter and then onwards into the bag. And then 21 from that you can actually take a sample for 22 bacterial detection.

1 You'll notice that there's a larger bag 2 off in a T configuration, and that's basically to 3 eliminate all of the air that would accrue as a result of processing six individual units. You 4 5 always get a lot of air in the bag. You need to 6 express that air out, and that's what that bag is 7 for. 8 The studies completed to date include in 9 vitro data for both five and seven days; in vivo data for five-day studies that have been performed 10 11 for both systems. There is no effect of 12 pre-storage pooling on lymphocyte activity, plasma 13 activation complement, coagulation factors, et 14 cetera, during storage. And we have some 15 satisfactory in vivo data for five days and in 16 vitro for five and seven days on storage quality. 17 I'll now kind of summarize the reflection of the problem. This is a recent paper published 18 by Brecher and Hay, and basically it shows the 19 20 results of the hemovigilance activity, the BaCon 21 study, the SHOT study, and the French study. 22 I just want to point out that the six

1 units associated with fatalities have been further 2 analyzed from the BaCon study. And what they show 3 basically is that the platelet product only has to be somewhere between two and four days old to 4 5 confer serious--to confer mortality. 6 If we look at the practical issues 7 concerning platelet transfusions, we'll use Brecher's data at the University of North Carolina 8 9 where we can see that the vast majority of blood products transfused for platelets are three and 10 11 five days old. If we look at M.D. Anderson's published experience, which is a little bit 12 13 different from what we hear, the vast majority is 14 three days old. I actually hear it is now closer 15 to two days old. So two to three to five, in that 16 area, you're going to see platelets transfused. 17 What do we know about observation of bacterial growth in platelet concentrate? This 18 derives from early literature. Basically it's 19 20 generally agreed from that literature that the bio-burden is usually low. Rarely is it greater 21

22 than 10 CFU per ml. So that's a target that we

1 could start thinking about.

2 Concentrations less than 5 CFU per ml are
3 often complicated by inconsistent growth. This is
4 the so-called auto-sterilization effect, and that

5 has implications for spiking studies. If you go 6 much below 5 CFU per ml, you're going to have to 7 spike a lot of units of blood because they will not 8 often grow.

9 If we look at sampling error, which has

been addressed here, this little cartoon kind of demonstrates the point at its extreme. If we had one CFU in an entire bag of apheresis product, 300 mls, and we took out a 2-ml sample, the probability of capturing that one bacterium is 2 in 300, or 0.7

15 percent.

Even if we were to capture that, if the bug is captured, it leaves the platelet bag sterile, and the result would be a false positive. Again, that is extreme. If the bug is not

20 captured, then the result is really a false
21 negative. So this kind of represents the absolute
22 extreme, what could happen.

1 As a result, we have to allow organisms 2 sufficient time to grow to levels to avoid the 3 sampling error. Now exactly how much time you have to allow is not really known. It's suspected that 4 5 you'll start to get growth within 24 hours up to a significant level, and we'll actually see what the 6 7 results of spiking studies are. But, again, 8 looking at this in the clinical situation is a little bit different. 9

10 This is applicable to both single-donor 11 platelets and random donors alike, and it's hard to 12 imagine its avoidance, regardless of the method of 13 detection. So whatever technique you choose, 14 you're going to have to allow a certain amount of growth to be able to capture that in your sample. 15 16 This is data from Brecher and coworkers 17 which basically show the results of spiking 18 studies. These are six bacterium. On the Y axis, 19 you see the log CFU per ml, and on the X axis is 20 your days in storage, PCs at room temperature. And for many organisms, the initial bio burden doesn't 21

22 make much difference. The growth is pretty

1 consistent. The one notable exception here is in 2 staph epi, where you see that an increase in the 3 bio-burden at time zero results in a more rapid attainment of the plateau phase. 4 5 If we were to impose upon this an arbitrary value of 10 6 7 CFU per ml and make that a 7 detection limit, let's say--for practical purposes, 8 I'm going to say for dipsticks. Then there are 9 times when even at one day or at two days we may to 10 be able to detect the bacteria. 11 If we look at a similar study we published 12 out of our lab, the same kind of growth curves, 13 and, again, impose that 10 7 CFU per ml, you can see 14 that there will be times when we will miss 15 bacteria. 16 So the culture-based methodology relies on taking a sample, so you have to allow a certain 17 18 period of growth to occur to make sure that your 19 sample is representative of what's in the bag. It 20 also includes an incubation environment such that we foster the growth of bacteria in the sample to 21 22 get detection sooner than would be possible you

1 measuring it in the platelet concentrate itself, 2 which is stored at room temperature. 3 This is the Pall enhanced Bacterial Detection System, and I'll just briefly describe 4 5 for you what the differences are between the old 6 and the new. And many of you may not know what the 7 old one was so I'll try to be a bit descriptive 8 about it. 9 It is really comprised of two components: a sampling set that's disposable, and a bunch of equipment. That equipment includes an oxygen analyzer, a bar code reader to enter data, an incubator with an agitator. The agitator is 14 actually an enhancement. We used to incubate these 15 statically, and we found that results are better with agitation, and you'll see why in a minute. Then there is a computer program that's 18 represented by the monitor there which basically allows you to harvest or capture the data. 20 The idea behind this, the technical idea,

228

10 11 12 13

16 17

19

21 is that we will express, after a suitable period of 22 incubation at room temperature, a 2-ml to 3-ml

1 sample into a disposable--a sample pouch. In that 2 pouch, we incubate the platelet concentrate with 3 sodium polyanethol sulfonate, which is known to be 4 an inhibitor of complement. It also inhibits

5 lysozymes and some lipoproteins, which are normally 6 anti-bacterial in nature. So that will foster--you 7 inhibit the inhibitors. You'll foster the growth 8 of the bacteria. We also add triptocase(?) soy 9 broth as a nutrient enrichment. And we agitate the

10 sample and incubate at 35 degrees centigrade.

11 Now, the bacteria will consume oxygen in 12 this setting, and the oxygen will become depleted 13 in the plasma. We then shake the sample so that we 14 can redistribute this, and we can set up an

equilibrium between oxygen in the plasma and oxygen in the air, in the head space just above it. So the idea is to measure the percent oxygen in air and use that as a surrogate marker of bacterial growth.

Here the Pall eBDS measures oxygen in the head space and compares it to some predetermined threshold limit.

1 The old Pall BDS system you see on the 2 left, and basically what we have here is--we used 3 to entrain a sample of the platelet concentrate through a filter, and the purpose of the filter was 4 5 to reduce the burden of platelets. These are all leukoreduced blood products. So we reduced the 6 7 burden of platelets because respiring platelets will consume oxygen. And if they consume oxygen, 8 9 then that would contribute to the likelihood of 10 developing a false positive. 11 So we take the platelets out, allow the 12 bacteria to pass. Unfortunately, the bacteria 13 transmission was not 100 percent. Sometimes it 14 would be as low as 15 percent, sometimes as high as 15 80 percent. On average it was about 50 percent. 16 And if you have a low bio-burden of bacteria to 17 begin with, you can see how, by utilizing this 18 filter, you would actually trap some of the 19 bacteria and maybe not get as good a sensitivity as 20 you would like or your thresholded section would be higher than you would like. So we actually in the 21 22 enhanced version removed that filter.

1 We replaced the function of the filter 2 with another additive in the sample pouch. This is 3 an agent which actually causes the aggregation of platelets and minimizes their respiration. And so 4 5 we actually remove that confounding variable in 6 just a different way. What you'll also see is that there's a 7 probe that actually gets insert into a little 8 9 septum up there, and the septum and the sample 10 entry occurs in the same column. And we found that 11 to be a problem, too, and so we replaced that by 12 putting the sample inlet and the probe sampling port on opposite sides of the sample pouch. 13 14 These are data of low-level spiking 15 studies. What you see are ten organisms which 16 constitute 98 percent of all fatalities reported to 17 the FDA associated with contaminated platelet 18 products. What you also see are bins--bins of the 19 number of units that we tested, which were less than 5 CFU per ml, between 6 and 15, 16 and 50, and 20 greater than 51. If I draw your attention to the 21 22 bottom of the column on the right, you can see that

the detection now--this is just spiking and then
 retrieving a sample, incubating for 24 hours at 35
 degrees, and measuring percent oxygen, demonstrates
 96.6 percent of the samples were detected positive.

5 Now, this is not the way the product is 6 instructed to be used. This was really just a 7 reflection of the robustness of the eBDS system. 8 The way we recommend it to be used is to wait that 9 24-hour incubation period where, if you spike with

10 a low bio-burden, now you can see many of the 11 organisms have grown to higher levels. You can see 12 that there are a lot of numbers now in the column 13 that are greater than 51, whereas before, you saw 14 no values greater than 51. So you could see that

extra 24 hours allows for a lot of opportunity for sample growth, bacterial growth, and now the detection sensitivity, if you will, under this condition is 100 percent.

MR. GIROLAMO: So with respect to our summary of limitations to the BDS. All are addressed by the enhanced BDS. The original

22 product had a limitation with respect to

sensitivity, or threshold detection. We removed
 the filter--the platelet-removing filter--and we
 actually increased our sensitivity or limit of
 detection.

5 The ease of use issue related to the probe 6 and aspirating plasma into the probe, which caused 7 the machine some concerns--we actually placed a 8 hydrophobic membrane at the sample port, which 9 allows you to now withdraw a sample without taking any fluid up. And so that problem's eliminated. 10 11 We had something called a "system 6.2 12 error." Basically this was just naive on our part, 13 never realizing that it would be possible that the 14 oxygen concentration would be zero percent in the 15 head space. 16 The software initially developed would not 17 understand what zero is and would give you a 6.2 18 error. So we corrected the software there, and that's no longer a problem. 19 20 And, finally, the platelet volume loss was initially 7 mls because of the use of the 21

22 filter--the platelet-removing filter--which

consumes a lot of volume. And by removing that and
 inserting a duck-bill check-valve into the line, we
 could strip back a lot of the platelet concentrate.
 And so now our loss is minimal.

5 You can see each one of these is addressed 6 by what I've just suggested for you. 7 Now, I'd like to talk to the alternative 8 points; the issues related to test methods. And I 9 think by and large they all relate to glucose and 10 pH.

11 They can be measured either with 12 dipsticks--urine dipsticks--or they can be measured 13 with an analyzer--a pH meter for example, or a 14 glucose oxidase assay automated analyzer.

15 [Slide.]

16 There are data in the literature--which 17 you can see here in the study on the right--and I 18 won't bother going through the detail of this, but 19 just to say that--I'll refer you to the papers and

20 to these little salient feature highlights. And 21 what they show is that there's a lot of variability 22 in the results. And, generally speaking, you can

1	find bacteria which you will not be able to detect,
2	even out through five days.
3	I think the definitive study to date is
4	one that is not actually in press, but Mark assures
5	me that it will be soon, and that is a very
6	extensive study looking at pH and glucose with
7	dipsticks, also comparing it with swirling. And,
8	generally, what Mark finds, and I'm certainly
9	willing to have him correct me if I'm wrongbut
10	what he finds is that basically the results are
11	quite variable, depending on the organism.
12	[Slide.]
13	You can that bacillus sirius here, at 10
14	CFU on day two of storage, two of three were
15	positive with glucose, with a dipstick, but they
16	were not detected with pH or swirling.
17	In contrast, if you look at staph epi down
18	at the bottom, at 10
storage,	4 CF0 011 day
19	zero of three were detected with any
20	methoddipstick, pH, glucose analyzer, or
21	swirling.
22	So this, I think, addresses the issue to a

four of

1 better extent than is currently available in the 2 literature. And this is not going to be the last 3 time we see data like this. We understand that there at least centers that are doing side-by-side 4 5 comparisons with the alternative methods. 6 So, in conclusion, bacteria contamination 7 occurs with significant morbidity and mortality. I 8 think that's unquestionable. There are two QC 9 approved methods that are based upon longstanding 10 and well understood principles of standard culture 11 technology, and the preferential use of approved QC 12 bacteria detection methods is limited to single-donor platelets because of the cost in 13 14 applying it to the random donor platelet 15 concentrate. 16 The reliance upon single-donor platelets 17 may present availability problems, although, quite 18 frankly, personally, I find this hard to understand how that could come about when we even see 19 20 institutions today who transfuse blood products that are outdated--by virtue of the fact that they 21 22 have nothing left.

