Honorable John M. Sullivan
Administrator
Federal Railroad Administration
SAFETY RECOMMENDATION (S) 400 Seventh Street, S.W.

R-78-42

Many persons walk across or along the Nation's railroad tracks each year, and nearly 500 of these pedestrians are hit and killed by trains annually. The Safety Board has studied railroad pedestrian accidents in order to recommend the development of countermeasures directed at reducing these 500 annual fatalities.

Our study was based on the data from 269 accident investigations conducted by the Board from March 1, 1976, to October 30, 1977. The accidents included 280 fatalities; the Safety Board attempted to exclude known suicides from the data.

The data have been developed into a profile consisting of 11 elements extracted from 41 data elements. (See Appendix I.) By doing this, attention can be focused on factors deserving further examination. The Board realizes, however, that factors not included in the profile may evolve and prove significant after a more indepth analysis. Thus, the profile illustrates a general situation and is not self-supporting. These data together with other FRA data must be analyzed before specific corrective measures can be defined and implemented to reduce pedestrian fatalities on the Nation's railroads.

The 11 elements selected relate to the victim, the day of the week having the highest incidence, the visibility, and pertinent facts associated with the accident site.

Based on the 280 fatalities, the following composite profile of fatal trespasser accidents was developed:

1. Accidents were most frequent on Saturday. -- The review of 269 accidents involving 280 fatalities showed that 56 , or 21 percent, occurred on Saturday. Sunday had the second highest incidence, 41, or 15 percent. Monday through Friday averaged 34 fatalities each day, or 13 percent.
2. The victim was a male. -- Two hundred and forty-five fatalities, or 88 percent, were male and 33 , or 12 percent, were female. The ratio of males to females was $8: 1$.
3. He was over 15 years of age. -- Only 14 percent of fatalities were 15 years or younger which is substantially below the 25.8 percent population distribution for 1977. The 239 fatalities, or 86 percent, were in the over 15 age group. The other two age groups, 0 to 5 years and 6 to 15 years, collectively involved only 40, or 14 percent, of the fatalities. Of those 15 years old and under, 30, or 75 percent, were 6 through 15 years, while 10 , or 25 percent, were 0 to 5 years. These data reveal a shortcoming in the Safety Board's factual accident reports upper age bracket -- over 15. The absence of a complete distribution of involvement by age reduces the opportunity to determine the precise age of the adult trespasser.
4. The victim had been drinking heavily. -- Alcohol was involved in 58 percent of the cases; the average blood alcohol level was abnormally high. Of the 192 accidents involving persons older than 15 years, where there was knowledge of the physical condition of the victim, alcohol was a factor in 112 cases, or 58 percent. Of these 112 cases, a blood alcohol content was taken in 102 of the cases. The average level was . 23 ; the maximum blood alcohol content level was . 43 .

The National Safety Council describes a blood alcohol content of .18 to .30 as the stage of "confusion." This suggests that the prevention of pedestrian accidents in more than half the cases cannot rely on informing the trespasser about the hazard; rather some means of keeping him off the property must be provided. Such methods should also tend to be effective against the remainder of the fatalities.
5. The victim was not a transient. -- As defined in our study, a transient is an individual with no fixed address. Less than 10 percent, or 22 of 230 of the victims, were within this definition.
6. The weather was clear and visibility was good. -- Only a small percentage of accidents occurred during inclement weather. Seventymsix percent, or 207 of 273 accidents, occurred in clear weather; 17 percent, or 47 of 273 of the accidents, occurred in cloudy weather; and the remaining 7 percent of the accidents, or 19 of 273 , occurred during rain, snow, sleet, hail, or fog.

Track alignment was not usually a contributing factor in the accident. In 215 of 270 cases, or 80 percent, the track alignment did not affect the locomotive engineer's visibility. Vegetation was an adverse influence in 27 of 266 cases, or 10 percent, and was not relevant in 239 other cases (90 percent).
7. The track was straight. -- The results of the data indicated that 80 percent -- or 218 of $274-m$ of the accidents occurred on straight track (tangent alignment). In 20 percent of the cases, 56 of 274 cases, the track was not straight.
8. The surface was flat. --w Sixty-three percent, or 172 of 271 cases, occurred on a flat surface. Other terrain characteristics accounted for an additional 37 percent of the accident sites, as follows: Cut -- 8 percent, or 21 of 271 ; fill - - 18 percent, or 49 of 271 ; bridge -m 10 percent, or 26 of 271 ; and tunnel and other -- 1 percent, or 3 of 271 .
9. The accident site was on a main line with multiple tracks. -Most trespassers were killed on a main track. In 244 of the 270 cases, or 90 percent, the site was on a main track. The other 10 percent of the cases were equally divided between branch and yard tracks. When the accident occurred at a main track, there were usually several other sets of tracks adjacent to that main track. The data indicate that 2.6 sets of main track were present at the average trespasser fatality accident site.
10. The accident site was in a "built-up" area. -- Only 8 percent of the accidents, or 22 of 269 , were in rural or farm areas. Commercial, industrial, and residential areas were the sites of 171 of the 269 fatalities, or 64 percent. No predominant ground structure appeared at 48 of the 269 accidents, or 18 percent. Only 1 accident happened near a school (0 percent); 15 of the 269 accidents, or 6 percent, happened in a railroad yard; and the remaining 12 of the 269 accidents, or 4 percent, occurred in other unspecified areas. The majority -- 171 cases or 64 percent -- occurred in commercial, industrial, and residential areas as follows: Commercial -- 62 of 269 (23 percent), industrial -- 34 of 269 (13 percent), and residential -" 75 of 269 (28 percent).
11. The number of trains per day was high. -- The mean number of trains passing the accident site was 27 per day, a high traffic density.

