# The Sender ID Framework An Approach to Email Authentication

# Presentation to the Federal Trade Commission Email Authentication Summit

Washington, D.C. November 9, 2004

Harry Katz
Program Manager
Safety Technology & Strategy Team
Microsoft Corp.



# Agenda

- Microsoft's anti-spam strategy
- Why we need email authentication
- Sender ID Framework
- Implementation considerations
- Benefits

# Why Authentication?

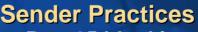


Major improvements in last year

Catch rates ~90%

False positive problem persists




**IP-based reputation** 

**Domain-based reputation \*** 

Feedback to help senders improve \*

\* Requires sender authentication





- Port 25 blocking
- **Rate limiting**
- **Publish SPF record**
- **Digital signatures**
- **Proof of work**

## Sender ID Framework An Emerging Standard

- A merger and refinement of proposals
  - SPF (Sender Policy Framework)
  - Microsoft Caller ID for Email
  - IETF MARID working group feedback
- Industry collaboration including
  - AOL, Bell Canada, Cisco, Comcast, IBM, Interland, Port25, Sendmail, Symantec, Tumbleweed, VeriSign....
  - Email Service Providers Coalition, Opengroup Messaging Forum, TRUSTe....
- A first step and on a fast track....

## Design Goals & Tradeoffs

#### Protection

Senders can take immediate steps to protect their brand & domain names

#### Accountability

- Senders can be held accountable for mail they send
- Ease of adoption
  - No software changes required for most senders
  - Openly published specification that can be broadly adopted

#### Scalability

- From small businesses to largest ISPs
- Non-Goals
  - Silver bullet for spam & phishing
  - Solve all email authentication problems
  - Zero cost

# What Is Sender ID? A framework of technical specifications

### **Sender ID Framework**

All Mail Senders

**SPF Record** 

MTA
Vendors &
Receiving
Networks

MAIL FROM Check

Purported Responsible Address (PRA) Check

Submitter
SMTP Optimization

### How Does Sender ID Work?

2

Message transits one or more email servers en route to receiver



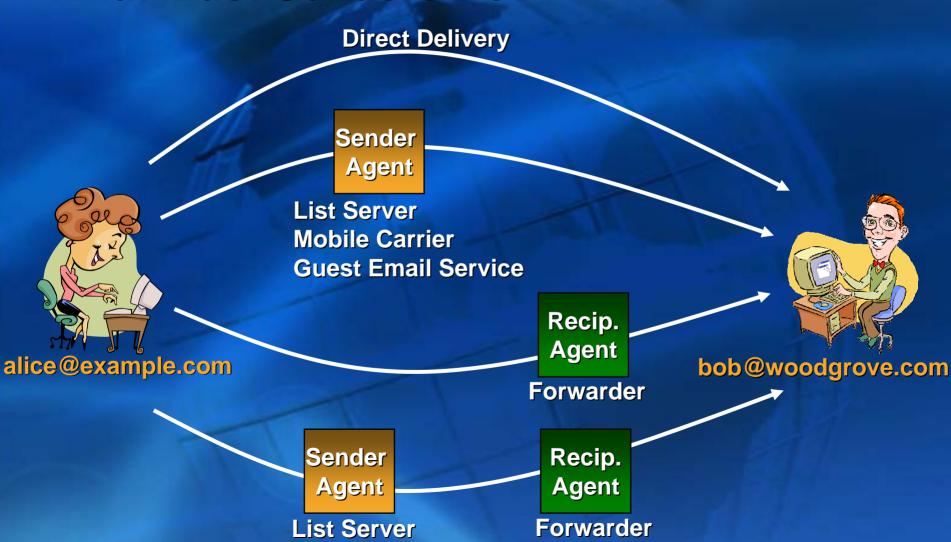
- Determine which domain to check;
   PRA or MAIL FROM
- Look up sender's SPF record in DNS
- Compare connecting IP address to authorized list from SPF record
- Match → positive filter input
- No match → negative filter input

- One time: Publish SDIF record in DNS using SPF text format
- No other changes required
- Email sent as normal

eceive

### PRA and Mail From Checks

| PRA |                                              | MAIL FROM                                                              |
|-----|----------------------------------------------|------------------------------------------------------------------------|
| •   | Derived from RFC2822 message headers         | RFC2821 "bounce" address                                               |
| ø   | Resent-Sender, Resent-<br>From, Sender, From |                                                                        |
| •   | Identity most often seen by users            |                                                                        |
| •   | Helps reduce phishing                        | Helps reduce "joe jobs"                                                |
| •   | Easier adoption for email forwarders         | <ul> <li>Checking can begin before message data is received</li> </ul> |
| •   | Headers can be spoofed                       | <ul><li>Headers seen by users are</li></ul>                            |
| •   | Headers must be received and parsed          | <ul><li>not validated</li><li>More difficult for forwarders</li></ul>  |


# Interpreting the Results

- Range of actions based on check results:
  - Accept message
  - Reject message
  - Use result as input into spam filters
  - Indicate result to end users
- "Pass" does not mean "good mail"
  - Sender could be a spammer with a domain
- Increasing adoption will enable stricter tests
  - Domains with no Sender ID records will have their mail subject to increased scrutiny
  - Increase weighting in filtering algorithms

# Sample SPF Records

- example.com TXT "v=spf1 -all"
  - This domain never sends mail
- example.com TXT "v=spf1 mx -all"
  - Inbound email servers also send outbound mail
- example.com TXT "v=spf1 ip4:192.0.2.0/24 -all"
  - Specify an IP range
- example.com TXT "v=spf1 mx include:myesp.com –all"
  - Outsourced email service
- example.com TXT "spf2.0/pra ip4:192.0.3.0/24 –all"
  - Different configuration for PRA checking

