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field due to condensed atoms. Our
approach provides us with a closed system
of self-consistent equations for the order
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1. Introduction to Generalized
Mean Fields

A great deal of interest has been generated in Bose-
Einstein Condensation (BEC) by the recent experimen-
tal observations of this phenomenon in evaporatively
cooled alkali gases [1], [2], [3]. These experiments have,
in particular, given great impetus to the study of in-
homogeneous Bose gases. There are, of course, a fair
number of treatments of the Bose gas in the literature,
which make use of the various tools of the many body
trade and a thorough account of the special features of
the physics of homogeneous Bose-condensed liquids is

given in [4]. Most treatments deal with Bose-condensed
systems that are static and either in, or close to, thermal
equilibrium. The majority of studies have also, until
recently, been restricted to homogeneous gases, with the
notable exceptions of the work of Pitaevskii [5] and
Fetter [6]. However, due to the fact that BEC has been
experimentally achieved in a trap, there are several more
recent studies that have addressed the inhomogeneous
case. In this paper we shall present an equation of
motion approach [7] that is well-suited to handling both
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time-dependent and non-equilibrium cases for a trapped
(i.e., inhomogeneous) gas. We shall also show how this
approach reduces to the conventionalT Þ 0 theory in
the appropriate limits.

At non-zero temperatures the atomic assembly does,
of course, consist of excitations above the condensate
which have to be taken properly into account. Perhaps
the best known way to do this is based on the finite-
temperature Hartree-Fock-Bogoliubov (HFB) equations
[8]–[11]. These equations include the effects of the
mean value of the atomic field, the effects of thermally
excited atoms, as well as the so-called anomalous
averages of atomic operators [12]. These anomalous
averages represent strong pair correlations between the
particles, that can arise when the effective interactions
are attractive. The HFB equations can be derived in a
variety of ways, e.g., via Green functions, variational
principles [8], [11] and through an equation of motion
approach. An important discussion of the HFB theory
has been recently given by Griffin [13], who describes
how the behavior of an inhomogeneous Bose-condensed
gas can be obtained for the full temperature range within
the context of the Popov approximation [14] (explained
below).

In this paper we present what could be considered a
generalization of his approach to include the possibility
of yet further order parameters of the type discussed by
Lalöe [15]. In doing this, we also lay the ground for a
fully non-equilibrium technique. We have chosen to
work with the equation of motion method, as opposed
to other approaches like the non-equilibrium Green
function technique (Keldysh Method) [16], [17], as it is
somewhat easier to produce kinetic equations and also
to give a link to simpler equilibrium theories. Further-
more, the equation of motion approach makes it easier to
look at ‘‘one-loop’’ effects away from equilibrium with
arbitrary initial conditions. We emphasize that our
techniques are aimed at the dilute gases that are being
produced by the evaporative cooling method [18]. For
those, a kinetic equation approach should be a very
accurate and convenient technique. It is also possible to
set up efficient simulation techniques based on Monte-
Carlo wavefunction methods for a generalized density
matrix approach.

We still need, however, to construct a proper self-
consistent starting point for the kinetics and employ a
consistent decoupling approximation. We believe this to
be equivalent to the approach advocated in [19] for the
calculation of the time variation of the superconducting
order parameter in a Fermi liquid. Central to such an
approach lies the idea that the main effects of the
excitations can be described through the mean fields
(‘‘one-loop’’ diagrams), whereas all higher order
correlation effects can be summed up into kinetic terms

terms (i.e., ‘‘two-loop’’ effects). We shall not be able to
give a full account of the kinetic terms here, but we will
show clearly how they enter our formulation and how
they can be computed. The full details of the kinetic
terms will be given elsewhere [20].

We start our analysis by considering a group of atoms
trapped by an external field. The spatial and temporal
behavior can both be fully described, in second quan-
tization, in terms of the boson field operatorĈ (r , t ).
We will first outline our approach in terms ofĈ (r , t ),
before giving our results for the occupation number
representation in the subsequent sections, the latter
treatment being better suited to a computational
approach to the problem. For the dilute gases under
consideration, we assume that the dominant interatomic
interactions occur pairwise. The hamiltonian of the
system can be thus written in the form

Ĥ = EĈ†(r , t ) F–
" 2= r

2

2m
+ Vtrap (r , t )G Ĉ (r , t )dr

+
1
2EEĈ†(r ,t )Ĉ†(r ' ,t )V̂(r –r ' )Ĉ (r ' ,t )Ĉ (r ,t )dr dr '.

(1)

HereV̂ (r –r ' ) is the interaction between the particles,
which, for the dilute bose gas, is conventionally taken to
be

V̂ (r –r ' ) = U0d (r –r ' ) . (2)

Here U0 is related to the scattering lengtha via

U0 = 4p" 2a
m

[21]. The potential problem of applying this

in a self-consistent approach in a 3-dimensional gas is
described by Huang et al. [22]. In fact our approach
does not rely on this approximation, as will become
clear in Sec. 2. For the point of discussion, let us
however assume, for the moment, that it is valid; this
will enable us to give our initial discussion in terms that
link easily with previous accounts.

The operatorsĈ (r , t ) satisfy the equal-time boson
commutation relations

[Ĉ (r , t ), Ĉ (r ' , t )] = [Ĉ† (r , t ), Ĉ† (r ' , t )] = 0

(3)

[Ĉ (r , t ), Ĉ† (r ' , t )] = d (r –r ' ) . (4)
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The Heisenberg equation of motion forĈ (r , t ) then
becomes

i"
­Ĉ (r , t )

­t
= FS–

" 2= r
2

2m
+ Vtrap (r )D

+ NU0 Ĉ† (r , t )Ĉ (r , t )G Ĉ (r , t ) .