Eighty-two percent of the accidents were in unfenced areas. Only 40 of 257 accidents occurred where the right-of-way was fenced; in the other 217 cases, there was no fencing. The relationship of the casualty to a warning was known in 195 of the 280 cases, or 70 percent. The casualty was incurred 73 percent of the time after a warning had been issued (143 of 195 cases). Of the known warnings, 91 percent, or 136 of 149, came from the horn of the train itself. In 27 percent of the cases, or 52 of 195 , there was no warning to the victim presumably because the locomotive engineer did not see him between the tracks, the victim walked into the side of the train, he went between the wheels, or the engineer did not have enough time to warn him.

The profile indicates that 58 percent of the trespassers who had an average . 23 blood alcohol content would not likely respond to information or warnings as preventive measures. Physical barriers, such as fences, would probably be more effective since a .23 blood alcohol content would be expected to hinder fence-climbing capability.

Trespasser fatalities are about 50 percent higher on Saturday than other days. Further analysis could show whether this is alcohol-related or whether there is greater pedestrian traffic on Saturday. In either case, Saturday would be the day on which special surveillance or enforcement might improve safety.

In a high percentage of cases, the weather was clear, the track was straight and level, and the train engineer was sounding his horn. It is impossible to determine why under these conditions the victim did not perceive the approaching train, especially those who had not been drinking. The apparent lack of perception is a problem not yet understood. Since a large percentage of the accidents occurred on main lines, it is reasonable to suspect that the high speed of trains hindered successful evacuation from the track, or contributed to confusion as to the track on which the train was approaching.

In most cases, these trespassers were killed on main lines where there were two or more main tracks and a high density of train traffic in "built-up" areas. These statistics establish the fact that accidents are not evenly distributed along the right-of-way, but happen in areas of concentrated population where buildings are close to tracks or activities of interest are separated by the track.

Since 82 percent of the accidents were in unfenced areas, selective fencing might be an effective method of reducing fatalities. These data, combined with the data on accident sites, suggest that the most effective location of fences would be in "built-up" areas through which two or more main lines pass. In addition, other factors, such as ground topography, pedestrian traffic flows, and past accident frequencies, need to be considered as part of the criteria for selecting fencing sites.

The Safety Board has studied the two railroad safety reports prepared by FRA for the Congress -- Railroad-Highway Safety, Part I: A Comprehensive Statement of the Problem (1971) and Railroad-Highway Safety, Part II: Recommendations for Resolving the Problem (1972). While the Part II report includes certain recomendations regarding trespasser casualties, it provides no definitive plan for followup to assure their implementation.

Accordingly, the National Transportation Safety Board recommends that the Federal Railroad Administration:

Develop criteria for the selection of fence sites. In addition to the number of tracks, the frequency of trains on the tracks, and built-up areas nearby, these criteria should consider such items as the direction and purpose of pedestrian traffic movement and the topography of the site. (Class II, Priority Action) (R-78-42)

KING, Chairman, MCADAMS, HOGUE, and DRIVER, Members, concurred in the above recommendation.

