NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, DC.

```
ISSUED: February 20, 1985
```

Forwarded to:
Honorable Donald D. Engen
Administrator Federal Aviation Administration
Washington, D. C. 20591

SAFETY RECOMMENDATION (S)
A-85-7

On May 25, 1984, the No. 2 engine on an Air France Boeing 747, French Registry F-BPVS, sustained an explosive rupture of its compressor rear frame at Los Angeles International Airport, Los Angeles, California. The rupture occured just after the flighterew rotated the airplane for takeoff at 173 knots indicated airspeed. Simultaneous with the engine failure, the flightcrew observed a rapid drop in the No. 2 engine performance parameters and the illumination of the No. 2 engine thrust reverser "unlock and in transit" lights. The crew did not observe any "fire warning" or excessive engine nacelle temperatures. The crew discharged fire bottle "A". After the engine was shut down and fuel was dumped, the crew landed the airplane without further incident. (See attached brief of incident.)

Examination of the General Electric CF6-50 engine revealed that the left and right core cowl doors had separated explosively and the fan cowl doors and the thrust reverses had partially separated. The engine damage was confined primarily to the axially ruptured outer casing of the compressor rear frame (CRF). The frame was displaced radially outward from the forward to the aft circumferential flanges. The rupture proceeded through the No. 13 fuel nozzle mount pad, through the No. 13 combustion chamber mount pin hole, and continued to the lower ignitor mounting flange (boss). All of the compressor rear frame-to-turbine midframe attachment bolts were fractured. Additionally, the combustor outer liner and the combustor cowl were fragmented; most of the fragmented pieces were recovered.

It was determined that the compressor rear frame had fractured as a result of a high-stress (low-cycle) fatigue. The fatigue originated at a zone of microporosity in the igniter pad area of the compressor rear frame outer casing. The fatigue fracture was adjacent to the No. 13 fuel nozzle port, and it had propagated to a length of 6.2 inches. The remaining portion of the fracture was a rapid tensile overload failure.

This is the first General Electric CF6-50 engine CRF failure of this type on GE CF6-50 and -45 engines and at this location. The engine manufacturer has identified a population of about 606 CRF's which potentially are affected; these frames were manufactured during the 1979 and 1980 time period. During this period, the CRF casting vendor was experiencing shrinkage problems with the CRF casting which required that the affected casting be subjected to a weld repair. Subsequently, the vendor incorporated a number of process modifications and some pattern refinements, which ultimately alleviated the shrinkage problem. However, since a shrinkage condition also can be associated with microporosity, the CRF castings that were manufactured during this time period had a higher probability of manufacture with an inherent microporosity condition. To correct this condition in approximately 606 CRF's the engine manufacturer has issued Service Bulletin (S/B) 72-839, Revision No. 1, which recommends a repetitive on-wing inspection program with redundant inspection methods and which provides for the inspection and repair, or removal from service, of CRF's that are cracked, based on the extent of the cracking.

Although this failure is the first of its type, the consequences of this failure present a potential catastrophic hazard to the airplane; therefore, the Safety Board believes that mandatory action is appropriate. Accordingly, the National Transportation Safety Board recommends that the Federal Aviation Administration:

Issue an Airworthiness Directive to make mandatory the inspection, repair, and removal procedures recommended in General Electric Service Bulletin 72-839, Revision 1 (or later revisions if applicable), as to certain compressor rear frames of General Electric CF6-50 and -45 engines. (Class II, Priority Action) (A-85-7)

BURNETT, Chairman, GOLDMAN, Vice Chairman, and BURSLEY, Member, concurred in this recommendation.

Brief of Incident (continued)

$\begin{array}{ll}\text { Occurrence fin } & \text { FORCED LANDING } \\ \text { Phase of ODeration } & \text { LANDING - FLARE/TOUCHDOHN }\end{array}$
Finding(s)
3. FUEL DUMPED - INTENTIONAL - PILOT IN COMMAND
The National Transportation Safety Board deternines that the Probable Causels) of this incident