(5)

This exact operator equation is the starting point for
most quantum-mechanical treatments of a Bose system.
We are, in the main, interested in investigating the
temporal variation of the coherent (mean-field) relative
to the incoherent parts of the boson field operator.
We thus follow the usual route of decomposingĈ (r , t )
as [6]

Ĉ (r , t ) = F (r , t ) + d̂ (r , t ) . (6)

Here F (r , t ) = kĈ (r , t )l expresses the non-vanishing
macroscopic value of the Bose field associated with
broken symmetry due to the presence of BEC. We note
that there are some subtle extra issues that arise in this
procedure in the case of small trapped assemblies of
atoms. For the point of view of most of this article we
shall assume that this is a well-defined quantity. The
reader should however bear in mind that in small
systemsF (r , t ) may evolve in amplitude and phase
[23], [24]. In this paper we shall develop a method for
determining this evolution.

Using this decomposition we note that we can re-ex-
press the interaction termĈ†ĈĈ of Eq. (5) in the form

Ĉ†ĈĈ =

uF u2F + 2uF u2 d̂ + 2F d̂ †d̂ +F 2 d̂† + F *d̂d̂ + d̂†d̂d̂ .

(7)

The first term in the above expression corresponds to
the mean field term which, if it were the only term
retained, would convert the mean value of Eq. (5) into
the usual Nonlinear Schro¨dinger Equation (NLSE) or
Gross-Pitaevskii equation [25]

i"
­F (r , t )

­t
= S–

" 2= r
2

2m
+ Vtrap (r )D F (r , t )

+ NU0 uF (r , t )u2F (r , t ) .
(8)

This is the simplest mean field equation describing the
atomic assembly and is only strictly valid when all the
atoms are condensed, e.g., at temperatures close to zero.
The NLSE has already been studied in some detail along
with the link to the T = 0 elementary excitations
(phonons) in isotropic [26] - [29] and anisotropic [30],
[31] traps.

The next four terms appearing on the right hand side
of Eq. (7) represent the interaction between condensate
and excited states. Let us now discuss their meaning.
Consider substituting those terms into the operator
equation of motion Eq. (5) and taking the average of that
expression. The first two terms in the resulting mean-
field equation correspond to the direct and exchange
Hartree-Fock (HF) terms. The next two terms represent
the Bogoliubov correction. In the Popov approximation
[13], [14] of the HFB equations, the anomalous averages
of the formkd̂ (r , t )d̂(r , t )l are assumed to be negligi-
ble, so that the second of the Bogoliubov corrections is
dropped. This approximation can be shown to give
accurate results for a homogeneous gas with purely
repulsive interactions.

Let us now substitute Eq. (7) in full (i.e., including
thek d̂†d̂d̂ l term) into the operator Eq. (5) and consider
its mean value. This gives the exact equation of motion

i"
­F (r , t )

­t
= S–

" 2= r
2

2m
+ Vtrap (r )D F (r , t )

+ NU0 uF (r , t )u2F (r , t )

+ NU0 {2F (r ,t )kd̂†(r ,t )d̂†(r ,t )l

+ F * (r ,t )kd̂†(r ,t )d̂†(r ,t )l}

+ NU0 kd̂†(r ,t )d̂ (r ,t )d̂ (r ,t )l .
(9)

Conventionally, the termskd̂†d̂d̂ l are handled in the
self-consistent approximation [13]

d̂†(r ,t )d̂ (r ,t )d̂ (r ,t ) . 2 kd̂†(r ,t )d̂ (r ,t )ld̂ (r ,t )

+ kd̂ (r ,t )d̂ (r ,t )ld̂†(r ,t ) . (10)

This implies that such terms vanish trivially in the finite
temperature generalization of the NLSE, given by
Eq. (9). However, the termskd̂†d̂d̂ l contain the effects
of more complex correlations between the particles,
which are neglected in the HFB approximation. We have
chosen to analyze the effect of these correlations, thus
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extending the pure mean-field treatments (e.g., Ref.
[13]). Such correlations of three particle operators are
transiently produced during collisions and thus generate
the collisional feed term for the condensate, as discussed
in [32], [33]. For the dilute gas, these kinetic effects can
be dealt with, as discussed below and in [20]. We note
once again that we have chosen to do the calculation in
this way, because such treatment gives a full equation of
motion that is valid outside thermal equilibrium and can
handle essentially arbitrary initial states. The Keldysh
non-equilibrium approach [16], [17] should clearly
produce results entirely equivalent to ours in the dilute
gas limit. One should however bear in mind that the
results from two such different formalisms may be diffi-
cult to reconcile at first sight.

Let us consider the behavior of triple product aver-
ages over time scales that are long compared to the
duration of a typical binary atomic collision. A self-
consistent evolution may then produce non-vanishing
mean values of the triples, which would mean they have
to be considered on an equal footing with the other order
parameters of the system (i.e., BEC or pairing). Such a
possibility has already been discussed in [15], where a
cluster expansion approach is used, instead of the usual
perturbative expansion in the interatomic potential, for
the description of dilute degenerate gases with short-
range repulsive interactions. In this paper we derive a
self-consistent set of equations that allows for the inclu-
sion of possible non-vanishing triple product mean
values, which we shall henceforth refer to as ‘‘triplets’’
in the spirit of Lalöe [15]. Whether such an order
parameter can be present in a real system and how
it might affect the behavior of the system will be the
subject for future study.