So I don't think random donors will ever 1 2 really go away. I think there will be less 3 reliance upon them. Cost issue for random-donor platelets can 4 5 drive health care to use inferior methods of bacterial detection--and that is a fact. I mean, 6 7 we see that happening now. I know of at least two 8 institutions, personally, that are using either 9 dipsticks or pH meters to try to address this issue with respect to bacterial contamination using 10 11 alternative methodology for random-donor platelet 12 concentrate. 13 And I believe that poor-and-store really 14 is a solution to this problem. And whatever BSAC 15 can do to reduce the latency for approval of 16 pool-and-store, and to get to the point where we 17 could increase the outdate to seven days, we'll 18 actually enhance, not only the availability, but 19 also safety. 20 Thank you. 21 CHAIRMAN SKINNER: Yes, Matt--Dr.

22 Kuehnert?

DR. KUEHNERT: I had a question on a 1 2 previous slide you had on the performance of the 3 new system. And it was about the organism that was missed. I think it was--4 5 MR. GIROLAMO: 24? This is zero time data--pseudomonas aerogenosa? 6 7 DR. KUEHNERT: Yes. 8 MR. GIROLAMO: Yes. 9 DR. KUEHNERT: What concerned me that it 10 was pseudomonas. That's a bad one. 11 MR. GIROLAMO: Yes, it is a bad one. 12 DR. KUEHNERT: And it generally grows 13 pretty quickly. So I was trying to understand what 14 the problem was. 15 MR. GIROLAMO: Yes. Well, I inquired about this data and found that the unit was 16 17 detected positive when we held it for 24 hours. So 18 it's not as if there weren't bacteria in 19 there--there were, and the bio-burden was pretty 20 low, at 6 15 CFU per mil, but not ridiculously low, 21 at less than 5. 22 So the answer to your question is: we

1 don't know why this occurred. 2 DR. KUEHNERT: Was it a mucous-producing 3 organism? Was it something that got sticky or something? Or you don't know? 4 5 MR. GIROLAMO: I can't find an explanation 6 for it. 7 DR. KUEHNERT: The other questions I had, 8 basically asking the same questions I asked the 9 BioMerieux representative, which is about a false 10 positive rate--11 MR. GIROLAMO: Yes, it's less a tenth of a 12 percent. And I'll give you--the data that we're 13 relying on here is the recent publication of Gail 14 Rock, in which she did over 12,000 and found one 15 false positive. And we have one more, I believe, from field experience, and it's about a similar 16 17 sample size, when you consider all of the product in use. So we're saying it's less than .1. It's 18 19 probably closer to .01 percent. 20 DR. KUEHNERT: And the final question I 21 have is: you mentioned about the system being used

22 internationally?

MR. GIROLAMO: The system is being 1 2 validated for use in Europe. There are many 3 institution that--you know, the European process is a little bit different. Every time you go for a 4 5 new product in Europe, they have a long period of time where they actually evaluate. And they 6 7 started the evaluation before we actually approved 8 product here. So they're continuing to evaluate, 9 and they've amassed a considerable amount of experience, and that includes the National Blood 10 11 Service of the U.K. 12 DR. KUEHNERT: Are they comparing-or are 13 you aware of any comparison--of day five versus day 14 seven, in vivo? 15 MR. GIROLAMO: Gail Rock is the only study 16 where we saw day seven data. I know that the 17 National Blood Service is interested, but I'm just 18 not sure how far along they've gotten. 19 CHAIRMAN SKINNER: Other questions? 20 Dr. Holmberg? DR. HOLMBERG: How do you get around the 21 22 aerobic and anaerobic files? You only have the one

```
1
    pouch.
 2
               MR. GIROLAMO: Correct. We didn't
 3
     consider the anaerobic to be a clinically
     significant issue. There was only one reported
 4
 5
     fatality in the literature that we were aware of at
     the time we started this, and that was for
 6
 7
     propreanabacter acnes. And, as it turns out, quite
     serendipitously, we had in our actual clinical use
 8
 9
     of the product, two occasions where propreanabacter
10
     acnes was actually detected with our system.
11
               We wouldn't have predicted that. You
12
     know, we don't think that it actually responds to
13
     anaerobic organisms. But if we give it a little
14
     bit of thought, there may be a scientific
15
     explanation for that, or a theory that we could
16
     propose.
17
               CHAIRMAN SKINNER: I might ask the same
18
     question Dr. Lopez asked of the previous
19
     presentation: if you can give us an estimate of
20
     the cost?
21
               MR. GIROLAMO: Yes, it's $20 per
22
     platelet-detection system. So you're paying for
```

disposables here. So it's \$20 for the disposable. 1 2 All of the equipment is provided at no additional 3 charge, so basically the disposable cost includes amortization of the equipment over the life of the 4 5 instrument, which we are held responsible for. So, if there's any issue with respect to equipment, it 6 7 just gets replaced or repaired at our expense. 8 CHAIRMAN SKINNER: Dr. Holmberg? 9 DR. HOLMBERG: So that raises the 10 question: you are approved for leukoreduced whole 11 blood. MR. GIROLAMO: We're approved for 12 13 leukoreduced apheresis product, or random-donor 14 platelet concentrate--not for whole blood. Whole 15 blood-derived. DR. HOLMBERG: Whole blood-derived 16 17 platelets. 18 MR. GIROLAMO: Yes. 19 DR. HOLMBERG: So if there was a pool of 20 five, then we're talking \$100. 21 MR. GIROLAMO: That's correct. That's 22 what makes it impractical.

See, actually, from a practical 1 2 experience, we want to facilitate its entry into 3 the market, we've actually lowered the price. It really isn't that -- I mean, it could go as low as 4 5 \$8, for example, but even that is too high. 6 So we're trying to encourage the 7 utilization of random-donor platelets, for reasons 8 unrelated to bacterial detection. They happen to 9 relate to our other side of the business, which is 10 leukoreduction for random donors. So--you see what 11 I mean? We'd be shooting ourselves in the foot if 12 we didn't make it available, but we don't make it 13 available to the extent where it becomes actually a 14 reasonable cost. Eight dollars for a random donor 15 translates to, 8, 16, 24--\$48 for the pooled 16 product, if it's a six-unit pool. 17 CHAIRMAN SKINNER: Other questions? 18 [No response.] At this point, then the committee will 19 20 take a break. We will return at 3:30, and we'll hear from the blood centers and the hospitals on 21 22 their experience.

1 [Off the record.] 2 CHAIRMAN SKINNER: If the committee can 3 come back together, I'd like to begin this afternoon's presentations--or the last part of this 4 5 afternoon's presentations. 6 BLOOD CENTER EXPERIENCE 7 And next up, we'll have an opportunity to 8 hear--the next item on the agenda is the 9 opportunity to hear about the blood centers' 10 experience. And we're going to have the 11 opportunity to hear from two blood centers. 12 First we're going to hear from the Florida 13 blood centers, and then we're going to hear from 14 the Puget Sound blood centers. And Mr. Timothy 15 Malone will present first. MR. MALONE: Thank you, and I'd like to 16 17 thank the committee for the opportunity to offer 18 our experiences from the blood center perspective. 19 And as many blood bankers, we're dusting 20 off our micro books and discovering that whole field of microbiology once again. 21 22 Not to be redundant of what's already been

1 discussed--we know about he accreditation 2 requirements and where they all stem, both the AABB 3 standards and the CAP inspection checklist. Just a brief commercial for the blood 4 5 service. It's located in the Tampa Bay area on the west coast of Florida, not to be confused with 6 7 Florida Blood Centers in Orlando. But Florida 8 Blood Services collects and processes approximately 9 170,000 whole blood collections, 11,000 platelet pheresis donations yielding 17,000 components; over 10 11 70,000 whole blood-derived platelets were distributed in 2003, and a total of half a million 12 13 blood components are manufactured annually. 14 We service the entire Tampa Bay Metro 15 Area, which includes 34 hospitals. We are also 16 considered by most to be the fourth largest 17 transfusion service in the U.S., in that we perform 18 compatibility in the major transfusion centers in 19 the Tampa Bay area. 20 Bacterial contamination, we've

21 learned--not to be repetitive, again--but it's the 22 most recognized residual transfusion-transmitted

1 disease risk. Bacteria in platelets is defined in 2 the literature: detected in 1 in 1,000, causes 3 reactions in 1 in 10,000, sepsis in 1 in 100,000, 4 and death somewhere in the neighborhood of 1 in

5 200,000.

6 We've approached this from several angels: 7 limiting opportunities for contamination; detection 8 of contamination; and the Holy Grail, we hope to be 9 one day, pathogen reduction or inactivation.

10 Under the topic of limiting contamination, 11 we've gone forward with good aseptic technique in 12 phlebotomy. We, ourselves, have changed from a 2 13 percent providone iodine solution to now using 14 tincture of iodine and an alcohol scrub,

15 Chlorhexadine, although recognized as a very 16 efficient means of scrubbing is rather cost 17 prohibitive And, of course, the diversion of the 18 initial blood flow, all limiting contamination. 19 Bacterial contamination by culture

20 methods--we've also learned earlier today--the Pall
21 BDS system, measured by oxygen consumption; the
22 BactiAlert BioMerieux system by CO2

1 generation--both having the highest sensitivity of 2 any of the detection methods noted; however, they 3 do require a lag phase, and are recognized to be 4 the most costly.

5 Other methods, including staining, 6 sensitivity in the neighborhood of 1 million CFUs 7 per mil; Gram stain, Wright stain and acridine 8 orange; the dry chemistry dipsticks--that is FDA 9 cleared for urine analysis, and not necessarily for platelet rich plasma, but hence we are using them 10 11 asa surroggate marker, measuring glucose and pH to 12 determine potential for bacterial contamination. 13 And that magical swirling, which we all learned 14 that, earlier as well, as a CAP allowance, but not 15 AABB, and the sensitivity of 10 million CFU per 16 mil. 17 Dr. LeParc visited both--Dr. LeParc, 18 Herman LeParc is our chief medical officer. He visited both Dr. Bricker's lab and Dr. AuBuchon's 19 20 lab back in late 2002; came back to me and charged 21 me with the process of providing bacterial 22 detection--initially of our platelet pheresis

products. At the time we were in litigation over a death of a patient that had received contaminated platelets, and he wanted us to be the first in the country, in the large scale, to be up on this

5 process.

