Jet Propulsion Laboratory JPL Earth JPL Solar System JPL Stars and Galaxies JPL Science and Technology MSL Home NASA Home Page Jet Propulsion Laboratory California Institute of Technology Follow this link to skip to the main content
NASA logo, Jet Propulsion Laboratory, California Institute of Technology header separator
+ NASA Homepage
+ NASA en Español
+ Marte en Español
GO!
Mars Science Laboratory Banner
Overview Science Technology The Mission People Features Events Multimedia
Mars for Kids
Mars for Students
Mars for Educators
Mars for Press
+ Mars Home
+ MSL Home

Technology
Summary
Technologies of Broad Benefit
In-Situ and Sample Return
Science Instruments
Technology Summary
horizontal line

Technology development makes missions possible. Each Mars mission is part of a continuing chain of innovation. Each relies on past missions for proven technologies and contributes its own innovations to future missions. This chain allows NASA to push the boundaries of what is currently possible, while still relying on proven technologies.

Below are examples of the way in which the Mars Science Laboratory mission relies on past technologies and contributes new ones.

Technologies of Broad Benefit

launch vehicle Propulsion: for providing the energy to get to Mars and conduct long-term studies
Mars Exploration Rover Power: for providing more efficient and increased electricity to the spacecraft and its subsystems
DSN Telecommunications: for sending commands and receiving data faster and in greater amounts
spacecraft hardware Avionics: electronics for operating the spacecraft and its subsystems
Mission control Software Engineering: for providing the computing and commands necessary to operate the spacecraft and its subsystems

In-situ Exploration and Sample Return

Entry, Descent, and Landing Entry, Descent, and Landing: for ensuring precise and safe landings
Mars Science Laboratory Rover Autonomous Planetary Mobility: for enabling the rovers to make decisions and avoid hazards on their own
Severe Environment Technologies for Severe Environments: for making systems robust enough to handle extreme conditions in space and on Mars
Sample Return Technologies Sample Return Technologies: for collecting and returning rock, soil, and atmospheric samples back to Earth for further laboratory analysis
The spacecraft in the cleanroom Planetary Protection Technologies: for cleaning and sterilizing spacecraft and handling soil, rock, and atmospheric samples

Science Instruments

Artists concept Odyssey in orbit around Mars Remote Science Instrumentation: for collecting Mars data from orbit
In-situ Instrumentation In-situ Instrumentation: for collecting Mars data from the surface
Credits Feedback Related Links Sitemap
USA Gov
National Aeronautics and Space Administration