We shall therefore procede in a generalized mean-
field approach for which triplets are retained as a possi-
bility. We are particularly interested in laying the ground
for the study of such self-consistent solutions and their
role in the ‘‘macroscopic’’ behavior of a gas. When
looking at the structure of Eq. (9) it is clear that in order
to obtain a closed set of equations for the various possi-
ble order parameters, we shall need the evolution of the
averages of products of two and three fluctuation opera-
tors d̂ (†)(r ,t ). In our self-consistent coupled equations,
all operators being averaged over have the same time
label which we shall not, for the sake of convenience,
give explicitly in the equations. In expressing the equa-
tions for such averages we have used suffixes 1 and 2 to
indicate whether the boson field operators are acting on
spatial coordinatesr or r ' respectively. For the binary
products, corresponding to what we shall term the
generalized density matrix, we find the following
equations of motion

i"
­
­t

kd̂†
1d̂2l=F–

" 2

2m
(=2

2–=1
2)+(V (2)

trap –V (1)
trap)Gkd̂†

1d̂2l

+ NU0 { F 2
2 kd̂†

1d̂†
2l + 2uF2u2 kd̂†

1d̂2l + kd̂†
1d̂†

2d̂2d̂2l}

– NU0 F2F2 kd̂†
1d̂†

2d̂2l + F2
* kd̂†

1d̂2d̂2lG
+ NU0 {( F1

* )2kd̂1d̂2l + 2uF1u2kd̂†
1d̂2l

– kd̂†
1d̂†

1d̂1d̂2l}

+ NU0 F2F1
* kd̂†

1d̂1d̂2l + F 1kd̂†
1d̂†

1d̂2lG
.

(11)

i"
­
­t

kd̂1d̂2l=F–
" 2

2m
(=1

2+=2
2)+(V (1)

trap –V (2)
trap)Gkd̂1d̂2l

+ NU0 { F 2
2 kd̂†

2d̂1l + 2uF2u2 kd̂1d̂2l + kd̂†
2d̂1d̂2d̂2l}

+ NU0 F2F2 kd̂1d̂†
2d̂2l + F2

* kd̂1d̂2d̂2lG
+ dk

12 (F 2
2 + kd̂2d̂2l)

+ NU0 { F1
2 kd̂†

1d̂2l + 2uF1u2kd̂1d̂2l

+ kd̂†
1d̂1d̂1d̂2l}

+ NU0 F2F 1kd̂†
1d̂1d̂2l + F1

* kd̂1d̂1d̂2lG ,

(12)

heredk
12 denotes a Kronecker delta.

These equations are again exact, although fairly use-
less without any approximations. We note that, apart
from averages of products of three fluctuation operators,
terms with products of four such operators appear on the
right-hand side of the above equations. These represent
more complex correlations between particles under-
going collisions and we will make appropriate approxi-
mations for them as we proceed.

In principle, one could work out the equations for the
rate of change of both these quantities which would in
turn depend on higher order correlations. It is, however,
essential to terminate this coupling to higher and higher
order parameters by making some suitable truncation,
which is a very natural procedure in a weakly-coupled
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gas [7]. In this paper, we have chosen to include the
possibility of mean values of triple products in our
model and reduce higher particle correlations to lower
ones (via an approximate version of Wick’s theorem).
By including all correlations up to the triplets, we can
describe the effects of the kinetics on the evolution of
the condensate in a fully self-consistent mean-field ap-
proach. In order to obtain the desired closed set of
coupled equations within this framework, we need of
course to consider the equations of motion for averages
of products of three fluctuation operators, which is done
in Sec. 4.

The method described in this paper can, in principle,
be used for calculating the relative importance of these
various order parameters. The possible appearance of a
pairing or other order parameters in the case of attrac-
tive interactions has been anticipated for some time [34].
In [35] Stoof has discussed the possibility of the anoma-
lous average kd̂d̂l becoming the important order
parameter in the case of a homogeneous gas with attrac-
tive interactions. We would like to examine the closely
related issue for a trapped inhomogeneous gas.

In the next section we repeat the above analysis in the
occupation number formalism and discuss the various
approximations made in more detail. We then show how
the equations can be cast in a generalized density matrix
form (Sec. 3) and derive equations of motion for the
triplets (Sec. 4). We further illustrate the consistency of
the derived equations with simpler ones found in the
literature (Sec. 5) and argue how our analysis can be
used to set the basis for a full non-equilibrium theory.

2. Mean Field Equations for a Trapped
Atomic System

In the occupation number representation the hamilto-
nian for pairwise interactions has the form

Ĥ = O
rs

kr uĴ uslâ †
r (t )âs (t )

+
1
2 O

rsmn

krs uV̂ umnlâ †
r (t ) â †

s (t ) ân (t ) âm (t ) . (13)

In this equation the operator̂J contains the kinetic
energy as well as the trap potential andkrs uV̂ umnl
represents the interaction potential between a pair of
particles. This is defined by

krs uV̂ umnl =

E E c *
r (r )c *

s (r ' )V (r –r ' )cm (r ' )cn (r )dr dr' .

(14)

Here thec i are the spatial parts of the Fock space
decomposition ofĈ (r , t ) given by

Ĉ (r , t ) = O
i

ci (r ) âi (t ) . (15)

Analogous to Eq. (6) we now decompose the time-
dependent single-particle operators according to

âi (t ) = zi (t ) + ĉi (t ) . (16)

This decomposition is extremely useful as it allows the
application of Wick’s theorem for decomposing higher
order correlations into lower order products.