6 Our validation strategy included 7 performance qualification, that of detection in 8 using seeding known organisms, negative controls, 9 positive controls, determining the CFUs per unit; 10 considering the dilution by the plasma volume of 11 the component, of course, and relative 12 concentrations of 10 to 100 CFUs per unit. Lag time variables we looked at from the 13 14 time of seeding to inoculation. We looked at, pretty carefully, the volume of inoculant and its 15 16 effect. Repeatability was an issue, and also, of 17 course, personnel training and competency, as part 18 of our performance qualification. 19 Operational qualifications included the 20 use of the BactiAlert BioMirieux system, the

21 computer platform, that of offering positive ID,22 the sample integrity from the storage bag to the

1 culture medium; the elapsed time; the temperature 2 of the incubator itself; and the inherent messages 3 that come across the Bacti 3-D system, which include error codes and the relative print 4 5 functions and problem logs that are generated from 6 the Bact 3-D system. 7 We also looked further into our operation 8 system entry, and we decided at some point to 9 create that as a label control mechanism for 10 allowoing platelets to be QC released. 11 This is some of our initial data--not 12 30,000 samples, but in terms of using simply platelet phereses, inoculated with--and these 13 14 got--I apologize, this slide got cropped off--but 15 this column represents staph aureus; this column 16 represents Candida albicans; and this column 17 represents E. coli. 18 And we looked at the potential of reducing the time to detection overall by reducing initially 19 20 the lag phase. We thought perhaps--or rather than 21 a 24-hour lag, we would look at the comparison of 22 time to detection in the bottle without a lag

1 phase, as compared to a 24-hour lag phase. And you 2 can see the time to detection was readily sooner in 3 the column that maintained the 24-hour lag phase. And the comparative data: this is staph 4 5 aureus at 10 to 20 CFU per mil. 6 [Slide.] 7 We also looked at the variable of volume, looking at from a small inoculant of 2 mls up to 16 8 9 mls, and looked at the time to detection over the volume range in triplicate. And I believe that was 10 also a staph aureus at the same relatively low 11 12 concentration. 13 We do not think then, from this data, that 14 it was clinically significant to have an accurate 15 measure of volume, so we estimate the volume in a 16 sample pouch to be 8 to 10 mls. And we're using 17 just an aerobic bottle. 18 [Slide.]This is the same data represented 19 from the reflectants graphs that come off the Bacti 20 3-D system, showing the upswing of reflectants and 21 the positivity at the hours associated. Again, 22 staph aureus at low inoculum volumes--or

concentrations. And I believe it was a hight of 1 2 9.8 hours, to a low of 9.1 hours. 3 So our operations ; then included--or does include--and this is for our platelet pheresis 4 5 products--we isolate and sample for daily QC cell counts, our platelet count and our WBC count by 6 7 flow cytometry, both done at day zero. We then 8 incubate the platelet pheresis product in its 9 aliquotted, or allocated storage containers--whether it be a split product, single, 10 11 double or triple--for that 24-hour lag phase. We combine the units then, again, and test 12 13 the parent bag, if you will, by sterilely 14 connecting a sample pouch, filling that sample 15 pouch to an approximation of 8 to 10 mls and 16 removing that pouch and isolating the platelet 17 pheresis while the bottle now incubates for a 18 minimum of 12 hours. 19 So the inoculated culture bottle, we 20 obtain a 12-hour negative to date report that 21 allows us to enter what we know is BD1 into the 22 operation's computer system that allows for then

1 labeling and release. 2 We do monitor that culture bottle through 3 day five, and we again enter then a fiave-day result into our operation's computer system. 4 5 This is a pouch that we designed, through the help of Charter Medical, Winston-Salem, North 6 7 Carolina, where we are able then to sterilely 8 connect the platelet pheresis to one lead, and it 9 has a Y-connector and simply a savety needle that 10 allows us to apply the inoculum into the blood 11 culture bottle aseptically. 12 [Slide.] 13 This is our sterile connecting device, and 14 the process that allows us simply to fill the pouch 15 to the base of the label for the volume of 16 inoculant. And then we move the pouches into a 17 laminar flow hood--a biological safety 18 cabinet--where we then proceed to inoculate the 19 bottles. 20 [Slide.] Similar information--or similar pictorial 21

views of the action in the laminar flow hood. We

22
1 do clean the bottle with a sterile alcohol prep 2 pad, and then we take a second sterile alcohol prep 3 pad, place it over the bottle top, and inoculate through that pad into the bottle to inoculate the 4 5 culture. 6 Interestingly, when we started the 7 process, unbeknownst to us, there are such things as non-sterile alcohol pads. And you'll see in our 8 9 data, shortly, that several of our initial 10 contaminants were thought to be from the actual 11 cotton fiber of a non-sterile alcohol pad. 12 [Slide.] 13 More logging information. We batched the 14 pouches after they were sterilely connected. We 15 obtain a second blood unit identifier, if you will, 16 and attach it to the sample pouch which then 17 transfers to the log that identifies then, or 18 matches the log blood unit ID to the bottle ID. 19 The bottle IDs are unique, however you can have 20 multiple unit numbers associated with the same bottle ID. 21 22 [Slide.]

1 What have been our implementation issues? 2 Particularly that of handling positive results? 3 We, early on, decided Dr. LeParc would notify the physician if the unit was released. 4 5 We've determined, then, subsequently to that 6 notification, whether it is a false or a true 7 positive by replicate growth study. 8 We notify the donor--we've set up a donor 9 deferral status, and we flag the donor in an 10 initial positive result, and if they've come up 11 positive two times, they are permanently deferred. 12 And we've had--one of those such folks that had donated over 280 times, and it was very obvious by 13 14 the looks of their antecubital faucets that they 15 were harboring bacteria that we just couldn't clean 16 off. So if we do have two positives -- a two-strike 17 donor, if you will--that donor is deferred. 18 We set up mechanisms to ID the organism and provide sensitivity to the physician, and we do 19 20 that through a local microbiology lab in town. And 21 we've yet to--although we have a goal to develop or 22 have a computer interface to the BactiAlert system.

1 So what happens when we have a posititive 2 result on a released unit? 3 [Slide.] Well, in our scenario we have three such 4 5 scenarios, in that we have contract 6 transfusion-service hospitals, which about one-half 7 of our issued blood components go to our own transfusion services. And in that case, we have 8 9 computer information that indicates the patient's 10 name and physician, and we do manage those as panic 11 values to the ordering or transfusing physician. 12 At those hospitals where we consign the 13 blood to, we notify the lab. And on those 14 occasions where we've been able to export or 15 resource-share a unit of platelets, we notify the 16 receiving blood center. 17 [Slide.] 18 Then we move forward with a root-cause analysis, evaluating the phlebotomy staff--both the 19 20 phlebotomy staff and the donor. We perform 21 root-cause analysis on both our true positives and 22 our false positives. And, as I said, the false

1 postivies are determined by a lack of replicate 2 growth. Within the phlebotomy staff, we review 3 their records and we do an audit on their 4 5 technique, particularly their scrub technique. 6 On the donor side, we've brought the donor 7 in, and Dr. LeParc obtains a thorough medical history, thorough physical exam, and we've cultured 8 9 skin, urine and blood through the process. 10 [Slide.] 11 These are our stats to date, looking at 12 one full yeaer now of bacterial detection on our platelet pheresis products--just under 11,000 total 13 14 donations tested. We've had 11 positives, which is 15 right on the recognized norm of .1 percent. 16 Of those, we've categorized the positives 17 to be false positives and that of contaminants; in 18 other words, they did not show true to be--in a replicate growth study, they did not regrow. 19 20 We had five of those, and the bugs associated; we had four bacillus species in 21 22 positive at the times noted here. I should also

1 note that once we switched over to a sterile 2 alcohol pad, those bacillus species stopped 3 appearing. We did have one Kleb pneumo that we could 4 5 not repeat on replicate growth; whether it was an 6 auto correction by the plasma, or whether or not it 7 was a contaminant, it's hard to say. 8 But we did have six true positives; for 9 staph epi, one E. coli, and one staph aureus. 10 Interesting here, the staph aureus was a 11 donor that identified and, upon physical exam, 12 informed us that she had a long-term osteomyelitis 13 of her ankle that was supposedly cured about a year 14 prior, however we grew the same bug that was 15 growing in her ankle. 16 [Slide.] 17 Challenges that remained at this point, 18 then, included now an inventory control of a 19 three-day shelf-life product. And we're looking 20 forward to seven day expiration, pending Bacti 21 data. 22 We did begin bringing in our expired

1 platelet pheresis back into the center--those from

2 our transfusion services--and we've begun

3 re-inoculating those components, and we've not yet

4 found--and I think we're just about 200 products

5 re-inoculated--we have not yet found a unit that 6 grew through day 11 that did not grow through day 7 five.

8 We're grappling with the idea of hospital 9 inventories, and whether or not to credit or not to

10 credit returns. Currently, we do allow our 11 hospitals to return products to us with 24 hours 12 remaining on them, and they get full credit--which 13 is a continuous revolving door with a three-day 14 shelf-life.

And that issue of what we're going to do with whole blood-derived platelets, and of course to work all the bugs out--pun intended. [Slide.]

19 Status of bacterial detection. Now,

20 currently, there exists a dichotomy of safety, with 21 two different safety profiles existing for platelet 22 doses. In our shop we issue 70 percent of our

1 platelet doses as platelet pheresis that are tested 2 by blood culture, and 30 percent of our whole 3 blood---or our platelet doses are issued as whole blood-derived platelets, and these are currently 4 5 being tested by surrogate markers for bacteria; 6 that of pH and glucose. But there definitely 7 exists a dichotomy in safety, and I'll show you 8 that data. 9 Again, going back to Charter Medical, we have developed this platelet sampling device for a 10 11 means of applying our investment in our Bacti 12 detection system for our whole blood-derived platelets. And this system initially was designed 13 14 to allow us to sterilely connect six whole 15 blood-derived platelets here, and to pull an 16 aliquot, then, from each of the six samples; or 17 each of the six platelet units. 18 Then our plan was to seal off the syringe; take the syringe and the safety needle to apply to 19 20 the blood culture bottle, remove this portion, and 21 then we even had a pooling back associated with the 22 set that we would--we thought the transfusion

services then would utilize to pool the platelets
 and they'd remain in this pool of six without
 physically actually pooling them, but by pooling a
 sample.

