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condensation (BEC) of87Rb atoms in an
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Given the aspect ratioR, the quality of
BEC is estimated. A simple analytical
ansatz for the initial condensate wave
function is proposed as a function of the
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interaction limits, and which is in better
agreement with numerical results than the
latter.
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1. Introduction

Bose-Einstein condensation (BEC) is a phenomenon
where a macroscopic number of particles is in the
ground state of the system at finite temperature. The
phenomenon of BEC plays a significant role in many
branches of physics [1]. Because of the presence of
strong interactions, BEC has been inferred rather than
directly observed so far. Recently, however, three
different groups have reported the direct evidence of
BEC in weakly interacting systems of atoms such as
rubidium [2], lithium [3], and sodium [4], confined in
anisotropic magnetic traps and cooled down to very
low temperatures. These experiments show promise of

becoming a new laboratory for quantum statistical
phenomena that are inaccessible to other conventional
techniques and of enabling us to experimental study
phenomena that have been addressed only theoretically,
such as spontaneous symmetry breaking and decay of
unstable macroscopic states. They may also advance
our understanding of superconductivity and superfluid-
ity in more complex systems. Moreover, the technology
used in the experiments has the possibility to be
extended to produce a veritable atomic laser that is
bound to have many applications in pure science and
technology [5].
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In recent experiments in the system of rubidium
atoms [2] and sodium atoms [4], the onset of BEC is
signalled by a narrow peak on top of a broad thermal
velocity distribution centered at zero velocity. This peak
exhibits the nonthermal, anisotropic velocity distribu-
tion expected of the minimum-energy quantum state of
the magnetic trap in contrast to the thermal, isotropic
velocity distribution observed in the broad uncondensed
fraction. The parameter which characterizes the asym-
metry of the velocity distribution function is the so
calledaspect ratio R≡ Ïkpz

2l/kpx
2l. In the experiment

of Anderson et al. [2], rubidium atoms are initially
trapped and cooled down in a strong magnetic trap
which can be described as a three-dimensional (3D )
harmonic potential cylindrically symmetric about the
z-axis, with tunable frequencyvz (in thezdirection) and
v' = vz /l (in the xy-plane), with the asymmetry
parameter l = Ï8. The corresponding oscillator
lengths area'(z)=(" /mv'(z))1/2=1.25(0.74)310–4 cm,
wherem is the atomic mass. After some time, the cloud
of rubidium atoms is adiabatically released to a weaker
magnetic trap whose spring constants are 10 times
weaker than when BEC forms. The condensate is then
examined after ballistic expansion from the weak trap.
The ballistic expansion is properly modelled numeri-
cally by a self-consistent wavefunction calculated by
Holland and Cooper [6] which generalizes previous
investigation of the symmetric evolution [7].

Similarly to previous recent studies [8-10], we shall
confine ourselves to the system of87Rb atoms and we
will discuss the characteristics of the initial condensate
formed. Although the characteristics of the initial
condensate have not been measured directly yet,
there is hope that it will be possible so in future
experiments.

A theoretical picture of the initial condensate was
produced within the Hartree-Fock (HF) approximation
[8-10] using the Ginzburg-Pitaevskii-Gross (GPG)
energy functional [11] and associated with it the Non-
linear Schro¨dinger Equation (NSE). Excitations, using
the technique of the Bogoliubov transformation, have
been described by Fetter [12]. Baym and Pethick [8]
have gained an insight into the problem by assuming
that, similarly to the noninteracting case, a gaussian
gives a reasonable variational ground-state wave func-
tion, the only effect of interactions being a renormaliza-
tion of oscillator frequencies. They show that the first
effect of interactions is to reduce the density of the cloud
of particles in the central region from the free particle
situation and expand it in the transverse direction. These
qualitative features were confirmed by Edwards et al.
[9] and Dalfovo and Stringari [10] by solving the NSE
numerically.

