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1. Introduction

With the recent observation of Bose-Einstein conden-
sate (BEC) in both systems of trapped rubidium [1] and
sodium [2] atoms, and the reported evidence of BEC in
a system of lithium atoms [3], it has became urgent to
study the diffraction patterns in the near-resonant imag-
ing of cold atomic samples. This problem is especially
important since it concerns the only straight forward
in situ detecting scheme for the tiny atomic clouds un-
dergoing evaporation cooling [4]. Optical imaging pro-
vides thus a possible diagnostics for the formation of
BEC.

In the experiment at JILA by Anderson et al. [1], a
weakly interactingBEC (according to the criteria set by

the BEC research in homogeneous systems [5]) has
been observed. Even though such a condensate is closer
to an ideal noninteracting BEC than any other previous
system which exhibits bosonic degeneracy, its kinetic
properties differ significantly from the ideal gas case. It
is now well established that for the particular state of
87Rb used at JILA the scattering length is positive [6]
(i.e., atom-atom interactions are predominantly repul-
sive), while that of7Li used by Bradley et al. is negative
[7] (i.e., atom-atom interactions are attractive). The in-
homogeneity introduced by a trap potential allows one
to optimize the compression in phase space [8], but it
strongly affects the boundary conditions for the system.
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This is one of the reasons why BEC in a trap is possible
for atoms with a negative scattering length [9], whereas
it is forbidden in a homogeneous system [10]. Indeed, in
a trap the relation between stability of the BEC and the
two-body interaction scattering length becomes more
complex even at zero temperature [9,11,12].

To probe the presence of BEC and to study its unusual
properties, we have to consider its interactions with the
external world. Scattering of photons from a near reso-
nant laser provides one of the most natural choices for
such a measurement scheme [13].

The aim of this paper is to examine the problem of
imaging BEC within a cold atomic sample by coherent
scattering of a weak, near-resonant, continuous-wave
laser field. Two separate studies are required for the full
description of near-resonant imaging. First, a reliable
theory of the weak field scattering has to be developed,
and the near field pattern has to be calculated. Second,
realistic calculation of the image formation process is
needed. Such a calculation must necessarily take into
account the presence of apertures, lenses etc. In this
paper we combine the recently developed theory of co-
herent light scattering [13], with the theory of optical
imaging.

The paper is arranged as follows: in Sec. 2 we briefly
review the theories of weak light scattering off a BEC.
We concentrate on the two approaches developed in Ref.
[13]: theon-shellapproximation, and Glauber’sgener-
alized diffraction theory. Using these methods, we con-
struct the near field distribution of the scattered light,
and express the scattering off the condensate in terms of
an optical transmission process with a complex trans-
mission function including both phase shift (refraction)
and amplitude attenuation (absorption). We compare
the numerical results for this transmission function ob-
tained using the two above mentioned approaches. In
Sec. 3 we describe a simple imaging system consisting
of a single ideal converging lens and an aperture in front
of it. The impulse response function is derived in the
paraxial approximation limit, and the expression for the
field distribution in the image plane is given. This is the
main result of this work. In Sec. 4 we analyse numeri-
cally the properties of the image using the parameters
that correspond closely to those used in the JILA and
Rice experiments [1, 3]. Finally, we conclude in Sec. 5.

2. Coherent Light Scattering

The literature on coherent light scattering from cold
atomic clouds is already quite extensive (see Ref. [13],
and references therein). Qualitatively, various effects are
predicted, depending on the size and density of the
atomic cloud, in particular, of the condensate. Large

and dense condensates should lead to formation of
polaritons, a gap in the excitation spectrum, and deflec-
tion, or even back reflection of the laser light from the
atomic sample [14, 15]. Small condensates, on the other
hand, should lead to a collective response of atoms, and
a collectively broadened Lorentzian spectrum [16]. For
not too large, and not too dense condensates (i.e., for
situations corresponding to experimental conditions of
Refs. [1, 3]), the theory developed by us in Refs. [13,
17], seems to be the most suitable. This theory does not
lead to the formation of a gap in the spectrum, since the
photon energy is larger than the appropriately defined
optical potential. Photons are thus scattered primarily in
the forward direction, but nevertheless are affected
strongly by the medium. The scattering and absorption
cross sections have nonLorentzian shapes [17], with an
overall width determined by collective excitations (as in
Ref. [16]),

geff . 3Ng /2(kLa) 2, (1)

where N is the number of atoms,g is a single atom
spontaneous emission width,kL = 2p /l is the laser
wavevector,l is the laser wavelength, anda is the con-
densate size. The spectrum gradually narrows towards
the resonance, and exhibits a cusp at the exact resonance
with a width controlled by single atom dephasing pro-
cesses and losses, such as spontaneous emission to
uncondensed states, quantum diffusion etc.