5 Dr. LeParc came back from one of these 6 meetings, and Dr. Epstein informed him that, yeah, 7 he thought it was a good idea, but we'd have to do 8 about 30,000 to show that that was efficacious. 9 [Laughter.] And he said not in his lifetime. 10 11 So we had another discussion about what we would move forward with. 12 13 I guess part of the concern, too, is that 14 serial connecting device, and the potential for 15 bacteria to flow upstream into your platelet and 16 not be detected downstream in your syringe. 17 [Slide.] 18 So, we moved forward with a new concept, in that we would remain, or leave, a nine-inch 19 20 segment of tubing at the end of the platelet production process. We take that nine-inch segment 21 22 of tubing and we strip it back and mix it well at

1 the end of production and at the end of the 2 one-hour rest period. And then we've found that putting these 3 segment materials, if you will, into sets of six, 4 5 and incubating the lag phase at 37 degrees, we can 6 greatly enhance the detection in the time in the 7 bottle. 8 [Slide.] 9 So what we're doing the next day, then, after the 24-hour lag phase at 37 degrees, is 10 11 sterilely connecting our six samples--our six 12 segment samples that we've logged previously with a 13 pool ID--the pool ID is now associated with the 14 syringe. And once connected, we go into the hood 15 and we clean the distal end of that segment. We 16 apply, then, the Baxter Hemotype Segment Device to 17 the end to allow for a vent, and with that, we pull 18 that volume of six random platelet, or six whole blood-derived platelets into a syringe for testing 19 20 into one bottle. Initially, we were concerned with whether 21 22 or not the segment would sustain bacterial growth,

1 and we looked at a lag phase, comparing 12 hours at 2 37, to 24 hours at 37 and 24 degrees--trying to 3 vary that lag phase once again. And, interestingly, we saw in every exmample here that 4 5 the time to detection with a lag phase of 37 degrees was much less than that of a room 6 7 temperature lag. 8 [Slide.] 9 We looked at a small number of organisms; a lot of staph epi, E. coli. And then, in terms of 10 11 determining the sensitivity, or trying to evaluate 12 the sensitivity of a pool of six, we inoculated one--or we seeded one of the six with a staph epi, 13 14 at a relatively inoculant. Again, 24-hour lag at 15 37 degrees, and we found positive detection at 7.4 16 hours. 17 It's also interesting ot note that the 18 total tiime elapsed--the 18 plus the 12, and the 24 plus the 6 or 7, is the same total time elapsed. 19 20 But we feel it's important to shorten the time to detection in the bottle, because that is the time 21 22 where the platelet may be released prior to

1 detection. 2 [Slide.] This is an example, then, further, of our 3 ongoing validation. Our goal is to get 100 pools 4 5 of six blood unit numbers, or 100 pools of six 6 whole blood-derived platelets. We set them up in 7 those pools of six, as I've described, but we also 8 set them up in singlet to look at the relative 9 sensitivity between a singlet application and that 10 of a pool of six. 11 We interpreted that data, and we compared 12 then, at day five, a pH and a glucose from a urine 13 dipstick. 14 [Slide.] 15 And this is a summary of that data. We've 16 done 100 pols now; a total of 594 platelets--whole 17 blood-derived platelets. We had no growth in both 18 the pool result or in the singlet result. However, 19 looking at the surrogate markers--pH and 20 glucose--we had 6.1 percent fail a pH of less than 7. We had 25 percent fail a glucose of less than 21 22 250 g/dl. And using both of those criteria, we had

a failure of 5.6 percent of our whole blood-derived 1 2 platelets, using the surrogate markers. 3 [Slide.] Further studies included, now, taking 4 5 seeded organisms, or seeded platelets in a pool of 6 six. We seeded one whole blood-derived platelet 7 within that pool of six at a relatively CFU, at 15 8 CFU per mil. Comparing, then, a 37 degree lag to a 9 24 lag--and you can see in every case, with staph aureus, staph epidermis and E. coli, we were able 10 11 to reduce the time, in this case, by half; the time 12 to detection in the BioMerieux BactiAlert bottle. And, again, we fell that's very important, 13 14 because that's the time frame when the platelet can 15 be released. 16 Interestingly, we looked at the pH and the 17 glucose at day five in the singlet application, 18 both--with all three organisms. We probably would have noted these in our dipstick methods, however 19 20 the E. coli at a low inoculant maintained a pH of 7.5, and a glucose at 250 through day five. 21 22 [Slide.]

1 Our conclusions are that pH and glucose 2 levels as surrogate markers are not consistently 3 maintained in platelet storage day five, and we do recognize that we're in a Baxter PL1240 plastic, 4 5 which is probably not the most breathable plastic 6 on the market, and we are in a 500 ml collection. 7 So that probably has a negative effect on pH and 8 glucose as well. 9 The correlation of surrogate markers to actual bacterial contamination is poor. And our 10 11 time to detection is reduced by half, using a 37 12 degree lag phase. 13 [Slide.] 14 What are the costs associated with all 15 blood component sales? And there's been some 16 concerns, I understand from the committee, about 17 removing whole blood-derived platelets from the 18 blood product inventory menu, and what that would do to the cost of the other blood components. 19 20 In our model -- in our cost model, much of the cost of collections, if you will, or of 21 22 providing whole blood and red blood cells, and

1 platelet pheresis, are loaded onto those that we 2 can determine to be a one-to-one ratio between what 3 we issue and what we collect. So the cost for recruitment, collections and processing and testing 4 5 is associated all with the cost of the red blood 6 cells, and/or the platelet pheresis. 7 However, if we're looking at the components--platelets, plasma and cryo--it's a 8 9 variable ratio to whole blood collected, and it's a by-product cost. So the incremental bag cost: the 10 11 cost of quality control, the cost of production and 12 labor and inventory and distribution is different 13 than it is for the cost load that's associated with 14 red blood cells and platelet pheresis. 15 [Slide.] 16 What has been our testing cost to date? 17 Well we have roughly \$175,000 invested in hardware,

both in the BactiAlert system and that of the

18

19

20

laminar flow hood, and a dedicated sterile

connecting device, and a dedicated sealer. We 21 anticipate to do 80,000 tests over what we feel is 22 the life of this equipment, which is a three-year

1 depreciation schedule, and that comes out to 2 roughly 75 cents a unit. 3 The labor associated with both the testing of the platelet pheresis and the platelets in 4 5 groups of six--keeping in mind that the cost is 6 associated with the pool of six, or six samples 7 spread over the cost of that process--ranging from 8 a high of \$2.99 for the pheresis, to \$1.05 for the 9 platelets. 10 Consumables are listed here, as well. 11 Our direct costs, then total--for that of 12 the platelet pheresis--just under \$14, and that of 13 each unit of platelet in a group of six: \$6.70 a 14 unit. 15 [Slide.] 16 But the real cost needs to include the 17 cost of increased expiration. And we looked at the 18 same months in 2002 as in 2003, post development of bacterial detection in our platelet pheresis, and 19

20 our outdate rate went from just over 5-1/2 percent 21 to almost 13 percent. And that certainly is a big 22 cost issue, in terms of doing this process.

1 What's going to happen to our platelets? 2 Well, we're seeing, now, roughly a 15 percent 3 outdate rate. If we add another 15 percent to that, we could envision a 30 percent outdate rate 4 5 in our whole blood-derived platelets. So the need for a variance to allow for seven-day storage is 6 7 very much in need. 8 [Slide.] 9 And the emergent technologies that we hop to see in the future: the immunoassay in dry media 10 11 that was presented at the AABB last year; some idea 12 of spectrophotometric analysis, perhaps, that can take the magic out of the swirl and shimmer. 13 14 Concentration in mass spectrometry is probably cost 15 prohibitive. I believe the Chiron GenProbe group 16 is working on a molecular probe to detect bacterial 17 wall DNA or RNA; and that Holy Grail of pathogen reduction. 18 19 And I thank you for your time. 20 CHAIRMAN SKINNER: Thank you for your 21 presentation. 22 Committee questions?

1 [No response.] 2 It was very comprehensive. That was very 3 good. Thank you. 4 Dr. Holmberg? 5 DR. HOLMBERG: Do you ever import platelets from other locations? 6 7 MR. MALONE: We important platelet 8 pheresis, not whole blood-derived platelets. 9 DR. HOLMBERG: And do you re-test those? 10 MR. MALONE: No, we do not. We are 11 assured now, certainly after March 1 st, that those centers that we're importing from are doing some 12 13 form of bacterial detection in their manufacturing 14 process. 15 Prior to March 1 st, we would only import 16 from those centers that had developed a bacterial 17 detection technology. 18 CHAIRMAN SKINNER: Colonel Sylvester. 19 COL. SYLVESTER: On the donor you said you 20 lost that had donated over 200 units, have you all done any studies -- was that skin bacteria, or was 21 22 it--

1 MR. MALONE: Yes, we were able to, I 2 believe, genotype the bacteria and found that the 3 same bacteria growing in the bottle was the same thing that we could swab from the skin. 4 5 COL. SYLVESTER: And have you all done any work with the diversion pouch to either --6 7 MR. MALONE: No, we have not. 8 COL. SYLVESTER: --prove or disprove 9 whether or not a diversion pouch would eliminate that risk? 10 11 MR. MALONE: No, we have not. And we were 12 fortunate not to be yet in the Baxter sample for 13 its diversion pouch. [Laughs.] 14 CHAIRMAN SKINNER: Yes, Dr. Sayers. 15 DR. SAYERS: What has Dr. LeParc's 16 experience been with the notification of physicians 17 of a positive product? 18 MR. MALONE: Well, the--of the 11 total 19 samples we've had positive in the pheresis pool, 20 one unit had been released and transfused. It was 21 one of the bacillus that turned out to be a false

positive. The patient was a transplant recipient

22

1 and on megadoses of antibiotics, and the physician 2 was not concerned. 3 CHAIRMAN SKINNER: Dr. Kuehnert. DR. KUEHNERT: Well, first of all, I want 4 5 to comment your blood center for collecting all 6 these data. I think it's very important to look 7 at--try to get a sense of some sort of evaluation 8 here. 9 I had a couple of questions. First of all, you mentioned that you're also looking at 10 11 seven-day culture, and you said something about how 12 you haven't had any positives. But I just wondered 13 if you could repeat that. 14 MR. MALONE: Yes. Within our own 15 transfusion services that we provide blood to--and 16 we have total control over those blood 17 components--we're bringing back those expired units 18 that expire there, and re-inoculating those bags at 19 day five and day--well, day six. And so those 20 cultures go out to day 11, and we've not yet had a 21 unit positive that was, obviously, not positive 22 through day five.

1 DR. KUEHNERT: And the other question I 2 had: so you speciate -- when you get a positive, you 3 speciate--4 MR. MALONE: Yes. 5 DR. KUEHNERT: --every organism 6 MR. MALONE: We take the bottle from the 7 system, and we send the bottle to a local 8 microbiology lab at one of our hospitals in town. 9 And they do a Gram stain, and we get the Gram stain 10 result back within two to three hours, so that we 11 have an idea whether or not there's actually 12 growth. 13 And once that has occurred, then we--and I 14 believe Dr. LeParc does notify the transfusing 15 physician of the potential for a contamination based on the Gram stain. And then they go on to 16 17 identify the organism and do sensitivity as well. 18 DR. KUEHNERT: So this is all by phone, sort of--19 20 MR. MALONE: Well, yes--phone, and eventually written report--yes. 21

22 DR. KUEHNERT: And as far as donor

notification, do you notify the donor for every 1 2 organism, or only for certain organisms? 3 MR. MALONE: Just those that are determined to be true positives, but--yes, each of 4 5 those six true positives we've had, we've notified the donors, and Dr. LeParc has conducted a medical 6 7 exam on each of those donors. 8 DR. KUEHNERT: And I wondered if you have in your--it doesn't look like any of these 9 organisms have been of, you know--been reportable 10 11 to public health authorities. But do you have, in 12 your standard operating procedures, if it were a 13 reportable organism, to report it? 14 MR. MALONE: If the blood unit--if the 15 pheresis or blood product is transfused, yes. They 16 are reported. 17 DR. KUEHNERT: It's only if it's 18 transfused. MR. MALONE: Yes. 19 20 DR. KUEHNERT: But as far as the donor --21 MR. MALONE: No. No, we haven't. 22 CHAIRMAN SKINNER: And I'll ask what will

1 be the last question for this presentation. 2 You indicated you had one donor that had 3 showed up twice with a bacterial contamination, but they'd given about 280 previous donations? 4 5 MR. MALONE: Yes. 6 CHAIRMAN SKINNER: Did you do any kind of 7 look-back on the recipients of those other units to 8 find out whether there was any transmission of 9 bacterial contamination? 10 MR. MALONE: No, we did not. 11 CHAIRMAN SKINNER: Okay. 12 Thank you very much for your presentation. 13 MR. MALONE: You're welcome. 14 CHAIRMAN SKINNER: At this point, now, we 15 will move on to hear from the Puget Sound Blood 16 Center, and Dr. Richard Counts will be presenting. 17 DR. COUNTS: Thank you. 18 We strongly agree with those who say that it's high time we did whatever we could to deal 19 20 with this problem of bacterial contamination of 21 platelets stored at room temperature, and I'm 22 please to share our experience. So far, we do have