In the present paper it is shown that although,
qualitatively, the Baym and Pethick (BP) scenario [8]
is correct, nevertheless, the BP wave function does
not describe BEC regime well. As we show in the
next section, this can be explained by the fact that
the BP wave function is actually the square root of the
first order density function in the high temperature
expansion of the partition function of thed -function
interacting Bose gas in the kinetic energy, and
hence describes high temperature properties of
the system. Higher order corrections are needed to
obtain low temperature properties such as BEC in
agreement with the numerics. In particular, this explains
the unreasonably high aspect ratio in BP estimations
(up to 4.2, i.e., 2.5 higher than in the noninteracting
case). All these prompt a search for another trial
variational function for the ground state. In Sec. 3
we derive a simple analytical Ansatz (see Eq. (7)
and Fig. 1) which, for a given numerical value of the
aspect ratio, describes well the ground state properties
of the system for all values of the interaction strength.
The Ansatz interpolates smoothly between the weak
and the strong interaction case. It is worthwhile
to notice that the latter case cannot be described
by the BP wave function and, instead, it is described
by the Thomas-Fermi approximation in Ref. [8].
Using this Ansatz, correlation effects can be considered
[13].

Fig. 1. A comparison of thex-dependence of the numerical solution
of NSE for the ground state [10] (dashed line) and our approximate
solution (solid line) in the case ofN = 5000 atoms of87Rb, when
A = 502 andCansatz= 2.2. The value of the aspect ratio,R(A, l ) = 2.3,
is taken from Ref. [10].
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2. Baym-Pethick Trial Wave Function and
High Temperature Expansion

Baym and Pethick argued [8] that the initial conden-
sate wave function in the region of weak and up to
intermediate interactions can be well approximated by a
Gaussian. Let us take a different point of view and ask
under which condition this Gaussian-like profile of the
initial condensate wave function can be actually derived.

If interactions between atoms are neglected, the
physical system is equivalent to the system of non-
interacting harmonic oscillators. In the latter case, one
can show that the aspect ratio in thermal equilibrium is
a monotonically increasing function of the inverse
temperatureb = 1/T,

R(l , b ) = Îl
1/2 + (eblv' – 1)–1

1/2 + (eblv' – 1)–1 .

At high temperaturesR ≈ 1, and for low temperatures
R ≈ Ïl . In the latter case, the dominant contribution to
the aspect ratio is given by the ground state of the system
and reflects its anisotropy.

In the presence of the interactions, the Hamiltonian of
the system can be written as

H =
" 2

2mE dV [=c+ =c

+ a'
–4(r 2 + l 2 z2)c+c + 4plc+c+cc ] ,

(1)

wherer 2 = x2 + y2, a' andaz are oscillator lengths, and
l is thes-wave scattering length [8,14]. Qualitatively, the
temperature dependence ofR(l , b ) preserves the main
features of the noninteracting case. At high tempera-
tures, the interaction is irrelevant andR ≈ 1. At low
temperatures (for sufficiently small fraction of atoms
out of BEC), the HF approximation is justified and the
ground state wave function(giving the main contribution

to the aspect ratio) satisfies the NSE. After rescaling of
variables [10], the NSE can be written as

[– D + x2 + y2 + l 2 z2 + Auc (r )u2 ]c (r ) = 2Cc (r ).

(2)

Here, A = 8plN /a' characterizes the interaction
strength,N is the number of particles in the condensate
(A , 520 for N , 5000 [15]), andC = m /("v') > 0,
m being the chemical potential. In the case of large
condensate fraction (strongly interacting case,A >> 1),
the kinetic term can be neglected [8,10] and the ground
state (normalized to unity) wave function is given by the
Thomas-Fermi approximation,

f 2(r ) =

1
A

(2C– x2 – y2 – l 2 z2) Q (2C– x2 – y2 – l 2 z2) ,

(3)

where 2C = [15lA /(8p)] 2/5, and Q is the Heaviside
step function. The aspect ratio,R(A,l ), is increasing
function ofA, and the ground state solution Eq. (3) takes
on its maximal possible value (R= l ) among all ground
state solutions to the NSE. In the present case (l = Ï8),
this means that the maximal effect of interactions is to
raise the value of the aspect ratio on 67 % with respect
to the noninteracting case. Moreover, as shown by
Dalfovo and Stringari [10], the aspect ratio forA = 520
(corresponding toN = 5000 atoms in BEC) isR= 2.3,
i.e., 37 % higher than in the noninteracting case.