Initially we consider the temporal dependence of the
mean field which yields the exact equation1 [analogous
to Eq. (9)]

i"
dzi (t )

dt
= O

r

ki uĴ u r lzr (t ) + O
rms

kis uV̂ umr l

H2rms(t ) zr (t ) + zs
* (t ) zm (t ) zr (t ) + kmr (t )zs

* (t )

+ kcs
†(t )cr (t ) cm (t )lJ . (17)

Here we have defined the one-body density matrix
r (t ) and the two-body or pair density matrixk (t ) by
their respective matrix elements2

r ij (t ) ≡ ki ur (t )uj l ≡ kc †
j (t )ci (t )l (18)

k ij (t ) ≡ kij uk (t )l ≡ kcj (t )ci (t )l . (19)

We note thatr (t ) and k (t ) are bothn 3 n matrices,
wheren is the number of single-particle states.

The equation of motion for the single-particle density
matrix r ij (t ) is given by

i"
dr ij (t )

dt
= – k[Ĥ, a †

j (t )ai (t )]l

– i"zj
* dzi (t )

dt
– i"zi

dzj
* (t )
dt

(20)

1 Due to the extensive use of the operatorsâi
(†), ĉi

(†) we have dropped
the explicit operator ‘‘hat’’ notation (ˆ).
2 We would like to point out here that these matrices transform differ-
ently under a unitary transformation, which is implicit in the notation
ki ur (t )uj l and kij uk (t )l. As a matter of fact,k (t ), unlike r (t ),
transforms as a matrix only under real orthogonal transformations.
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with

[Ĥ, a †
j (t )ai (t )] = O

r

kr uĴ u j la †
r (t )ai (t )

–O
r

ki uĴ u r la †
j (t )ar (t )

+
1
2Orsm

krs uV̂ umj la †
r (t )a †

s (t )am (t )ai (t )

–
1
2Ormn

kir uV̂ umnla †
j (t )a †

r (t )an (t )am (t ) .

(21)

We now proceed to decompose operatorsai
(†)(t ) accord-

ing to Eq. (16). Hence (upon suppressing temporal de-
pendence) the exact form of Eq. (20) contains terms
with the following structure (with the appropriate in-
dices):

kĴ l [z*z, kc †cl]

and

kV̂l[z*z*zz, kc †clz*z, kccl z*z*, kc †cclz*, kc †c †ccl]
and their hermitian conjugate quantities. At this point
we will simplify our expressions by assuming that quan-
tities of the formkc †c †ccl can be approximated by their
mean-field values according to the conventional form of
Wick’s theorem

kc †
r c †

scmcn l =

kc †
r cm l kc †

s cn l + kc †
r cn l kc †

s cm l + kc †
r c †

s l kcmcn l

= rmrrns + rnrrms + k *
rsknm . (22)

In this approximation, we are essentially assuming that
the effects of higher order correlations (such as
kc †c †c †ccl) on the mean values ofkc †c †ccl can be
neglected. Within our mean-field approximation defined
by Eq. (22), we obtain the following equations of motion

i"
dr ij

dt
= O

r

[hir r rj –r ir hrj ]–O
r

[k ir D
*
rj –D ir k

*
rj ]

+ O
rmn

kir uV̂ umnlHkc †
j c †

r cml zn

+ kc †
j c †

r cn l zm+kc †
j cncm l z*

rJ
–O

rsm

krs uV̂ umj lHkc †
r cmci l z*

s

+ kc †
scmci l z*

r +kc †
r c †

sci l zmJ . (23)

Here we have defined the time-dependent Hartree-Fock
hamiltonian ĥ (t ) and the pairing fieldD̂ (t ) by their
respective matrix elements [11] as follows:

hij ≡ ki uĥ uj l ≡ ki uĴ uj l+2O
kl

kik uV̂ ulj l[z*
kzl+r lk ]

(24)

Dij ≡ kij uD̂ l ≡ O
kl

kij uV̂ ukl l[kkl+zkzl ] . (25)

We note that in an alternative (variational) approach [11]
(see Appendix A), these may be defined as

hij (t ) ≡ ­Ê
­r ji (t )

D ij (t ) ≡ ­Ê
­k ji

* (t )
(26)

where Ê = Ê [z, r , k ] is the energy functional of the
system.

The equations of motion for the pair matrixk can be
derived along the same lines as above. Consideration of
the termk[ Ĥ, aj (t )ai (t )]l gives rise to the correlation
kaja †

r anaml (where r , m, n represent indices that are
being summed over). By using the decomposition equa-
tion [Eq. (16)] for obtaining correlations of fluctuation
operators and imposing the boson commutation rules for
thec-operators, we obtain the termkc †

r cjcncml, which is
handled in the mean-field approximation in an
analogous fashion to Eq. (22).