Using the expressions derived in Ref. [13], we can
construct the near field distribution. In theon-shell
approximation [18], our starting point is a scattering
equation valid in the weak field limit. For spherically
symmetric density distributions, the asymptotic solution
for the averaged photon operatorakm has the form

akm (t → `) → [d (k – kL)dmmL

+ B(k , m )d (ck – vL)]e–i vL t, (2)

where the first term describes the incident plane wave,
while the second describes the process of elastic scatter-
ing with the scattering amplitude

B(k , m ) = O`
l = 0

c
kL

2 Bl (kL )Pl (cosu )(2l + 1)/4p , (3)

wherePl (x) are the Legendre polynomials. We use here
the coordinate system in whichk = kL (sinu cosf , sinu
sinf , cosu ), kL = kL (0, 0, 1), and the polarization vector
«mL = (1, 0, 0), so thatz defines the optical axis. The
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coefficients Bl (kL ) can be well approximated by the
expression

Bl (kL ) ≈ –
gL

l

[G + gL
l – i (vL – v0)]

, (4)

wheregL
l = 12pg E`

0

r 2drn (r )j l
2(kLr ), with n(r ) being

the density distribution of cold atoms in a trap andj l

being the spherical Bessel function of orderl . G is an
effective single atom dephasing rate which accounts for
spontaneous emission to the uncondensed states, quan-
tum diffusion of the excited wave packet, etc. Evidently,
in typical situationG is larger than both the quantum
diffusion rate andg [13]. vL andv0 are respectively the
probe laser frequency and the atomic resonance
frequency.

The reconstruction of the field distribution at any
spatial point can be made according to

EOS(r ) ~ –O
m

E dkrI (k) «m akm eik ? r

= «0 (r )eikLzcOS(r , z), (5)

In the above expression«0(r ) is the probe field ampli-
tude, whereasrI (k) is the dipole coupling constant,
which is a slowly varying function ofk and is related to
g by g = (8p2kL

2 /3c)urI (k L)2u2. We assume that the po-
larization of the fieldEOS(r ) is approximately equal to
the polarization of the probe field, so vector notation can
be suppressed.

The scaled near field amplitude is given by

cOS (r ,z) = 1 + O`
l=0

2l + 1
2

Bl (kL)

3 Ep

0
sinu dueikLz(cosu–1) J0(kLr sinu )Pl (cosu ) , (6)

whereJ0 is the Bessel function of order 0. In thegener-
alized diffraction theory(GDT) [19], the solution ob-
tained after the propagation through the cold atom sys-
tem can be expressed in a form analogous to Eq. (5).

EGDT(r ) = «0(r )eikLzcGDT(r , z), (7)

with

cGDT(r , z) = e–iez
– `V(r, z')dz', (8)

and the optical potential defined as

V(r ) =
3pg

kL
2 (vL – v0 + iG )

n(r ). (9)

In principle, the solution obtained from GDT pro-
vides a good approximation only in the region where the
optical potential is nonvanishing [19]. Nevertheless, it
provides also a good approximation for calculating the
scattering cross-sections using the formulae derived in
Ref. [19] in the limit whena $ l . Equation (8) can not
be considered as a generally correct asymptotic form of
the field. It is worth realizing, however, that it has a
similar form to the solution of the Maxwell equation
obtained with a slowly varying envelope approximation
for the incident laser beam, with a polarization source
given by a classical distribution of two-level atoms with
a densityn(r ) [20]. In this sense, the optical potential
can be interpreted as the polarization related to a two-
level medium (withG = g ).

Both results as given above can be put in a more
transparent form, namely the near field object plane
field distribution can be written as

Eo(r ) = «0(r )7(r ) , (10)

where«0 (r ) is the probe field amplitude, and assumed
to be a Gaussian beam~ exp(–r2/r0

2) with width
r0 = 1.5 mm, and7 (r ) is the transmission function of
the cloud. By doing so, we have expressed the scattering
through the condensate as the transmission over an opti-
cal element (BEC) whose transmittance is given by
7 (r ) (we have neglected the free propagating phase
factor eikLz here). This approximation requires the slowly
varying scaled near field distribution to attain a stable
asymptotic form at distanceza of the order of the size of
the condensate, i.e., much smaller than the distance in
which the image plane is located. Mathematically, this is
equivalent to

7 (r ) , c (r , za) ≈ c (r , `),

a # za << observation distance scale (d1, d2, f ). (11)