1 some concerns, as you'll see, particularly with 2 some of the difficulties with inventory of 3 platelets that are kind of curious. And also, with the non-specific character, and lack of sensitivity 4 5 of some of the methods, particularly for screening platelets derived from whole blood. 6 7 [Slide.] 8 The Puget Sound Blood Center serves 9 approximately 70 hospitals in 14 counties in 10 western Washington. It has a large central 11 transfusion service--like Florida Blood 12 Services--that serves a little over 20 hospitals in the Metropolitan Seattle Area. And for the 13 14 hospitals in the other counties, we send blood 15 components to those hospitals, and they have their 16 own in-hospital transfusion service. 17 In a year's time we transfuse about 18 170,000 units of red cells; in this last year, some 16,000 apheresis platelets, and just under 60,000 19 20 units of platelets derived from whole blood. It 21 serves large oncology and transplant services, and 22 so we've had, for many years, pretty substantial

1 need for platelets. 2 [Slide.] 3 The Blood Center rejoined the AABB after a number of years of absence--just in time to--4 5 [Laughter.] 6 --find this standard applying to us. And 7 so--[laughs]--we like challenges. 8 And so this has been our approach that 9 we've taken. We have, since June of 2003, been 10 culturing apheresis platelets, using the BactiAlert 11 system. We hold them for 24 hours prior to 12 sampling--as is usual, as you've been hearing. 13 They are released for transfusion when they're 14 required, once the sample inoculation has been 15 done. And units that are positive -- if we get -- if 16 the sample turns positive, then the unit is not 17 used. If it has been sent out, it's recalled, and 18 additional cultures are done to identify the 19 organism and to determine whether this is a true 20 positive. 21 There is an additional cost, and we've 22 made an additional charge for our apheresis

platelets. Our cost for the testing of apheresis
 platelets is not quite as low as in Florida. It's
 about--around \$20, a little more than \$20 a unit.
 For whole blood platelets, we, like Dr.

5 AuBuchon's European colleagues, we laugh at the 6 rather crude methods available. However, our grin 7 is a risus sardonicus, because unlike the 8 Europeans, we had to choose one of those methods to 9 use. And what we've chosen to do is testing with

10 the dipstick method. We've been doing that since 11 March of this year--so a rather shorter experience. 12 It's just the BactiAlert system, which you've seen. 13 Our current experience with the BactiAlert 14 testing, about eight months is approximately 9,000

units tested negative. We had five true positives, with three different organisms identified; 15 false positives. Seven showed growth in the BactiAlert bottle only, and were not confirmed on repeat cultures of the unit of platelets

20 Eight "no organisms" were detected, and my
21 understanding is there was some situation where
22 there was evidently a change in the bottle--perhaps

1 the indicating device--that did not seem to be 2 associated with any actual growth. 3 So this was about 15 units out of 9,000 discarded for a positive test in the system. 4 5 However, that is not particularly large compared, 6 for example, to--there were almost 40, or twice as 7 many units lost in processing related to doing the 8 sampling. This sampling, incidentally, we do in a 9 laminar flow hood. Now, we expect that with more 10 experience, these losses will probably come down a 11 bit. 12 [Slide.] 13 So far as the testing of the whole blood 14 platelets with the dipstick, we did a study on--the 15 top couple of rows just shows some of the 16 experience we had with 50 units, looking--these are 17 averages of the 50 units, on days one through six. 18 And the average pH has stayed above 7.2, and they 19 tended to come down a bit. And the glucose average 20 level stayed pretty good. 21 There was quite a bit of variation, 22 however--this just compared with some data that we

```
1
     were kindly provided with Torumal, which is
 2
     something similar.
 3
               [Slide.]
 4
               When we looked in detail to do some
 5
     validation on this method, the pH was always above
 6
     7, and the glucose always above--well, using that
 7
     criterion--above 250. Seven units out of the 50
 8
     failed about 14 percent rate. Those were all
 9
     culture-negative.
10
               [Slide.]
11
               We did inoculate several units--spiked
12
     them to see whether we could detect them. We
13
     detected E. coli without much trouble, but failed,
14
     with this method, to detect staph epidermidis
15
     inoculated, in one case, at fairly high levels; 100
16
     CFU per mil.
17
               [Slide.]
18
               The criteria that we have adopted for
19
     screening at this point are a pH above 6 and a
20
     measurable glucose--detectable glucose with the
21
     dipsticks.
22
               Now, you probably can't see this very
```

well. The dipstick procedure for doing it is
 rather complicated. There is a visual inspection,
 but it's not necessarily just swirling. We look in
 general for everything.

5 The platelet--the tubing is stripped, the 6 bags are mixed three times. They seal off a 7 segment, and then take a sample with a segment 8 splicer, and put that on the dipstick and read it 9 at, I believe, it's 30 seconds for the glucose and

10 then, right after that, for the pH.

11 We also repeat this procedure if we've had 12 units returned from any of our regional hospitals, 13 where they may be using this technique in their 14 transfusion service--although I might say that most 15 of the hospital transfusion services have preferred 16 to finesse the whole business by getting, insofar

17 as they can, order apheresis platelets, because of 18 the much greater convenience. We do the culturing 19 there, and then they avoid this whole procedure.

20 And for some of the smaller hospitals, they
21 considered that would be more of a burden than the
22 extra cost of apheresis platelets.

And we haven't had an awful lot of 1 2 experience, as I said, with this so far. It's 3 about-it's a couple of weeks here. 4 [Slide.] 5 And we are testing these whole blood platelets at our two large transfusion services. 6 7 We actually have two other smaller transfusion service labs that, because of the delays in 8 9 preparing emergency pools of platelets for 10 emergency orders, we also have attempted, as far as 11 we can, to use just apheresis platelets on those smaller laboratories. They have much less demand 12 13 for platelets than the large ones which serve the 14 big academic medical centers, the trauma centers and that sort of thing. 15 So we've had about 970--roughly 1,000 16 17 units--tested in that period of time. Five failed 18 for some of the reasons noted. None were 19 culture-positive. And one unit was returned from a regional hospital, and when we tested it, it 20 passed. It still wasn't used, but --21 22 [Slide.]

1 There has been a substantial impact--we've 2 had a significant loss of--there's a bit of a loss 3 of discarded units directly. The loss from positive tests is quite small. We've had increased 4 5 outdates, which I'll take about here in just a moment. There's, of course, the increased cost to 6 7 the hospitals and to the blood center. 8 I think there has been an increase in the 9 age of platelets transfused, obviously, particularly with apheresis platelets, since we're 10 11 holding them for 24 hours before we transfuse them, 12 in order to allow the sampling. And it takes longer for emergency orders, particularly of whole 13 14 blood platelets. 15 [Slide.] We have, at this point, made an estimate 16 17 of costs, comparing some of the costs for the 18 apheresis platelets and the -- "random apheresis platelets," RAPS, is what that stands for--and 19 20 platelets derived from whole blood. And this would be an annual estimate. So far, from our--it looks 21 22 like the main cost is still testing, but a close

1 second is the additional--our outdate rate has gone 2 from about 7 to about 10-1/2 percent on apheresis 3 platelets. And there's a certain QC loss, too. So we anticipate that this would be an 4 5 increase in cost of about close to a million 6 dollars over the year for our rather large service, 7 and about 10 percent of the annual revenue from 8 these two components. So that will--an increase in 9 cost. 10 [Slide.] 11 Let me talk a little bit about the effects 12 on platelet inventory, because we have seen some 13 pattern of shortages. This is a center that does 14 not have blood shortages, by and large, and has not 15 even frequently had platelet shortages--at least 16 for the past six or eight years. 17 This shows an increased use of apheresis 18 platelets. Now, this was going on at a relatively moderate level--but a continuous increase--prior to 19 20 the start of culture and testing. We have the 21 sense that it's--the pace has picked up a little 22 bit.

1 And, conversely, the use of whole blood 2 platelets has gone down. 3 There are couple of reasons for that, and that's not entirely related to the testing. One of 4 5 our largest users of platelets, a marrow transplant 6 center, has been doing more and more of the mini 7 transplants, and has found ways to use less toxic 8 conditioning regimens. And so they have succeeded 9 in decreasing the number of platelets used--or 10 necessary to get somebody through a stem-cell 11 transplant, which is a good thing. But it has 12 meant that--there have been several reasons for our decrease in platelets, and that particular hospital 13 14 used, for many years, primarily platelets derived 15 from whole blood. They're now using more apheresis 16 platelets, also. 17 [Slide.] This shows some of the effects on the 18 outdates. Of course the outdates vary a bit, 19 20 although, as I mentioned, if we compare the eight months from June of 2003 to February of 2004 with 21 22 the eight months of the previous year, when we

weren't doing testing, the outdate rate is up to about 10-1/2 percent, and it was about 7.2 percent for the previous year. And that's a significant change.

5 [Slide.] 6 There's probably been a bit of an increase 7 in outdates of whole blood platelets, too. Partly, 8 this is because when we've had shortages of 9 apheresis platelets and demand for that, we can't 10 produce many more on short notice because it's hard 11 to get additional donors--which I'll mention in a 12 minute. But we can produce more platelets from 13 whole blood on short notice, because we can easily 14 ramp that up. And so, in doing that, I think we've 15 done that some times, some weeks, and then have 16 found that there wasn't a sustained demand for 17 that. And so it's just complicated inventory 18 management. 19 [Slide.]

20 And these are--the dot bars are those
21 issued, and this is over a period of about the last
22 year--and again shows an increase in those issued.

1 And the yellow bars at the bottom are outdates, and 2 they've both gone up. 3 [Slide.] And, with whole blood platelets, similar 4 5 to the earlier things. 6 [Slide.] 7 Now, there's an interesting pattern. In 8 2003--in February of 2003--we see a pattern of--the 9 blue bars--or at least whatever color they are; the top ones--are our inventory of platelets in our 10 11 system, and the yellow ones are the platelets 12 issues, by day of the week, starting with Sunday. 13 And you can see there's a dip in the 14 inventories in the middle of the week. There's a 15 pretty consistent use of platelets during the wee, 16 with Sunday being a bit lower than the others. But 17 the others are fairly consistent. Although we have 18 usually managed, during that period of time, so 19 that we didn't really get problems with shortages. 20 [Slide.] This is an accentuation of that problem. 21 22 This is February of 2004--this year--since we've

1 been testing. And you can see that seems to have 2 been made a bit worse. The use of apheresis 3 platelets has gone up a bit, from an average of about 42 to 45 a day, to a little over 60 a day. 4 5 Sunday is still low, and then the top--the taller 6 bars are the inventory. And you can see, on 7 Wednesdays -- Tuesdays and Wednesdays, we get very 8 close. 9 Now, what that implies, obviously, is that our collections don't follow the same pattern as 10 11 the use. And so what you might be saying at this 12 point is: "Stop whining. Just collect more 13 donors--apheresis platelets--on Thursday, Friday 14 and Saturday, " and that would take care of it. 15 One of the reasons that we're so much 16 shorter on Wednesdays, of course, is that we don't 17 have the extra day of storage time to keep us--tide 18 us over the weekend. 19 And eventually we will do that. We've 20 increased our apheresis platelet collections about 21 15 percent in the last year. But it isn't that

22 easy to get people in on, particularly, Fridays and

1 Saturdays, and even on Mondays sometimes, to take 2 the extra time to donate apheresis platelets. Curiously enough, we don't have much trouble on 3 Tuesday, Wednesday and Thursday getting a lot of 4 5 donors, which is why we end up with a high 6 inventory on Sundays, when we don't need it -- so 7 that the storage time is a problem. 8 And so when we think about changes that 9 are needed, there are a couple of defects we feel, 10 with the present methods that are associated, for 11 example, with culturing apheresis platelets, one 12 is, of course, the time it takes for culture; the 13 time it takes for the incubation. And this is a 14 good method. Of course, we also hope that if 15 platelets are going to grow, they'll grow faster in 16 the bottle than they will in the unit of platelets. 17 But the biggest problem at the moment is the loss 18 of the use of the platelets for another day at 19 least.