Hence, the equation analogous to Eq. (12) reads

i"
dk ij

dt
= O

r

[hir k rj +k ir h *
rj ]+O

r

[r ir D rj +D ir r
*
rj ] +D ij

+ O
rmn

kir uV̂ umnlHkc †
r cjcn l zm

+ kc †
r cjcml zn+kcjcncml z*

rJ
+ O

smn

kjs uV̂ umnlHkc †
scnci l zm

+ kc †
scmci l zn+kcncmci l z*

sJ . (27)

The parametersz, r , k and kc (†)ccl can be treated
(self-consistently) as suitable order parameters for the
system, provided they are well-defined. This could be
true either in a completely static or a slowly-varying
situation. It is however also possible that the kinetic
correlation termskc (†)ccl are established on time-scales
much shorter than the mean evolution times of the
parametersz, r , andk . This is equivalent to saying that
the collision duration relevant to the evolution of
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kc (†)ccl must be much smaller than the mean time
between collisions. This should hold for dilute weakly-
interacting Bose gases for whichnta3 << 1 wherent is
the number density in the trap.

In the next section we write these equations in a more
compact generalized matrix form. We then derive equa-
tions of motion for the triplets (Sec. 4) and show that if
the latter are neglected (Sec. 5), the equations derived in
this paper are consistent with simplified versions
appearing in the literature.

3. The Equations of Motion in a
Generalized Density Matrix Form

Equations (23) and (27) can be cast in a generalized
matrix form

i"
dr
dt

= [h , r ]–(kD * –Dk * )+(M–M,*) (28)

i"
dk
dt

= (hk+kh *)+(rD+Dr * )+D+(N+N,) (29)

where the matricesM andN have been defined in terms
of their elements

Mij = O
rms

kis uV̂ umr l [ kc †
j c †

scm l zr

+ kc †
j c †

scr l zm+kc †
j crcm l z*

s ] (30)

Nij = O
rms

kis uV̂ umr l [ kc †
scmcj l zr

+ kc †
scrcj l zm+kcrcmcj l z*

s ] (31)

and N, represents the transpose of matrixN.
It is straightforward to show that these can be written

in matrix notation as

i"
dR
dt

= h [H , R]+K (32)

where all matrices are of the form 2n32n. Here we
have defined the generalized boson density matrixR by

R = 1 r
–k *

k
–(r * +11)2 (33)

and the matrixh by

h = 111

0

0

–112 (34)

where11 is the unity matrix of then-dimensional Fock
space.

For convenience, we have also defined the boson
quasiparticle hamiltonian

H = 1 h

D *

–D

–h*2 (35)

We note that the matricesR andH are not the same as
those defined by Blaizot and Ripka [11] as discussed in
Appendix A.

We have further defined the matrix

K = 1 M –M,*

–(N+N,)*

(N+N,)

–(M –M,*)*2 (36)

which gives the effect of the triplets on the single-
particle and pair excitations.

Thus far, we have derived equations of motions forr
andk which involve triplets. In order to get a closed set
of mean values, we need the equations of motion for the
triplets which we derive below.

4. Equations of Motion for the Triplets

Before deriving the equations of motion for triplets of
the form kc (†)ccl we would like to point out that they
can be used in two ways. Firstly, they allow us to con-
struct a self-consistent generalized mean-field theory.
Furthermore, they offer the possibility of including
kinetic effects of condensate formation.

We define the time-dependentn3n3n rank 3 triplet
tensorsg̃ (t ) and l̃ (t ) by their respective elements

g ijk = kcicjck l (37)
and

l ijk = kc †
i cjck l (38)
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The equations of motion for the triplets can be ob-
tained by following the procedure of Sec. 2. We note that
this leads to very complex expressions, so the account
will be kept very brief here.

Consider initially the equation of motion fot the
triplet g ijk . Upon imposing the decomposition equation
[Eq. (16)], we note that the right hand side of the result-
ing equation contains—apart from the simpler correla-
tions—correlations of four and five single-particle fluc-
tuation operators. We assume that the effects of
correlations of six or more operators (present on the
right hand side of higher equations of motion) are negli-
gible when looking at the behavior of the system during
a typical collision. This means that we set all terms
kccccccl . (kccl)3, (kcccl)2 (appearing in the equations
of motion) to zero, irrespective of their indices or
whether they contain products of normal or anomalous
averages. Correlations of four fluctuation operators are
handled in the mean-field approximation Eq. (22). In
treating the equation of motion forg̃ we also use Wick’s
theorem to decompose correlations of five fluctuation
operators in the form

kc †
scickcncml = r isgknm + rksg inm + rnsg ikm + rmsg ikn

+ kkilsnm+ knilskm+ kmilskn + knklsim

+ kmklsin + kmnlsik . (39)

It is essential that the above decomposition is in accord
with the mean field approximation defined by Eq. (22).
Strictly speaking Eq. (22) should contain an extra term
on the right hand side due to the effects of five particle
operator correlations, and these would have to be in-
cluded in a treatment that went beyond the mean-field
approach.

Writing the resulting equation of motion in more
compact notation we obtain

i"
d
dt

(g ijk ) = { h , g } ijk +{D , l } ijk +(Wijk +Wjki+Wkij )

+(G ijk +G jki+Gkij ) (40)

where we have defined the following quantities

{ h , g } ijk = (hg ) ijk +(hg ) jki +(hg )kij

= O
r

(hir g rjk + hjr g rki + hkrg rij ) (41)

{ D , l } ijk = (Dl ) ijk +(Dl ) jki +(Dl )kij

= O
r

(D ir l rjk + D jr l rki + Dkrl rij ) (42)

Wijk = O
rms

kis uV̂ umr l[kmjLskr + kmkLsjr

+ r jsgkrm + rksg jrm ] (43)

Lrms = 2r *
rmzs + z*

r kms + 2l rms (44)

G ijk = O
ms

kij uV̂ umsl[2kkmzs+gkms] . (45)