Let us now return to the BP wave function [8]. In
order to simplify the derivation of the BP wave function
from the high-temperature expansion, let us for a while,
such as in Ref. [8], neglect the anisotropy of the oscilla-
tor potential [16]. Because the kinetic energy of parti-
cles in the system is approximately 200 times smaller
than the characteristic interaction energy [8], it is
reasonable to consider the expansion of the partition
function of the system,Z (b , m ), in powers of the kinetic
term,

with fields satisfying the periodic boundary conditions,
c+(x, b ) = c+(x, 0) andc (x, b ) = c (x, 0). Expansion

Z (b , m ) = EDc+(x, t )Dc (x, t )eS0 O`
n = 0

[–" 2/(2m)] n

n! SEb

0
E dV =c+ =cDn

≡ O`
n = 0

Zn (b , m ) . (4)

HereS0 is the ‘‘unperturbed" action,

S0 = Eb

0
E dV H ­c+

­t
c –

" 2

2m FSa'
–4r 2 –

2m

" 2
mD c+c + 4plc+c+ccGJ ,
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[Eq. (4)] is the high temperature expansion and we are
not exactly in the BEC regime. However, the HF approx-
imation is avoided.

In the first term (corresponding ton = 0) of the sum
in Eq. (4) one finds a product of partition functions of
the anharmonic oscillators {Hx}, labelled by the
space point x. Using the lattice approximation
x = l (m1, m2, m3) ≡ lm with the scattering lengthl (the

After redefining parameters,

m → m̃ ≡ 2ml 2

" 2
m , b → b̃ ≡ " 2

2ml 2 b,

bm =
l 4

a'
4

(m1
2 + m2

2 + m3
2)

one has

Zm (b , m )

= O`
k = 0

exp (–4pb̃ k 2 + b̃ m̃k + 4pb̃ k – b̃ kbm ) .

Let us assume that the value of the chemical potential
b̃ m̃ is negative and order of 10 (self-consistency of this
assumption will be shown below). By substituting
T . 10–7 K for the temperature, one has
4pb̃ . 12p 3 103, and

Zm(b , m ) = 1 + eb̃ m̃ – b̃ bm (1 + O (e–2.5p104
))

. 1 + eb̃ m̃ – b̃ bm . (5)

The resulting partition function

Z0(b , m ) = P
m

(1 + eb̃m̃ – b̃ bm) ,

leads to the distribution functionkc+(x)c (x)l of the
Fermi-Dirac type,

kc+(x)c (x)l =
1

1 + e– b̃ m̃ + b̃ bm
,

with the chemical potentialm̃ to be determined from the
normalization condition,

N = E dV

1 + e– b̃m̃ + b̃ bm
. (6)

smallest length in the system) being the lattice spacing,
one has for field operatorsc+(x) = c+

m /Ïl 3 and
c (x) = cm /Ïl 3, and

Z0(b , m ) = P
m

Zm (b , m ) .

Here,Zm(b , m ) is the partition function of the one-site
HamiltonianHm,

Let N . 5000 be the number of particles in the system.
Using l 4/a'

4 . 2 3 10–10, and, neglecting 1 in the de-
nominator of Eq. (6), one gets eb̃ m̃ . 1.33 10–10

N /p3/2 which implies b̃ m̃ . ln (10–7) . – 16.1, in full
accord with our assumption.