For the whole blood platelets, we think that the systems that are presently available and feasible are pretty costly for a non-specific
1 system that's relatively insensitive. And we also 2 have the concern that it is tending--for some of 3 these logistical reasons that I mentioned--to strongly discourage further the use of platelets 4 5 from whole blood, which--now, there are people who 6 think, well, that's not a bad thing; apheresis 7 platelets are good platelets, and there should be 8 no real need for whole blood platelets. 9 Well, actually, we don't think that. We, in our system--as you could see--at the moment have 10 11 a problem supplying the platelets needed for our 12 system without using whole blood platelets. In 13 addition, as has been discussed, we have, by 14 getting platelets from whole blood, we not only 15 make use of a resource that's available and that 16 functions well, but also allows some of the fixed 17 costs of recruitment, collection and that sort of 18 thing, in our case, to be spread over more than one 19 component.

20 So that if we have to completely the 21 abandon the use of whole blood platelets, the 22 patient's costs of platelets will go up because our

1 costs of providing apheresis platelets are somewhat 2 higher than the cost of providing platelets derived 3 from whole blood. And, in addition, the cost of red cells and other components, in our system at 4 5 least, will go up as well. 6 And, finally, we think that this would 7 lead to a terrible loss of the donors' gifts of platelets, which we would simply have to throw 8 9 away, and not make use of a resource that ought to be utilized, particularly at a time when we keep 10 11 hearing--nationally--of shortages of all of these 12 components. 13 So, what is to be done? 14 [Slide.] 15 Our suggestions are pretty similar to the 16 others that have been made today: work out some 17 scheme--and we hope that the FDA will be able to 18 successfully come up with some criteria for licensing pooled whole blood platelets, and for 19 20 doing the studies that would allow that data to be 21 collected; be able to pool whole blood platelets 22 and increase the shelf life--seven days, nine days,

1 10 days, whatever can be done would help a great 2 deal on all of these things. 3 And, in addition, I think, obviously we're very concerned that better tests still need to be 4 5 developed. 6 Thank you 7 CHAIRMAN SKINNER: Thank you for your 8 presentation. 9 Questions from the committee? 10 DR. LINDEN: Thank you very much for the 11 very helpful presentation. 12 At your center, how long do the other 13 infectious disease tests--the serology, nucleic 14 tests--take? And can you tell us exactly how long 15 it is to get an answer for the bacterial detection for the apheresis platelets, and therefore how much 16 17 time, exactly, this adds? 18 DR. COUNTS: How much time--ahh. 19 Actually, the other tests take about 12 to 20 14 hours to do, but some of the units we're testing in a way that is actually going to take almost 24 21 22 hours to do those tests, too.

1 So, to hold the platelets to do the 2 culturing, the additional time takes anywhere 3 from--I would say not very long--four to six hours up to, perhaps, 12 hours. 4 5 It's a good point: there are other 6 reasons to delay the availability. 7 DR. LINDEN: Oh--I'm sorry--so it adds 12 hours? Is that --8 9 DR. COUNTS: Probably, on the average. DR. KUEHNERT: I just had questions along 10 11 the lines of what I've asked before. 12 You're identifying all your organisms 13 after there's an indication that there's a positive 14 indicator on BactiAlert. And that's done at your 15 center? Or you send it out? Or --DR. COUNTS: It's done at the University 16 17 of Washington microbiology lab. DR. KUEHNERT: So then you have the report 18 19 sent back to you --20 DR. COUNTS: Right. 21 DR. KUEHNERT: And if there's a need for 22 recipient notification, you have --

1 DR. COUNTS: Right. 2 DR. KUEHNERT: --a reporting procedure in 3 place for that? DR. COUNTS: Yes. 4 5 DR. KUEHNERT: How do you handle the --6 DR. COUNTS: I think we have had one--of 7 the five positives, I think we have had one where 8 it became positive after it was sent out, and we 9 contacted--our medical director contacts the 10 physician. And in that particular case, there was 11 no evidence that the patient had any problem having 12 received those. 13 The others, I believe we caught before any 14 of them were released. 15 DR. KUEHNERT: And what about donor 16 notification? 17 DR. COUNTS: We do try to get the donor 18 back and see if we can find a cause for the 19 contamination. 20 DR. KUEHNERT: I--umm--21 DR. COUNTS: And I can't tell you right 22 now what the details of that--of what we found in

1 each case. But, I mean, we've got that 2 information. I just don't have it with me. 3 CHAIRMAN SKINNER: Dr. Holmberg? DR. HOLMBERG: I'll ask you the same 4 5 question I asked previously. 6 Do you import or export any of your 7 platelets--apheresis or whole blood-derived? 8 DR. COUNTS: Not to speak of. 9 We--ahh--have not imported any significant amount, 10 and we really haven't exported many either. 11 DR. HOLMBERG: If you exported, would 12 you--how do you inform whoever is receiving it that it's been bacterial tested? 13 14 DR. COUNTS: Umm--well, that's an 15 interesting question, because the--only a few 16 places we have sent any to, I think they know that 17 we're doing that, because--but we would either tell 18 them or they would ask, I presume. But we haven't 19 had a systematic way to doing that. 20 CHAIRMAN SKINNER: Dr. Penner? 21 MR. PENNER: I'd like to get those extra 22 platelets you've got.

1 [Laughter.] DR. COUNTS: Well, we had an 2 3 interesting--there's an interesting reason why we don't export--or haven't, until--in that we 4 5 licensed our apheresis platelets, and then, in a 6 triumph of long-range planning, as soon as we got 7 them licensed, we changed the machine that we were 8 using. 9 And so it's taken us another --10 [Laughter.] 11 --while to get the license up to date. And so--and that's just happened. So now we're 12 13 potentially available. 14 MR. PENNER: Rich, you've got a huge 15 transplant operation going on in your shop there. DR. COUNTS: Yeah. 16 17 MR. PENNER: What percentage of platelets 18 are really going in that direction? DR. COUNTS: Well, I think at one time it 19 20 was probably about 50 to 60 percent. But, as I say, I believe that's decreased somewhat in recent 21 22 years because they have managed to find ways to do

1 the transplants with needing less platelet support. 2 Ten years ago, they needed an average 3 of--and these were platelets from whole blood--about 130 donations of platelets to get 4 5 somebody through a transplant. Now they're doing 6 quite a few of them with maybe one or two doses of 7 platelets. So that's been a substantial decrease. 8 So I suspect it's probably a third or less 9 now, compared to--even though the volume of patients is large. 10 11 CHAIRMAN SKINNER: Dr. Sayers? 12 DR. SAYERS: Thanks. Just a few 13 comments--and the one has to do with mention of 14 donor notification that was brought up a minute or 15 two ago. 16 Donation is becoming increasingly 17 perilous. And it's not perilous because of the 18 risk of the procedure, but because of the quality of the information that individuals are given, 19 20 which quite often flies in the face of their own sense of well-being, good health. 21 22 Take this as an example. We're struggling

1 now with what to tell the individual whose 2 platelets--whole blood-derived platelets--were 3 found at a hospital to have failed pH or swirling. You know, that individual is not going to 4 5 take kindly the information that his or her 6 platelets don't swirl--7 [Laughter.] 8 --and we don't have answers to that yet, 9 but we do have the responsibility to let donors know what happens to their donation, and whether 10 11 it's transfused or not. 12 And the other comment has to do with: I'd 13 really like to endorse what Dr. Counts said about 14 the value of whole blood-derived platelets. This 15 product has been undervalued for a long period of 16 time. And when I look at our experience in 17 Dallas-Fort Worth, we would not be able to meet the 18 community's requirements if the community was to 19 decide to go 100 percent in the apheresis platelet 20 direction. No amount of aggressive recruiting on our 21 22 part is going to ensure that the community's

1 transfusion-dependent patients who require 2 platelets are going to be able to get them from 3 apheresis donors. So I just wanted to endorse what Dr. Counts had to say about the whole blood--the 4 5 essential whole blood-derived product. 6 CHAIRMAN SKINNER: Other questions from 7 the committee? 8 [No response.] 9 Thank you very much for your presentation. 10 [Applause.] 11 HOSPITAL EXPERIENCE 12 CHAIRMAN SKINNER: The last section that 13 we're going to discuss today is we're going to hear 14 from the hospitals about their experience. And the 15 first presenter in this section will be Dr. Robert 16 J. Bowman, with the University of Minnesota Medical 17 School. 18 MR. BOWMAN: Thank you for the opportunity to present our perspective to the committee. 19 20 I'm going to give you our experience with bacterial testing of platelet concentrates, 21 22 particularly the impact on our operations; and some

1 about the economics of this. 2 There have been a number of questions 3 about this today, and I'm sensitive to the fact that I sort of feel like I'm at the end of 4 5 pipeline--sort of literally and financially. I mean, we do pay for all of these things, and we do 6 7 pay for all of the testing that's done at the blood 8 center. 9 But I can't start a talk like this without talking about leadership first. This is not done 10 11 alone, and these are the people who I need to 12 recognize. 13 [Slide.] 14 You can't see the lady's picture there, 15 but Nancy Ward is our technical supervisor, and 16 implemented the testing that I'm going to tell you 17 about. And the other people supported me as well. 18 When I go back to tell them what I've done, I will 19 show them this slide, and I hope they will 20 appreciate that. 21 [Slide.]

I also want to give you a quick overview

22

1 of what Fairview University Medical Center is. 2 It's formerly University of Minnesota Hospitals. 3 We were acquired by the Fairview System some years ago. But it's the same institution. 4 5 It's about nearly 1,000 staffed beds; about 36,000 admissions each year; 23 or 24 6 7 thousand surgical cases, with a substantial number 8 of adult organ transplants, and pediatric 9 transplants; also, probably 225 or so blood or 10 marrow transplants in the year 2002. 11 [Slide.] 12 To give you a feel for the transfusion 13 activity, we transfuse leukoreduced red cells about 14 18,500--nearly 20,000 a year, roughly. Platelet 15 equivalents -- now, this is apheresis times five, 16 plus whole blood platelets times one--about 54,000 17 equivalents are transfused each year, and they are 18 all leukoreduced--including the whole blood 19 platelets. Those are each individually 20 filtered--about 11,000 frozen plasma, and 42,000 21 cryo. 22 [Slide.]