Similarly we have

i"
d
dt

(l ijk ) = (lh * ) ijk +(lh *) ikj –(h *l ) ijk

+ (l *D ) jik + (l *D )kij –(D *g ) ijk

+ (Xkji+Xjki –Y*
ijk )+L jki (46)

Xkji = O
rms

kksuV̂ umr l[kmjJris + r ri Lsjm

+ k *
isg rmj + r jslmr] (47)

Yijk = O
rms

kis uV̂ umr l[rmjJrks + rmkJrjs

+ k *
sjlkmr + k *

skl jmr ] (48)

Jrms = 2zrk
*
ms + r rmz*

s + 2l *
rms (49)

L jki = O
ms

kjk uV̂ umsl [2rmizs+l ims] . (50)
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There are a range of ways in which we can make use
of these equations. Firstly, we could solve Eqs. (17),
(23), (27), (40), and (46) self-consistently as a general-
ization of the HFB equations that includes the extra
anomalous averages. Exploring the phase diagram for
the various order parameters will, however, in itself be
an enormous task. It will, nonetheless, be an essential
one in the study of these new evaporatively cooled
assemblies. In the first instance an examination of the
HFB-Popov behaviour will be an important advance.
The next step should be the study of howkccl and
kc (†)ccl arise in the presence of attractive interactions.
We believe that this will be an important theme in the
next few years. We can also use these equations to inves-
tigate the damping of time dependent solutions that
come from one-loop processes, e.g., the Landau damp-
ing discussed by Payne and Griffin [36] for the homoge-
nous case. This means we can explore the range of
validity of the simpler NLSE approaches to condensate
time evolution.

These equations can also be used to treat condensa-
tion kinetics. It should however be pointed out that a
completely general treatment that also includes kinetics
of excited states, further requires us to look at the equa-
tions of motion of terms kc (†)c (†)ccl, where the
algebraic complexity becomes quite formidable.

5. Reduction to Simpler Equations

We now neglect the triplets and obtain simpler equa-
tions in appropriate limits, some of which can be found
in the literature.

5.1 The Nonlinear Schrödinger Equation

If we further ignore single-particler and pairk exci-
tations in the time-dependent equation forzi (t ) [Eq.
(17)] and restore explicit time-dependence we end up
with the mean-field equation

i"
dzi (t )

dt
= O

r

h ir
(0)(t )zr (t ) (51)

where the time-dependent mean-field Hartree-Fock
hamiltonianh (0)(t ) is defined by

h ir
(0)(t ) = ki uĴ u r l+kis uV̂ umr l zs

* (t ) zm (t ) . (52)

One should note that the interaction potential appearing
in this equation is the original one. The replacement of
this by the two-bodyT-matrix is straightforward but
relies on a decoupling—ladder approximation—in the
equations of motion. We shall give the explicit account

of this in a future publication. With this replacement
Eq. (51) becomes the analogue of the NLSE [Eq. (8)].

i"
­F (r , t )

­t
= S–

" 2= r
2

2m
+ Vtrap (r )D

F (r , t )+ NU0uF (r , t )u2 F (r , t ) (53)

in the occupation number representation we note that
Eq. (15) can be equivalently written in the form

F (r , t ) = O
i

fi (r )zi (t ) (54)

This confirms that we can reconstruct the NLSE by

multiplying Eq. (51) by
f i (r )

ÏN
and summing over all

indices i . The factorÏN has been included so as to
re-scale the time-dependent coefficientszi (t ) which
obey the normalization condition

O
i

zi
*
(t )zi (t ) = N . (55)

At T = 0 the whole system is condensed in the lowest
energy eigenstate and since according to Eq. (54) all the
time-dependence has been included in the coefficients
zi (t ), we can re-express these as

zi (t ) = zi e
imt
h (56)

where thezi are now simply constant complex numbers
and m is the ground state chemical potential. Clearly
Eq. (51) then reduces to the time-independent NLSE
[11]

O
r

h ir
(0)zr = mzi . (57)

Here we see that we can trivially transform from the
time-dependent to the time-independent picture, merely
by setting the time-dependent term on the left-hand side
to zero and simultaneously replacing the time-depen-
dent mean-field Hartree-Fock hamiltonian

h ij
(0)(t ) ≡ ki uĴ uj l+O

kl

kik uV̂ ulj lz*
k (t )zl (t ) (58)

by the time-independent one given by

h ij
(0) ≡ ki uĴ –m uj l+O

kl

kik uV̂ ulj lz*
kzl . (59)

We note that this remains true even at non-zero temper-
atures, when the second term also contains correlations
due to the excited particles.
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5.2 Static Equations

In this section we will show that Eqs. (23) and (27)
are also consistent with theT > 0 static HFB equations
that we have additionally derived from a variational
principle approach in Appendix A. Neglecting all time
dependence in Eqs. (28) and (29), we thus obtain the
static matrix equations

[h , r ] = (kD *–Dk * ) (60)

[h k + kh *] + (rD + Dr * ) + D = 0 (61)

However, to solve these equations self-consistently,
we also need an equation normalizing the vectorz.

We use the substitutionzi (t ) = zi e
–

imt
h in Eq. (17) to

obtain the static equation

O
r

ki uĴ –m ur lzr+

O
rms

kis uV̂ umr l{2 rmszr+zs
* zmzr+kmrzs

*} = 0 (62)

where the chemical potentialm appears as discussed
earlier.