In the on-shell approximation, we obtain

7OS(r ) ≈ 1 + O`
l = 0

2l + 1
2

Bl (kL )

3 Ep

0

sinu duJ0(kLr sinu )Pl (cosu ) , (12)
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where we have approximated cosu – 1 ≈ 0 in the near
field. In order to make specific calculations we need to
know the atomic density profilen(r ). In the following
we shall use a spherically symmetric Gaussian profile
given by

n(r ) =
N

(2p a2)3/2 expS–
r 2

2a2D. (13)

Such a profile is in fact quite appropriate for the case of
atoms with a negative scattering length [9, 12]. For the
case of a positive scattering length the density profile
can be determined from the solutions of the (mean-field)
Gross-Pitaevski equation (Ref. [21], see also Refs. [9,
13]). As we have demonstrated in Ref. [13], however,
using a Gaussian profile with an appropriately adjusted
width leads to quantitatively similar results for scattered
light.

Using the density profile given by Eq. (13) we obtain

gL
l = Ng 3Ï2p e–kL

2a2
Il+1/2(kL

2a2)/(2kLa) , (14)

whereIl denotes a modified Bessel function. Within the
framework of the GDT the transmission function is
given by

TGDT (r )

= expF– i
geff

vL–v0 + iG
expS–

r2

2a2DG. (15)

We can analogously obtain an expression for the scaled
near field

cGDT(r , z) = expF–
i geff

vL – v0 + iG
expS–

r2

2a2D

1
2

[1 + Erf (z)]G, (16)

whereErf denotes the error function. We stress once
again that more general density profiles, including the
asymmetric ones as well as those obtained from mean
field Gross-Pitaevskii equation for BEC can be easily
implemented into the present framework [13]. We will
not discuss these issues here, since we expect such pro-
files lead to qualitative and quantitative features of the
scattered radiation very similar to those obtained with
the Gaussian profile Eq. [(13)].

From Eq. (13) it follows that the BEC is centered at
r = 0. The near field patterns around the center as given
by Eqs. (6) and (16) are presented in Figs. 1 and 2.

Fig. 1. Near field distribution obtained from the on-shell approxima-
tion given by Eq. (5) ford = 6g = (2p ) 1.5 3 107 MHz. The rest of
the parameters is given in the text. The (maximum) on-axis (r = 0)
optical density is about 0.5; (a) the amplitude, (b) the phase of
cOS(r , z) respectively.
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Fig. 3. The transmission functions obtained from theon-shell
approximation Eq. (11) (solid line) and from the GDT Eq. (13) (dotted
line). Both the phase and the amplitude are displayed ford = 6g .

significant than the variation of the result of the on-shell
approximation (solid line). We attribute these differ-
ences to the fact that the GDT describes in fact more
accurately the gradual absorption and related refraction
along the optical axis. The on-shell approximation
reconstructs well the field inside or after the medium
only, when the absorption has already taken place. As
we shall see below, the differences between the two
approaches decrease essentially in the process of optical
imaging.

In calculations we have used the following values of
the parameters:l = 0.7mm (0.78mm for 87Rb and 0.67
mm for 7Li) , N = 2000,G = g = (2p ) 2.5 Mhz, and the
trap sizea = 2 mm. The results enable us to make
qualitative and to some extent quantitative comparisons
with the experimental results obtained for87Rb and7Li
atoms respectively [1, 3].

3. Imaging Formation Process

A (coherent) imaging system converts the near field
patternEo(r ) in the object plane into a new distribution
Ei (r ) in the image plane. In this study the optical setup
involves a set of compound (ideal) lens free of abbera-
tions or any other kind of anomalies. The lens has a focal
length f , and is located in a distanced1 away from the

Fig. 2. Same as in Fig. 1, except that obtained from the GDT given
by Eq. (15).

As we can see, already in a distance of the order of a
few a beyond the condensate, stable asymptotic field
patterns get established. Thus we can approximate the
object plane to be also atr = 0. It should be pointed out
that the near field patterns in Figs. 1 and 2 differ quite
significantly. The GDT result exhibits a decrease of the
amplitude and a phase shift close to the optical axis (for
r . 0) aszgrows. The result of the on-shell approxima-
tion, on the other hand, varies in this regime much more
slowly. In Fig. 3 we compare the results for the transmis-
sion function as given by Eqs. (12) and (15). Here, the
off-axial variation of the GDT result (dashed line) is less
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object plane (i.e., from the atomic cloud), and in a dis-
tanced2 away from the image plane (CCD camera). If
the object is in the focus, then according to elementary
opticsd2 is determined by 1/d1 + 2/d2 = 1/f . The lens are
accompanied by an aperture of diameterD in front.