1 Now, another perspective I want to give 2 you is--this shows platelet usage strategy at 3 Fairview University Medical Center over a number of years. And--is there a pointer? Well, I don't see 4 5 a pointer. You can see at the end of the chart, there 6 7 are three curves shown there. The dark blue is the total platelet equivalents transfused since 1990. 8 9 The magenta--or whatever color that is--shows--that 10 shows apheresis platelet equivalents. 11 Oh, thank you, Roger. 12 That shows apheresis platelet equivalents 13 back in 1990. And there were about--you can see, I 14 don't know, 45,000 or so platelet equivalents that 15 were transfused--apheresis products. And then the 16 yellow is whole blood platelets. 17 A conscious and thoughtful decision was 18 made back in about 1992--12, 14 years ago now, to specifically favor whole blood platelets, or 19 20 platelets derived from whole blood, over apheresis 21 platelets. The judgement was made that they are 22 certainly equivalent functionally, but also from a

risk point of view, it was a reasonable trade-off 1 2 for the cost-benefit. And that was driven largely 3 by financial concerns. Okay? So that decision was made back then. And 4 5 that decision has essentially stuck. You can see 6 the apheresis platelets came way down, the whole 7 blood platelets came way up--and stayed there. 8 Now, you can see apheresis platelets have 9 increased more recently. That's at our suppliers' option. That's not at our request. So when those 10 11 are substituted for whole blood platelets--for 12 whatever reason--we buy them at the whole blood platelets price. All right? So that's at our 13 14 suppliers' option. 15 So we have a propensity to choose whole 16 blood platelets. 17 I also want to tell you that we're not 18 immune to observing transfusions reactions due to bacteria contaminated blood components. 19 20 [Slide.] And this shows the fatalities--we had one 21 22 back in--and I think this is a fairly complete

1 list. My colleague has compiled this list, and 2 he's got a pretty good memory for this sort of 3 thing. So these are identified as reactions. We had two fatalities: one in '89--that 4 5 was a red cell, and was due to Yersinia 6 entericolitica; the other was '99, a platelet pool, 7 and was due to Serratia. And then are a series of non-fatal 8 9 reactions that are actually more recent, and that's 10 kind of--I don't know, I can't give you a solid 11 reason for that, but I suspect it is because we 12 essentially began transfusing leukoreduced 13 platelets--all products were leukoreduced at about 14 by 2000. And I think that previously, reactions 15 that might be secondary to white cell contamination 16 of platelet concentrates, for example, now don't 17 happen as often. So we may be picking these up. 18 But, again, that's not a--I don't feel that's a robust answer. That's my best guess. 19 20 [Slide.] Well, when this new standard was 21

published, a number of challenges--and probably

22

1 more than this. We needed to determine what test 2 we should use, and we cared about how much it would 3 cost. And we cared about whether it would change our practice; for example, were we going to have to 4 5 go to all apheresis platelets versus whole blood 6 platelets? And there were probably a whole bunch 7 of other issues as well that I just didn't list. 8 Let me give you an idea of the timeline 9 that we had. 10 [Slide.] 11 Back in July of '03, we began to define 12 our approach. You might say that we knew about it before that. Well, we did, but then we got serious 13 14 about it and said we need to face this. By August, 15 we were looking at initial investigations. We gave 16 a heads up to our management, telling them money 17 was going to be needed. We were looking at 18 demonstrations of the various technologies that we 19 could use.

20 By September of '03, we had a specific 21 outline. We were pretty clear what we were--or how 22 we were going to make our decision, and that

1 included, you know, getting information; 2 "consultations"--that means calling up your friends 3 and saying, "What are you going to do?" 4 [Laughter.] 5 Technology assessment: we did do a 6 technology assessment. I'm not going to go through 7 a lot of that with you, but we made a little chart 8 and looked at dipsticks and culture and the Pall 9 system and that sort of thing, and we wanted to 10 look at the cost impact as well. 11 And then we specifically sent people to 12 AABB--it was a good excuse to send them; tell management "You need to go because this is 13 14 important. There's an issue here." And I attended 15 the annual meeting with specific instructions to go 16 and get information and learn. 17 And let me give you an editorial comment: 18 that, given the standard, I think AABB has done a good job of giving guidance around this issue. At 19 20 least that's my perspective, from the hospitals' 21 point of view. 22 By December we had a final decision on our

1 technology. We made up our validation plans and 2 implementation plans, and by March 1 st we 3 implemented the testing. [Slide.] 4 5 Early on--very early on in this we decided 6 this was going to guide our approach to our 7 actions. 8 First, we said, we will meet the standard. 9 We're going to meet the standard. We're going to 10 meet it on time, and we're going to do it with an 11 accepted test. 12 Further, we're going to collaborate with 13 our supplier--that's Red Cross in St. Paul, 14 Minnesota. We want to know what they're doing, and 15 we want to talk with them and so we make sure that 16 we're working together with them. We are highly 17 dependent on them. They're our supplier. Thirdly, we thought it was prudent to be a 18 19 late adopter. We did not want to lead the field in 20 this. We want to see what other people are doing, 21 and wait for someone to do something very clever, and then we want to copy them. And that's a 22

specific strategy, and that remains our strategy. 1 2 [Laughter.] 3 Well, we thought that: look, this is a new standard. There's new technology being 4 5 applied, and it's probably going to change. And we 6 don't want to invest too heavily to start -- and 7 so--either, in our operations, or in equipment, or 8 space or anything else. So we felt, as well, that 9 we would try to minimize the operational and the 10 economic impact on us. 11 Well, there are implications to our 12 approach. The first was: we intended to maintain 13 14 the current apheresis-whole blood platelet mix, and 15 that's mostly whole blood platelets--mostly whole 16 blood platelets. 17 We were going to keep testing simple, and 18 we were going to monitor the technology. And that remains our plan. 19 20 We were going to observe our supplier's 21 efforts in testing, and their improvements in

22 collection technique--that sort of thing. We

1 wanted to follow that so we knew what was going on 2 there. 3 And then we also wanted to make sure we monitored regulatory policy on pre-storage of 4 5 platelets derived from whole blood. That has 6 already been discussed here. 7 [Slide.] 8 Well, what was the economic impact to us? 9 Early on we needed to take a look at this. 10 Well, it was--how bad is it?--it's \$1.5 11 million over the expected expenses for us. And 12 I'll show you more detail about this. So \$1.5 13 million. Well, is that a lot? A little? I 14 understand this is a governmental meeting. It may 15 not seem like a lot. But it seemed like a lot to 16 us--17 [Laughter.] 18 --because that was 42 percent more than we were currently paying for platelet concentrates. 19 20 All right? 42 percent more. So the question is: are there options? 21 22 So we did begin to look at some options, as well.

And we did a little economic impact study; a simple 1 2 little model study. 3 [Slide.] And these are the assumptions underlying 4 5 it. We assume we're going to be using 1,000 6 apheresis platelet concentrates; about 47,000 whole 7 blood platelet concentrates -- and they are all 8 leukoreduced. We, furthermore, have an 9 equivalency. We say five whole blood platelets are 10 equivalent to one apheresis platelet. And, the 11 estimated cost to test for bacteria was to be \$30 12 per test. That's the number we had heard, back at 13 that time. And I don't know if it's too far off--I 14 mean, at least for the culture techniques. If it's 15 a little bit high, that's okay. I mean, it doesn't 16 really have much--actually, it favors my 17 conclusions if it's high. 18 [Slide.] 19 So we did a model study. And what this 20 chart shows, this shows our current product mix, at current prices -- negotiated prices: 1,000 21 22 apheresis, 47,000; leukoreduced platelet

1 concentrates from whole blood-- 3.5 million, 2 roughly. 3 If I take the current product mix--take all those and say, "Add bacterial tests at 30 bucks 4 5 a unit, "--\$30 a test--it's nearly \$5 million. 6 So you say, "Well, we can't hardly afford 7 that. So let's just convert to all apheresis, and then just bacterial test those." So you have 8 9 to--you know, you if you do the equivalency, that's 10 10,5400 apheresis, plus the current negotiated 11 price, and that costs \$5 million. Well, I mean, how can this thing be? It 12 13 could be, because the apheresis components -- at 14 least to us--are a lot more expensive than whole 15 blood platelets. They just are. They're more 16 expensive. 17 So--we'd take a look at the current 18 product mix, and we talk about bacterial testing just connected platelet pools and we can get it 19 20 down to \$4 million. And then--I'll talk about this 21 later--take the current product mix and do testing 22 on pools. I'll come back to this a little bit

1 later. 2 So, with that in mind, that sort of 3 validated the approach that we thought we ought to take and, in fact, to continue to use whole blood 4 5 platelets, and to test them ourselves. 6 Now, we didn't select any of those 7 options, but we did choose to test whole blood platelets ourselves. And we did that because we 8 9 knew then we wouldn't have to change the apheresis 10 versus whole blood platelet strategy; no change in 11 practice, no discussion about anything with medical 12 staff. 13 There was no change for our supplier. We 14 cared about that. There's an issue about adequacy of supply. They probably couldn't have turned on a 15 16 dime and provided all the apheresis products. So 17 there would have to have been a transition anyway. 18 And then, finally, we thought: we can test for a lot less than \$30 per test. So we also 19 20 decided at that point that we're going to use 21 bacterial-tested apheresis platelets from the

supplier. We aren't going to fool around with

22

1 that. We're not going to test them ourselves. 2 Why? We don't use many. It's easier than 3 establishing additional test criteria, and it really only adds about \$30,000 per year; a thousand 4 5 apheresis products time \$30, \$30,000. 6 Straightforward. 7 [Slide.] 8 Again, test whole blood platelets 9 ourselves--the process we use is to do a glucose 10 test. We use a glucometer--it's a SureStep 11 Flexmeter--we don't use dipsticks. We chose not to that--or the swirling. We didn't want to do the 12 13 dipsticks because we thought it had a component of 14 subjectivity to it. We get a number. It's good to 15 get a number. 16 We chose eight hours as a time period. We 17 don't test these on release. We test them--we try 18 to batch test them, and then they're good--we say 19 they're good for eight hours. And then you have to 20 test them again--okay?--if you're going to use 21 them. So that's the way we approach that. 22 The cutoff we chose as a result of our

validation studies was less than 520 mg/dl; units 1 2 falling below the screen are not used. If they 3 fall below the screen, they get reflex tested on another machine, mainly because we want to get a 4 5 pH, because our supplier wants to know if the pH is less than 6.2. So we get a glucose, a pH--and, 6 7 actually, a lactate, too. But if the pH falls 8 below 6.2, that we report to the supplier. 9 And then we Gram stain. Anything failing 10 the screen gets Gram stained and cultures, and any 11 positive is reported to the supplier. 12 The estimated cost for this testing, we 13 think, is about \$3 per test. That's the direct 14 cost, we think--about that. I haven't got a lot of 15 faith in that, but that's our best estimate right 16 now. 17 That means the total added expense--about 18 47,000 of these we do a year--is going to be about \$150,000, but redundant testing adds another 19 20 \$60,000 or so; that is, some of those units are tested multiple times. 21 22 [Slide.]