This can be re-expressed as

O
r

(hc
ir zr + D c

ir z*
r ) = 0 (63)

where

hc
ij ≡ ki uĴ –m uj l + O

kl

kik uV̂ ulj l[ zk
* zl + 2rlk ] (64)

and

D c
ij ≡ O

kl

kij uV̂ ulkl lkkl . (65)

More generally, we obtain the matrix equations [11]

1 hc

(D c)*

D c

(hc)*2 1z

z*2 = 0 (66)

which give us the values of allzi for fixed values ofhc

andD c. Equations (60), (61) and (66) constitute the full
set of static Hartree-Fock-Bogoliubov equations which
can be solved self-consistently. If we setD = k = 0, we
thus obtain the static self-consistent HFB description of
a condensate with elementary excitations in the Popov
approximation [14], which further reduces to the time-
independent NLSE forr = 0.

6. Discussion

In this paper we have developed a time-dependent
self-consistent generalized mean-field method for
describing a trapped and partially condensed atomic
system. Central to our approach lies the operator decom-
position equation [Eq. (6)] (or equivalently Eq. (16)) into
a mean field and a fluctuating part. This decomposition
is reasonable, as we do not make any assumptions about
the initial value of the wavefunctionF (r , t ), or its
evolution. Consequently, our treatment should remain
valid over a wide range of conditions, e.g., for cases
close to the transition temperatureTc. Our equations
allow for the possibility of other order parameters and
give us a way of investigating their possible role in an
evaporatively cooled gas.

In our treatment, we have considered an inhomo-
geneous gas, which implies that the excited states of the
system are strongly influenced by the finite size of the
trapped assembly. This natural length scale will, of
course, lead to the presence of a gap in the excitation
spectrum, as opposed to the gapless spectrum of the
homogeneous gas.

Let us initially assume that the triplets are small in
comparison with the usual HFB order parameters. In the
case of moderately-sized condensates, the solutions of
the HFB equations will hence be a good basis, as long
as the kinetic processes produce collisional widths that
are less than the separation of the levels. However, as the
number of atoms in the trap is increased, we will
approach the so-called quasi-homogeneous limit for the
condensate. This happens when the healing length for
the gas is much smaller than the size of the condensate.
In that regime, it becomes essential to describe the mean
fields by means of local densities [i.e.,z(r ), r (r ), and
k (r )]. We thus obtain locally well-defined quasiparti-
cles (in the sense that their collisional widths are smaller
than the characteristic frequencies) in regions specified
by the healing length of the atomic assembly under
consideration. This approach has been employed by
Dorfman and Kirkpatrick to derive transport coeffi-
cients for the dilute Bose gas [32].

The discussion above relies on assumption that the
HFB states for the trap as a whole constitute the most
sensible state. This, in turn, implies that we should, in
order to be consistent, assume that any kinetic rates are
less than the frequency separation of the HFB excita-
tions, which seems reasonable for the case of conden-
sates with modest numbers of particles. Our equations
are, however, not limited to the pure HFB regime. For
example, in the case of repulsive interactions, both pair-
ing and triplets may be treated purturbatively and the
analysis extended beyond HFB.
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7. Appendix A. Proof of the Static
Generalized Equations using a
Variational Principle

In this Appendix we derive the static form of the
generalized quasiparticle equations of motion using the
variational principle approach employed, in detail, by
Blaizot and Ripka for fermions [11].

Consider a system in thermal equilibrium described
by a statistical density matrixD given by

D =
e–bQ

Z0
(67)

whereZ0 is given by

Z0 = Tr (e–bQ) (68)

andQ is the quasiparticle operator

Q =
1
2Oij { hij (c †

i cj + cjc †
i ) + (D ijc †

i c †
j + D *

ij cjci )} (69)

whose matrix elementshij and D ij (defined as in Eqs.
(24)-(25)) will be considered as variational parameters.
In applying the variational principle, we seek to mini-
mize the thermodynamic potential

f (D ) = E–mN–TS (70)

whereE = Tr (DĤ) andN = Tr (DN̂) are respectively the
system’s average energy and particle number (Ĥ has
been defined in Eq. (13) andN̂ = S ia †

i ai is the total
number operator),T is the temperature andSthe entropy
of the system.

The functional we shall minimize is thus

f = –
1
b

ln(Z0)–Tr (DQ ) + Ê (71)

which represents an upper limit to the actual partition
functionZ. Here Ê = Tr (DĤ m ) is the expectation value
of the hamiltonianĤ m = Ĥ –m N̂ .

We note that the single-particle (r ) and pair density
matrices (k ) are given in the statistical density matrix
representation of a system by

r ij = Tr [D (c †
j ci )] (72)

k ij = Tr [D (cjci )] (73)

which can be summarized into

Tr (DQ ) =
1
2

tr (HR) (74)

where we discriminate between the trace operation in
Fock space (Tr ) and in the space of single-particle states
(tr ). Thus,

d[ln(Z0)] = –
b
2

tr (RdH ) (75)

Here R represents the generalized density matrix of a
quasiparticle vacuum andH the quasiparticle hamilto-
nian, respectively defined in Eqs. (33) and (35).

We note that these are not the same as the ones
defined in [11], but they are related by

R= hR0 H = H0 h (76)

where the zero suffix has been used to represent the
quantities defined in [11]. The matrixh appears here
due to the nature of the boson commutation relations
that must be satisfied by the transformed quasiparticle
operators.