We cannot justify our treatment for low temperatures.
Nevertheless, under the assumption that our expansion
holds up to low temperatures, the profile of the square
root of the density functionc0(x) of the system turns out
to be the BP trial wave function [8],

c0(x) = Ïkc+(x)c (x)l = const3 expS–
r 2

2ã'
2 D ,

where ã' = a'
2 /Sl Ï b̃D. The very fact that the BP

wave function is the first order result suggest that it may
not describe BEC well. Therefore, the aspect ratio
obtained from the BP wave function may not be reliable.
Moreover, the profile of the BP function differs signifi-
cantly from the exact ground state wave function calcu-
lated numerically in Refs. [9,10].

3. New Analytical Ansatz

We shall show that the ground-state wave function
f (r ) of the system can be well described by a simple
analytical Ansatz (cf. Fig. 1),

f 2 =
1
A

W[A exp (4C – r 2 – R2(A, l ) z2)] , (7)

whereW(x), defined as the principal branch (regular
at the origin) solution to the Eq.WeW = x [17], is a
standard MAPLE function [18]. The constantC in Eq.
(7) is to be determined from the normalization condi-
tion, e f 2(r )d3x = 1. To approximate the ground-state
solution to the NSE, the value ofR should be supplied
from the numerical solution [10]. On the other hand,
given the experimental value ofR, our Ansatz can serve
to reproduce the profile of the ground state.

Hm =
" 2

2ml 2 F l 4

a'
4

(m1
2 + m2

2 + m3
2) –

2ml 2

" 2
m – 4pGc+(x)c (x) + 4pSc+(x)c (x)D2

.
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Equation (2) is a nonlinear equation and, in the
present case, no exact solutions are known except for the
two limiting cases,A = 0 and Df << Af 3. In what
follows, we shall construct our Ansatz to reproduce
correctly the two limiting cases and to interpolate
smoothly between them as the interaction changes. Note
that in the strong interaction limit the Baym-Pethick
trial wave-function cannot be used at all and the
Thomas-Fermi approximation was used in Ref. [8] in
this limit. The main point in our derivation is to use
instead of the second order differential equation
[Eq. (2)] a set offirst order differential equations which
reproduce correctly both the noninteracting limit
(A = 0) and the strongly interacting limit (Df << Af 3).
In this sense, our Ansatz will be exact in the first deriva-
tives. In the noninteracting limit, Eq. (2) reduces to the
stationary Schro¨dinger equation for an anisotropic oscil-
lator and the (normalized to unity) ground state wave
function is

f (r ) =
l 1/4

p–3/4 exp F–
1
2

(x 2 + y 2 + lz2)G , (8)

with C = 2 + l and, in agreement with our previous
discussion,R= Ïl . One notice thatf (r ) satisfies the
set of first order differential equations,

­1 f = – xf , ­2 f = – yf , l –1­3 f = R–2(l ) ­3 f = – zf.

(9)

On the other hand, ifDf << Af 3, Af 3/l , the (normal-
ized to unity) ground-state wave function is given by the
Thomas-Fermi approximation [see Eq. (3)], and

Af 2­1 f ø – xf , Af 2­2 f ø – yf ,

l –2Af 2­3 f = R–2(l ) Af 2­3 f ø – zf. (10)

Now, the first order differential equations (8,10) can
be combined into the variational principle,E [ f ]=
e S j Pj Pj d3r, where P1= [(1+Af 2)­1+x] f, P2=
[(1+Af 2) ­2+y ] f, P3= [R22(A,l )(1+Af 2) ­3+z] f. The
actual form ofP3 in the asymmetric case is fixed by the
requirement to make simultaneous integration of the
first order differential equations [Eq. (11)] possible. The
variational principle implies the following set of first
order equations for the ground state wave function,

­r f = –
rf

1 + Af 2 , ­3 f = – R2(A, l )
zf

1 + Af 2

(11)

By integrating Eqs. (11) one obtains

f eAf2/2 = exp [2C – r 2/2 –R2(A, l ) z2/2] ,

from which our Ansatz [Eq. (7)] follows immediately.
Provided thatr 2 + R2(A, l )z2 < 4C, f can be found
explicitly using successive iterations,

f 2 =
1
A

ln
s2

f 2 =
1
A

ln
s2

1
A

ln
s2

1
A

ln
s2

. . .