APPENDIX I
CUMULATIVE TALLY SHEET

1. Number of accidents 269
2. Number of fatalities 280
3. Day of week 267 Known 13 Unknown
Monday 36
Tuesday 36
Wednesday 31
Thursday 37
Friday 30
Saturday 56
Sunday 41
4. Sex 278 Known 2 Unknown
Male 245
Female 33
5. Age 279 Known 1 Unknown
0-5 10
6-15 30
$16+$ 239
6. Grade Crossings 270 Known 10 Unknown 19
Yes
251 No
7. Tunnel266 Known14 Unknown
0 Yes
280 No
8. Light 274 Known 6 Unknown
Day - 131; (avg. 2,552 ft.)
Dark - 122; (avg. 1,394 ft.)Dawn/Dusk - 21; (avg. 1,068 ft.)
9. Weather 273 Known 7 Unknown
Clear 207
Cloudy 47
Rain 12
Snow 1
Sleet 0
Hail 0
Fog 6
10. Wind Direction 117 Known 163 Unknown
North 30 (avg. 13 mph)
East 6 (avg. 7 mph)
South 64 (avg. 11 mph)
West 17 (avg. 11 mph)
11. Temperature (F) 204 Known 76 Unknown 187 (avg. 52°)12. Humidity87 Known193 Unknown
79 (avg. 56\%)
12. Alignment 274 Known 6 Unknown
Tangent 218
Spiral 1
Curve 55
13. Cut or Fill 271 Known 9 Unknown
Cut 21
Fill 49
Flat 172
Bridge 26
Tunnel 0
Other 3
14. Visibility 270 Known 10 Unknown
a. Did track alignment affect visibility? 55-Yes 215-No
266 Known 14 Unknown
b. Did vegetation affect visibility? 27-Yes 239-No
15. Predominant Aboveground Structure in Area
269 Known 11 Unknown
None 48
Commercial 62
Industrial 34
Residential 75
Rural/Farm 22
Railroad Yard 15
School 1
Other 12
16. Distance to Nearest Building

17. Speed in MPH
a. At time of brake application:

221 Known 59 Unknown
221 (avg. 37 mph)
b. At time of accident:

227 Known 52 Unknown
227 (avg. 32 mph$)$
20. Third Rail Involved - Number 1
21. Number of Trains/Week

223 Known 57 Unknown
223 for total trains 42,629 (avg. 191 trains/wk.)
22. Is There a Fence Along Right-of-way?

Right 257 Known 23 Unknown
40-Yes 217 -No

Left 246 Known 34 Unknown
35-Yes 211-No
23. Distance to Nearest Fence Opening

Right	32 Known 248 Unknown 32 (avg. $356 \mathrm{ft})$. Left 29 Known	251 Unknown

29 (avg. $361 \mathrm{ft}$.)
24. Is There a Fence between the Tracks?
$\frac{235 \text { Known }}{7-\text { Yes } 228 \text {-No }} \quad 45$ Unknown
25. Distance to Nearest: Opening
6 Known
6 (avg. $210 \mathrm{ft}$.) 274 Unknown
26. Type of Nearest Opening/Crossing
54 Known 225 Unknown

Grade Crossing 21
Overpass $\quad 7$
Underpass 9
Gate in Fence 5
End of Fence 7

Gap/Hole 5
27. Class of Person 280 Known 0 Unknown

Employee on
Duty
Employee not on Duty 3
Class of Person 280 Known 0 Unknown
Passenger 0
Emergency Force(Fire/Police) 0
Official
Business on
Railroad 2
Public on
Railroad
Business 14
PublicSightseerDrawn toAccident 0
Trespasser 261
28. Individual's Reason for Being in Right-of-Way
141 Known 139 Unknown
Crossing(walking) 89
Playing 23
Working 3
Railroad User 1
Not on right- of-way 0
In vehicle ongrade crossing 0
Other 25
29. Relationship of Casualty to Warning
195 Known85 Unknown
a. Casualty incurred: 52 without prior warning
143 after warning
b. Type of Warning:
149 Known 100 Unknown
Verbal 4
Horn 136
Signal 3
Light 1
Other 5
c. Source of warning:
Train 142
Rail-
road 7
Other 3
30. Individual's Action at Time of Casualty
269 Known 11 Unknown
Walking in vicinity 121
Sitting, lying,or sleepingon grade 91
Passing under,
over, or
through train 9
Other 48
31. Physical Condition 192 Known 88 Unknown
No adverse 54
Physical Condition 192 Known 88 Unknown
Physical disability 10
Nervous
disorder 4
Impaired hearing 5
Colorblind 0
Epilepsy 2
Diabetes 1
Other Illness 9
Intoxicants 112
102 known b.a.c.'s for a total amount of 23.58 mare b.a.c. of . 23%
Use of drugsunder MD'scare 5Use of drugsNOT under MD^{\prime} s
care 4
32. Was Autopsy or Toxicological Exam Performed?
277 Known 3 Unknown
165-Yes 112-No
33. Was Engineer Aware of Impending Accident?
265 Known 15 Unknown
177-Yes $\quad 88-$ No34. Was Fitness of Crew for Duty Evaluated?
161 Known 119 Unknown
75-Yes 86-No
35. Transient 230 Known 50 UnknownNo FixedAddress 22-Yes 208-No
36. Distance for Resident
25 Known 255 Unknown
25 (avg. 3,433 yards)
37. Employed 83 Known 197 Unknown
36-Yes 47-No
38. Occupation 78 Known 202 Unknown
39. Family Economic Status
2 Known 278 Unknown
Under 5 K 5-20 K Over 20 K 2
40. Family Status 95 Known 185 Unknown
Single 51
Married 35
Divorced 9
Widow(er) 0
41. Probable Cause All Known (23 list two causes)

1. 425 -- Failure to detect 39
2. 426 -- Failure to vacate 234
3. 424 --- Failure to recognize unauthorized position 18
4. Other 12
