

FTC Email Authentication Summit

Email Authentication Methods: Testing, Implementation, and Evaluation

November 2004

Overview

- Email authentication
- SPF vs. cryptographic methods
- Implementation
- Testing
- Evaluation

Email Authentication

- Effective reduction of a significant minority of unsolicited email
- Effective reduction of a potential majority of spoofed email
- Improved ability to accurately identify senders for classification (reputation, prioritization etc.)
- Marginal deterrence of fraud and spam through combined reduction in delivery performance of nonauthenticated email and trace-ability of senders of authenticated email

SPF vs. Cryptographic Encryption

Drawbacks to SPF:

- Weaknesses in the Purported Sender Algorithms
- □ SPF can chain to a large number of DNS lookups, potentially creating continuous loops
- SPF can only tell us whether a server/IP is allowed to deliver mail for a domain
- Potential legal constraints

Added benefits of cryptographic approaches

- ☐ Crypto solutions provide a measure of validation/ transport integrity for the message which is not possible with SPF
- Crypto solutions add the ability to determine if the USER is allowed to send messages from that IP and that domain

Implementation

Challenges

- □ CPU Intensive
- DNS Heavy

Development Requirements

- □ Low overhead
- ☐ Speed
- ☐ High speed DNS resolver
- □ Configurable outcomes
 - Block
 - Accept
 - Flag
 - Throttle

Testing - Real World

Evaluation Parameters

- CPU usage
- □ Speed

	Inbound		Outbound	
	CPU	Speed	CPU	Speed
Baseline	~30%	1MM per hour	~30%	1MM per hour
IIM	+55%	-16.3% 837k/hour	+55%	-15.5% 845k/hour
DomainKeys	+55%	-5.4% 946k/hour	+55%	-5.1% 949k/hour

Server spec:

- SparkEngine 4.1
- •RedHat 8.0
- •Dual Xeon (2.1 GHz)
- •2G Ram
- Mix of real world domains
- •Msg size 10-200Kb
- •Full DNS Lookups
- Java based solution

Testing - High Capacity

Evaluation Parameters

- CPU usage
- □ Speed

	Inbound		Outbound	
	CPU	Speed	CPU	Speed
Baseline	~44%	2.5MM per hour	~44%	2.5MM per hour
IIM	+50%	-66.1% 847k/hour	+50%	-65.4% 864k/hour
DomainKeys	+50%	-61.8% 956k/hour	+50%	-60.2% 996k/hour

Server spec:

- SparkEngine 4.1
- •RedHat 8.0
- •Dual Xeon (2.1 GHz)
- •2G Ram
- Single domain
- •Msg size 10-200Kb
- •SMTP-SINK Relay
- Java based solution

Evaluation

- Email authentication is practical and effective
- Cryptographic authentication is superior to SPF-type methods
- Performance impact can be minimized
- Adoption/roll-out can be gradual