> 0 , (12)

where s = exp [2C – r 2/2 –R2(A, l ) z2]. Obviously,
f (r ) given by Eq. (7) reproduces correctly the ground
state wave function both in the noninteracting limit
(A = 0) and in the strongly interacting limit (Af 2 >> 1),
and interpolates smoothly between the two limiting
cases in the intermediate region (see Figs. 2,3).
One can verify that if (Af 2 >> 1) then D f , –
[1/(Af 2)2](x 2 + y 2 + R2(A, l ) z2 + 3Af 2) f , and the
kinetic term is suppressed by the factor (Af 2)–2 with
respect to the remaining terms in Eq. (2). Our Ansatz
can substitute for the BP trial wave function and can play
the role of a new trial wave function in various varia-
tional calculations. Given experimental values of the
aspect ratio, our Ansatz can be effectively applied to
describe the initial BEC wave function and to calculate
all relevant properties of the initial BEC. We believe that
the derivation of our Ansatz can be extended to deal with
excited states too.

Fig. 2. A comparison of thex-dependence of the ground-state
solution of Baym and Pethick (solid line), strong limit (dot-dashed
line) and our approximate solution (dashed line). The same values of
the parameters were used as for Fig. 1.
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4. Discussion and Conclusions

In this paper, only the properties of the initial conden-
sate were considered. To find the connection with exper-
iment, it is necessary to discuss properties of the system
during the transition from the strong trap to the weak
trap and its subsequent ballistic expansion from the
weak trap. Obviously, the characteristics of the system
will change after the expansion and will strongly depend
on the condition of the expansion (i.e., whether it is
adiabatic or abrupt). Nevertheless, the present study
allows us to give an upper bound for the aspect ratio of
the condensate after its expansion directly from the
strong trap, i.e., in the absence of the intermediate weak
trap, as it took place in [2]:the aspect ratio of the final
system is always lower than that calculated for the ini-
tial condensate. Indeed, after the expansion, (i) there is
no more anisotropic potential applied, (ii) the self-
interaction of bosons, which gives rise to the increase of
the aspect ratio with respect to the noninteracting case,
is decreasing. Note that if one can measure the aspect
ratio directly after the expansion from the strong trap as
it should be done in future experiments, it would be
possible to estimate the real number of the particles in
the condensate.

We want to emphasize that, as can be found from
comparison of the results obtained from the BP wave
function, the Thomas-Fermi approximation, and from
the exact numerical solution, the aspect ratio may be a
very sensitive characteristic of the wave function and
may change considerably even when other characteris-
tics are not changed by a perturbation (such as an
external potential or an interaction). That is why we
expect that taking into account correlation effects may

lead to considerable changes in the aspect ratio,
although for other characteristics the Hartree-Fock
approximation will give correct results. We will consider
this question in detail in a forthcoming paper [13].

Summarizing, given the value of the aspect ratio, both
the profile of the ground state and the quality of BEC
can be estimated. This allows one to estimate the
number of particles in the initial condensate. We showed
that the Baym-Pethick trial wave-function (i) is only the
first order approximation in the high temperature expan-
sion for the system and (ii) does not describe the conden-
sate wave function accurately even for weak and inter-
mediate interactions. Note that in the strong interaction
limit the Baym-Pethick trial wave-function cannot be
used at all and instead the Thomas-Fermi approximation
was used in Ref. [8]. In order to describe the ground
state of the initial condensate in the whole range of the
interparticle interactions, we proposed a simple analyti-
cal Ansatz which, in contrast to the BP trial wave func-
tion, reproduces correctly both the weak and the strong
interaction limit and interpolates smoothly between the
two limiting cases as interaction changes.
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