We also note that, for a particular state (which can be
explicitly constructed from the particle vacuum), the
generalized density matrixRobtains the canonical form

R= 10

0

0

–112 (77)

which satisfies the conditions

R† = R R2 = –R (78)

Using Wick’s theorem for ensemble averages, we can
also express the energyÊ in terms ofR, so that the
minimization of the functionalf

df =
1
2

tr (H dR) +
­ Ê
­R

­R= 0 (79)

gives

tr H ­ Ê[R]
­R

–
1
2

HJ dR= 0 (80)

where we have used the notation [11]

tr FS ­ Ê[R]
­R D dRG ≡ O

ij

­ Ê[R]
­Rji

dRji (81)
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We hence deduce thatf is stationary with respect to
arbitrary variations ofH (or equivalently ofR related to
H ) if 3

­ Ê[R]
­Rji

=
1
2

Hij (82)

At steady state the energy functionalÊ [R] remains
constant, so that the second constraint of Eq. (78) can be
taken into account by introducing a matrix of Lagrange
multipliers L as

d { Ê [R]–tr [L (R2 + R)]} = 0 . (83)

Eliminating the Lagrange multipliers, we thus obtain
the equation

[H , R] = 0 (84)

which simply expresses Eqs. (60) and (61) in a more
compact form. In order to obtain the full set of the
steady state Hartree-Fock-Bogoliubov equations, we
also need an equation for the vectorsz. This is obtained
in [11] by consideration of the variation of the energy
functionalÊ [R] with respect toz andz*. The resulting
equation is identical to Eq. (66).
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[15] F. Lalöe in Bose-Einstein Condensation, A. Griffin, D. W.

Snoke, and S. Stringari, eds. Cambridge University Press (1995).
[16] L. V. Keldysh, Sov. Phys. JETP20 (4), 1018 (1965).
[17] P. Danielewicz, Ann. of Phys.152, 239 (1984).
[18] For an experimental description of evaporative cooling in various

traps see W. Petrich, M. H. Anderson, J. R. Enscher, and E. A.
Cornell, Phys. Rev. Lett.74, 3352 (1995), C. S. Adams, H. J.
Lee, N. Davidson, M. Kasevich, and S. Chu, Phys. Rev. Lett.74,
3577 (1995) and K. B. Davis, M-OMewes, M. A. Joffe, M. R.
Andrews, and W. Ketterle, Phys. Rev. Lett.74, 5202 (1995).

[19] For the approach used in solid-state theory for Fermi liquids see
the following papers and references therein: S. Peletminskiiˇ and
A. Yatsenko, Zh. Eksp. Teor. Fiz.53, 1327 (1967) [Sov. Phys.
JETP26, 773 (1968)], V. P. Galaiˇko, Zh. Eksp. Teor. Fiz.61,
382 (1971) [Sov. Phys. JETP34, 203 (1972)] and V. S.
Shumeiˇko, Zh. Eksp. Teor. Fiz.63, 621 (1972) [Sov. Phys. JETP
36, 330 (1973)].

[20] N. P. Proukakis and K. Burnett, in preparation.
[21] E. Fermi, Riverca Sci.7, 13 (1936).
[22] K. Huang and P. Tommasini, J. Res. Natl. Inst. Stand. Technol.

101, 435 (1996).
[23] E. M. Wright, D. F. Walls, and J. G. Garrison, Collapses and

Revivals of Bose-Einstein Condensates Formed in Small Atomic
Samples (preprint).

[24] S. M. Barnett, J. Vaccaro, and K, Burnett, J. Res. Natl. Inst.
Stand. Technol.101. 593 (1996).

[25] E. P. Gross, Nuovo Cimento20, 454 (1961) and L. P. Pitaevskii,
Sov. Phys. JETP12, 155 (1961).

[26] M. Edwards and K. Burnett, Phys. Rev. A51, 1382 (1995).
[27] P. A. Ruprecht, M. J. Holland, K. Burnett and M. Edwards, Phys.

Rev. A 51, 4704 (1995).
[28] M. Edwards, P. A. Ruprecht, K. Burnett and C. W. Clark,

Phys. Rev. A (in press).
[29] A. L. Fetter, Phys. Rev. A53, 4245 (1996).
[30] F. Dalfovo and S. Stringari, Phys. Rev. A53, 2477 (1996).
[31] M. Edwards, R. J. Dodd, C. W. Clark, P. A. Ruprecht, and K.

Burnett, Phys. Rev. A53, R1950 (1996).
[32] T. R. Kirkpatrick and J. R. Dorfman, J. Low Temp. Phys.58, 301

(1985).
[33] U. Eckern, J. Low Temp. Phys. ,54, 333 (1984).
[34] N. M. Hugenholtz and D. Pines, Phys. Rev.116, 489 (1959).
[35] H. T. C. Stoof, Phys. Rev. A49, 3824 (1994).
[36] S. H. Payne and A. Griffin, Phys. Rev. B32, 7199 (1985).

468



Volume 101, Number 4, July–August 1996
Journal of Research of the National Institute of Standards and Technology

About the authors: Nikolaos Pindaros Proukakis is
studying for his PhD in atomic and laser physics at the
Clarendon Laboratory, University of Oxford and is a
member of New College. His studies are financed by the
Alexander S. Onassis Public Benefit Foundation. Keith
Burnett is in the Physics Department and at St. John’s
College, University of Oxford, and is a Guest Researcher
in the Physics Laboratory of the National Institute of
Standards and Technology. His research is supported by
United Kingdom Engineering and Physical Sciences
Research Council. The National Institute of Standards
and Technology is an agency of the Technology Adminis-
tration, U.S. Department of Commerce.

469