# Mail Delivery Scenarios What Must Senders Do?



## Direct Delivery



- Publish outbound server records in DNS using the SPF format
- Optional: Transmit SUBMITTER parameter on MAIL command

## Direct Delivery

S: 220 woodgrove.com ESMTP server ready

C: EHLO example.com

S: 250-woodgrove.com

S: 250-DSN

S: 250-AUTH

S: 250-SUBMITTER

S: 250 SIZE

C: MAIL FROM:<alice@example.com>

S: 250 <alice@example.com> sender ok

C: RCPT TO:<bob@woodgrove.com>

S: 250 <body>
com recipient ok

C: DATA

S: 354 okay, send message

C: From: alice@example.com

C: (message body goes here)

C: .

S: 250 message accepted

C: QUIT

S: 221 goodbye

SUBMITTER extension advertised in EHLO response

RFC2821 MAIL FROM = RFC2822 From

## Mailing List



List Server

owner-list1@listexample.com



bob@woodgrove.com

- 1. Publish outbound server records in DNS
- 2. Ensure "list-owner" style address is present in the message
  - E.g. Sender: owner-list1@listexample.com
  - Vast majority of mailing list servers do this today
- 3. Optional: Transmit SUBMITTER parameter on MAIL command

# Mailing List

S: 220 woodgrove.com ESMTP server ready

C: EHLO listexample.com

S: 250-woodgrove.com

S: 250-SUBMITTER

S: 250 SIZE

C: MAIL FROM:<owner-list1@listexample.com>
SUBMITTER=owner-list1@listexample.com

S: 250 <owner-list1@listexample.com> sender ok

C: RCPT TO:<bob@woodgrove.com>

S: 250 <bob@woodgrove.com> recipient ok

C: DATA

S: 354 okay, send message

C: Received By: ...

C: From: alice@example.com

C: Sender: owner-list1@listexample.com

C: To: list1@listexample.com

C: (message body goes here)

C: .

S: 250 message accepted

C: QUIT

S: 221 goodbye

SUBMITTER extension advertised in EHLO response

SUBMITTER parameter added to MAIL command

Sender header added to message

### Mail Forwarder



- 1. Publish outbound server records in DNS
- 2. Ensure forwarding address is present in the message
  - E.g. Resent-From: bob@alumni.almamater.edu
- 3. Optional: Transmit SUBMITTER parameter on MAIL command indicating forwarding address

### Mail Forwarder

S: 220 woodgrove.com ESMTP server ready

C: EHLO alumni.almamater.edu

S: 250-woodgrove.com

S: 250-DSN

S: 250-AUTH

S: 250-SUBMITTER

S: 250 SIZE

C: MAIL FROM:<alice@example.com>
SUBMITTER=bob@alumni.almamater.edu

S: 250 <alice@example.com> sender ok

C: RCPT TO:<bob@woodgrove.com>

S: 250 <bob@woodgrove.com> recipient ok

C: DATA

S: 354 okay, send message

C: Resent-From: bob@alumni.almamater.edu

C: Received By: ...

C: (message body goes here)

C: .

S: 250 message accepted

C: QUIT

S: 221 goodbye

SUBMITTER extension advertised in EHLO response

SUBMITTER parameter added to MAIL command

Resent-From header added to message

### Implementation Considerations

### Senders

- Administrative (immediate): Publish DNS records identifying authorized outbound email servers
  - On-going maintenance of same
  - Coordination of e-mail marketing initiatives
  - No hard costs or technical overhead

#### Receivers

- Software (near term): Upgrade inbound email gateway servers to perform Sender ID checks
- Software (optional medium-long term): Upgrade client software to display results of Sender ID check
- Mail forwarders and other "intermediaries"
  - Software (near term): Upgrade outbound email servers to identify their own domains in messages

# Sender ID vs. Cryptographic Email Authentication

| Sender ID                                 | Crypto Approaches                                         |
|-------------------------------------------|-----------------------------------------------------------|
| Validates "last hop"                      | <ul><li>Validates end-to-end</li></ul>                    |
|                                           | <u>If</u> signature survives                              |
| <ul><li>Validates domain</li></ul>        | <ul><li>Validates domain &amp; potentially user</li></ul> |
| <ul><li>Asymmetric deployment</li></ul>   | <ul><li>Symmetric deployment</li></ul>                    |
| Most senders don't need software upgrades | Requires software changes by both sender and receiver     |
| Input to reputation systems               | Input to reputation systems                               |
| Senders can register own domains          | Spammers can sign messages                                |
| <ul><li>Forged header attacks</li></ul>   | <ul><li>Replay attacks</li></ul>                          |

### Benefits of Sender ID

- Protect senders' brand and domain names from spoofing and phishing
- Rapid adoption
  - Senders can publish SPF records today
  - Most senders require no software upgrades
- A foundation for the reliable use of domain names in accreditation, reputation systems & safe lists
  - Receivers validate the origin of mail
- Input into more aggressive spam filtering with reduced false positives
- The first step industry will need to take together there will be more to come including signing solutions

## Summary

- All e-mail senders and domains should publish their SPF records today
- MSFT will initiate checking by year-end
- Network administrators should contact their ISP / MTA Vendors for Sender ID Framework integration
- Resources
  - www.microsoft.com/senderid
    - Specs, resources, record wizard
  - www.microsoft.com/spam