1 That's the results. Just thought I'd show 2 you the distribution. It's--I can't see the thing, 3 either, here. But here's--our cutoff is down around here. And so there are a few that did, in 4 5 fact fail. By and large, almost all of them pass. 6 This shows you--we've tested, in the month 7 of March--this is just for a four week period that 8 we have available -- we received about 3,400 9 platelets; we tested about 5,200--a little bit of 10 redundant testing going on, clearly. Those that 11 had glucose less than 520, there were 38 of those. 12 Those that had pH less than 6.2, there were two of those. None had a positive culture or a Gram 13 14 stain. 15 And I have to say--I say "Gram stain"--our 16 micro lab quit Gram staining early on. They said, 17 "Look, you're culturing them anyway. We're not 18 going to fool around doing a Gram stain, too." So they quit doing that -- and then they told us awhile 19 20 later [laughs] which is a little annoying, but it works. And they're correct. 21

22 We have not experienced shortages since

1 doing this--but we didn't change to all apheresis 2 platelets. 3 [Slide.] Our operations on this can be improved. 4 5 This is not without some challenges. We didn't 6 appreciate the redundant testing that was driven by 7 that eight-hour period set for test validity. We 8 think we could probably lower our cutoffs, so we 9 want to look at that. We did hire an additional FTE--and I know 10 11 this: that a lot of this is still manual. I mean, 12 we record these results on this glucose meter; 13 record them and then we enter them into a computer, 14 and the computer doesn't exactly prompt a person in 15 an effective way. So we can improve some things. 16 But we think we can improve things. 17 [Slide.] 18 What do we think is needed? Well, we need better testing that includes Gram negative and 19 20 positive organisms. It needs to be automated, and it needs to be blood-center friendly. 21 22 I personally would rather have the blood

center do this. I'd like to get the product from 1 2 them and have them say, "This is good for the 3 period of time that you need to store it for your use." I'd like it to be that way. That would be 4 5 highly desirable. The test needs to be sensitive, specific, 6 7 and a lot of other stuff that other people can 8 enumerate for you. 9 And then, I think also--quite 10 importantly--we need an objective assessment of 11 pooled, stored whole blood platelets. It's 12 important to look at that. We need to leukoreduce those things as pools, and we need to do the 13 14 bacterial testing as pools on them. 15 Let me come back to some of the 16 pre-storage--the economic benefit. 17 [Slide.] 18 this is the current product mix that we use--pretty close--for \$3.54 million a year. 19 20 That's what we would spend. If I could take and back out the leukoreduction that's done on each 21 22 whole blood platelets--back it out--pool the whole

blood platelets five into a pool, leukoreduce and 1 2 bacteria-test those pools and sterile-connect them, 3 it would cost \$3.5 million--all right? I can take, and I can have what I'm 4 5 getting now, and I can add bacterial testing to the thing, and I can get it cheaper. So I can get a 6 7 better product cheaper. I think that's a 8 compelling argument for a careful evaluation of this kind of a strategy. I think we have to do 9 10 this. 11 So, in my notion, it is clearly time to 12 consider pooling whole blood platelets before white 13 cell reduction and bacterial testing and storage. 14 Pool them, leukoreduce them, test them and store 15 them. 16 Thank you. 17 CHAIRMAN SKINNER: Thank you for your 18 presentation. 19 Questions from the committee? Dr. 20 Kuehnert. 21 DR. KUEHNERT: Thanks for the 22 presentation.

I wondered--just on your last message 1 2 there, with the \$3.5 million, which appeared to be 3 less than what you're doing now--4 MR. BOWMAN: Yeah. 5 DR. KUEHNERT: --less costly than what you're doing now--what type of testing are you 6 7 talking about for bacterial screening? 8 MR. BOWMAN: Included in that was a \$30 9 charge. DR. KUEHNERT: Oh, it was the--okay. 10 11 MR. BOWMAN: Yeah. See, you can add it 12 in. I mean--and by the way, if the \$30 charge is a little high, and someone thinks, "Well, you're a 13 14 little high on that, Bob," if you lower it, it gets 15 better for whole blood platelets--because, you see, 16 you apply it to so many components for us. 17 DR. KUEHNERT: And when you mentioned 18 that--the plan to, after your glucose and pH 19 screening you use a culture method, what culture 20 method do you use? 21 MR. BOWMAN: Oh, we send it to our micro 22 lab, and they use their culture method. They use

1 an aerobic--I think--I don't know if they're using 2 an anaerobic bottle as well. But they're using an 3 aerobic culture. 4 DR. KUEHNERT: Mm-hmm. And maybe I missed 5 this, but did you validate your methods in some 6 way? 7 MR. BOWMAN: Yes, we did. We spiked platelet concentrates. We got whole blood platelet 8 9 concentrates and spiked them with bacteria. We 10 tried to spike them at about 50 colony-forming 11 units per mil, and then we followed pH and cultures 12 in time. That's the way we did that. 13 Yes, I did not show that -- those details. 14 DR. KUEHNERT: I have one other question about that -- the validation. 15 16 I've noticed that -- from the other 17 presentations--there seem to be some 18 variability--well, one, if I remember right--one 19 presenter had some lack of sensitivity with Gram 20 negatives; another one said they got them all. And I wondered, with yours, did you have any issues 21 22 with Gram negative?

MR. BOWMAN: No--I tell you--our 1 2 validation--there were complications in our 3 validation--all right? Part of it is so that I can't tell you exactly what our sensitivity is, 4 5 because once again, our micro lab decided to quite 6 doing quantitative cultures for us as we were 7 rolling along on this thing. So we knew there was 8 growth, but then we didn't know, exactly 9 quantitatively, what it was. And so we cannot tell 10 you--I cannot tell you what sensitivity level we're 11 at. I'm presuming it's about at what people 12 13 say it is: 107 CFUs per mil. I'm assuming it's 14 something like that. 15 CHAIRMAN SKINNER: Other questions? 16 [No response.] 17 CHAIRMAN SKINNER: Thank you very much. 18 And our next presentation, we're going to 19 hear from the American Hospital Association, Ms. 20 Mary Beth Savary-Taylor is going to present. She's the Vice President of the Executive Branch 21 22 Relations with the American Hospital Association.

1 MS. SAVARY-TAYLOR: Good afternoon. My 2 name is Mary Beth Savary-Taylor, and I'm AHA's Vice 3 President for Executive Branch Relations. The AHA represents nearly 5,000 hospitals 4 5 and health systems throughout the country, and we 6 are pleased to be here this afternoon, and 7 appreciate the opportunity to comment before the 8 committee. 9 The AHA was asked to comment on how the 10 new AABB standard on detecting bacteria in platelet 11 components would affect the availability of both 12 apheresis and whole blood-derived platelets. 13 Because the standard is so new, we do not have 14 sufficient evidence from our members at this point 15 to determine, really, whether platelet shortages 16 exist. 17 The AHA does strongly support maintaining 18 a safe and adequate blood supply; and certainly supports efforts to detect the presence of 19 20 bacterial contamination in platelets. We would be concerned if this new standard, as currently 21 22 implemented, would result in a lack of platelets

1 for patients facing dire circumstances. 2 With this in mind, we will apprise the 3 Advisory Committee on blood safety and availability, of platelet shortages by our members 4 5 as a result of this new standard. 6 In closing, our goal is to make sure that 7 we do have the safest blood supply possible. Of course, with every new blood safety measure comes 8 9 addition costs that the health care system must 10 bear. These costs come amid various financial 11 pressures that are currently bearing down on 12 America's hospitals throughout our country. 13 We applaud the committee for its recent 14 recommendations on increased reimbursement for 15 blood and blood products, and ask that you continue 16 to push for adequate reimbursement for blood and 17 blood products through an infusion of additional 18 Federal funding--or, what Dr. Sandler repeated again and again at the last committee meeting--new 19 20 money. 21 Thank you very much for your attention, 22 and I would be pleased to answer any questions.

1 Thank you 2 CHAIRMAN SKINNER: Thank you for your 3 comments. 4 Questions? 5 [No response.] 6 Thank you very much 7 MS. SAVARY-TAYLOR: Thank you very much. 8 CHAIRMAN SKINNER: Appreciate it. 9 This concludes the formal presentations for the day. It does say on the agenda there's 10 11 time for committee discussion. I don't know if 12 there are specific topics the committee would like 13 to discuss at this point. What I would like to 14 suggest is, given the nature of how this topic 15 arose--the agenda for the committee--I think it's 16 quite clear that the Assistant Secretary of Health 17 is looking for some guidance or some feedback from 18 us, so it's not one of those typical meetings where 19 we may or may not come up with a recommendation in 20 the final analysis. 21 Typically, we write recommendations on the 22 afternoon of the second day, and we often start

1 with a black screen--which is somewhat of a painful 2 exercise, but sometimes is the only way that we can 3 actually do it. In other instances, there's actually been individuals around the table who have 4 5 taken some ownership and helped pre-conceive some 6 ideas to at least get the discussion rolling. 7 Typically, that's occurred either through our chair 8 who, you know, is not in a position to participate, 9 or through, perhaps Dr. Epstein, who's a very good 10 wordsmith, who isn't with us this time. 11 So just anticipating those two voids, I 12 was wondering if it might make some sense for 13 people to begin some thought about taking some role 14 in helping to craft where the recommendations are 15 going to go, and whether it would make sense to 16 talk about that now--or to at least just leave it 17 out there for you to think about overnight. 18 But I think it is going to take some initiative on a number of folks' parts to actually 19 20 identify the components that we want to address and 21 offer feedback on, and then--to the extent people

want to volunteer -- to try to draft aspects of those

22
1 to at least begin the discussion, I think that 2 would be helpful. 3 On a separate note, I would say that a number of individuals--because the first topic of 4 5 the day was addressing some of the CMS changes and 6 recommendations, and there are some individuals 7 that are actually working on some language for a recommendation for that. So that aspect of it has 8 9 been addressed. There may be others that would be 10 raised. 11 So, with those preliminary comments, I 12 open it up for any thought on whether there's 13 anything we can do at this point to prepare for our 14 discussion tomorrow, without drawing conclusions 15 prematurely, before we hear the rest of the 16 presenters. 17 MR. WALSH: I'm just tempted to say, in a 18 very naive way, that we focus on going after the barriers, and not challenge the standard. You know, 19 20 I mean I just think that the AABB has done a good job, and they've implemented, and seem to have good 21 22 response by all parties. And we ought to just

325

1 focus on the barriers, and not waste a lot of--I
2 don't think--waste a lot of time, with all due
3 respect to anybody that disagrees, on challenging
4 what's been done.

5 CHAIRMAN SKINNER: Any other thoughts or comments at this point? 6 MS. MIDTHUN: Yes, I think that it would 7 8 be helpful for all of us to think--again, I wouldn't say so much "barriers," but perhaps a 9 10 different way of expressing it is to say: how can 11 we collect enough information, or ways to collect 12 enough information to really get additional 13 scientific data that would help fill in the gaps? 14 CHAIRMAN SKINNER: Others that have 15 anything that they want to share at this point? 16 DR. KUEHNERT: I just had a question about 17 tomorrow's presentations. There's another--is 18 there a set of presentations by ARC, ABC and AABB? 19 I wondered if there's going to be any discussion of 20 sort of the plans for collaboration, specifically, by these organizations. Specifically, I know the 21

22 AABB TTD committee has had discussions about

326

1 collaboration. 2 I just wondered if that was going to be 3 discussed at all? MS. LIPTOR: Again, this is factual, so I 4 5 feel that I can--6 [Laughter.] 7 --say this. Tomorrow, Dr. Sazama is going 8 to talk about some of the initiatives we're 9 undertaking, particularly in terms of putting 10 together a task force to examine some of the 11 issues. 12 I will also tell you that we did put 13 together what has been described as a survey that 14 collected "unvalidated" [laughs] data, because it 15 necessarily--I mean, it just doesn't have representative sampling. But we do have some 16 17 information back, and Dr. Sazama, again, will be 18 sharing that information, and we hope to use that 19 as the basis for the task force to go ahead and 20 look further at some of these issues; for example, 21 some of what we're seeing with the dipstick, the 22 glucose.

I think what was important, though, is at
 least we have this on the table, and we have
 something that we're all talking about concretely
 right now.

CHAIRMAN SKINNER: Well, I think at that 5 6 point then, this really does conclude our 7 discussion. I just was wanting to warm you up that 8 someone's going to have to, you know, make the 9 first suggestions tomorrow in the recommendation phase. So think about who's going to do that. 10 11 We reconvene tomorrow morning at 9:00 a.m. 12 in this room. 13 Thank you. 14 [Whereupon, at 5:08 p.m., the meeting was 15 adjourned, to reconvene on Thursday, April 8, 2004.] 16 17 _ _ _

328