It is reasonable to assume that the whole imaging
process is paraxial, and can be treated using the Fresnel
diffraction theory [22]. The magnification of the above
described system isM' = d2/d1. Since a magnifying
optical system is not translationally invariant, the calcu-
lation of Ei(r ) from Eo(r ) has to proceed in two steps.
First, we consider a magnification of the object neglect-
ing the inversion of the image. Then we blur the image
with an on-axis impulse response function (or, in an-
other words, the Green’s function) of the imaging sys-
tem [22].

The derivation of the impulse response function is
straight forward by following the propagation of the
phase front of the field. An on-axis impulse in the object
plane is propagated in free space in the Fresnel limit
over a distanced1 to the face of the lens. It is then
multiplied by a spatial filtering profile of the pupil func-
tion due to the aperture, as well as an ideal phase retar-
dation due the lens. This is followed again by a free
space paraxial propagation up to the image plane. The
impulse response function in such a situation is [22]

GF(r – r ') = G0
2J1(pD ur – r 'u/ld2)

pD |r – r '|/ld2
, (17)

where

G0 = pD2/(4l2d1d2), and J1 is the Bessel function of
order 1. The spatial resolution of this impulse response
function in the image plane isrs ≈ 1. 22ld2/D .

Finally, the image can be constructed from

Ei(r ) =
1

M'
2 E dr 'Eo(r '/M') GF(r – r ')

=
1

M'
2 E dr '«0(r '/M')7(r'/M')GF(r – r ') . (18)

where the prefactor 1/M'
2 is from the reduction of image

intensity due to magnification.
The values of the parameters involved in the imaging

process were chosen by us in such a way so that they

correspond to the values reported in the Rice experi-
ment [3] with f = 12 cm, D = 3 cm, d1 = 17 cm,
andd2 = 40. 8 cm. The magnification of the system is
thereforeM' = 2.4, and the resolution of the impulse
response function isrs = 11.61mm in the image
plane, which corresponds to a resolving power of
r̄s = rs/M' = 3.7 mm in the object plane. From these
numbers, we conclude that any structures of order less
than r̄s in the object plane would correspond to a point
source as far as the imaging properties are concerned.

4. Results and Discussions

We have used Eq. (18) to study the diffraction pattern
formation. The numerical calculation can be done in
two ways, either as a direct two-dimensional integration
of Eq. (18) in terms ofx' andy' [r ' = (x', y')], or by
utilizing the Fourier transform technique. In the latter
case, fast Fourier transform (FFT) algorithms can be
used to compute the transforms forEo(r ) and GF(r )
separately before the inverse of their product is made to
yield the result. Both FFT and explicit integration meth-
ods were tested by us.

Using Babinet’s principle [22], we can also calculate
the shadow imageEi

c as generated by the complemen-
tary transmission function7c = 1–7. This provides an
alternative numerical scheme which is more suitable,
since now the integration in Eq. (18) is basically limited
to the region of the cloud.

In Fig. 4 we present the field distribution in the image
plane. As we mentioned, imaging reduces the differ-
ences between the on-shell approximation and the GDT
results. Both approaches give now qualitatively similar
results. In particular, the phase ofEi(r ) grows from
negative values to zero forr of the order ofrs, and
remains practically constant then. The amplitude of the
field exhibits characteristic oscillations.

In actual CCD image measurements one measures
the relative absorption coefficient, which can be defined
as

!(r ) = 1 –
uEi (r )u2

uEi (r ) + Ei
c (r )u2

, (19)

whereEi(r ) + Ei
c(r ) represent the image of the probe

without the presence of the cloud.
The relative absorption coefficients for the on-shell

(solid line) and GDT (dashed line) approximations is
shown in Fig. 5. This figure can be directly compared to
Fig. 2 of Ref. [3]. The qualitative agreement in both
cases is satisfactory. Quantitatively, the GDT result

580



Volume 101, Number 4, July–August 1996
Journal of Research of the National Institute of Standards and Technology

5. Conclusions

We have studied formation of diffraction patterns in
the near-resonant imaging of trapped cold atomic sam-
ples. We showed that spatial imaging similar to the
spectral measurement of the coherent Rayleigh scatter-
ing [13] can probe the detailed information of the
trapped atomic clouds, and may provide direct evidence
of the presence of the Bose-Einstein condensate with
improved imaging optics. We have used the on-shell
approximation and the Glauber’s generalized diffraction
theory to study light scattering off BEC and to construct
near field distributions. Optical imaging theory was
used to construct the field distributions in the image
plane. The results compare very well with the recent
experiments, and should be useful for the experimenters
involved in BEC research.
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